Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- 8.JPG +3 -0
- HackMercedIXRunThrough.glb +0 -0
- README.md +2 -8
- __pycache__/themebuilder.cpython-312.pyc +0 -0
- awanai.py +234 -0
- awantest.py +23 -0
- ckpt_022-vloss_0.1756_vf1_0.7919.ckpt +3 -0
- requirements.txt +5 -0
- samples/samples_10.png +0 -0
- samples/samples_10267.png +0 -0
- samples/samples_10423.png +0 -0
- samples/samples_116.png +0 -0
- samples/samples_11603.png +0 -0
- samples/samples_13698.png +0 -0
- samples/samples_14311.png +0 -0
- samples/samples_14546.png +0 -0
- samples/samples_15528.png +0 -0
- samples/samples_15561.png +0 -0
- samples/samples_16150.png +0 -0
- samples/samples_16312.png +0 -0
- samples/samples_16411.png +0 -0
- samples/samples_16621.png +0 -0
- samples/samples_17289.png +0 -0
- samples/samples_19682.png +0 -0
- samples/samples_19884.png +0 -0
- samples/samples_203.png +0 -0
- samples/samples_21602.png +0 -0
- samples/samples_21920.png +0 -0
- samples/samples_22594.png +0 -0
- samples/samples_23625.png +0 -0
- samples/samples_24.png +0 -0
- samples/samples_24136.png +0 -0
- samples/samples_24715.png +0 -0
- samples/samples_24817.png +0 -0
- samples/samples_25140.png +0 -0
- samples/samples_2563.png +0 -0
- samples/samples_25826.png +0 -0
- samples/samples_26591.png +0 -0
- samples/samples_2694.png +0 -0
- samples/samples_27926.png +0 -0
- samples/samples_28.png +0 -0
- samples/samples_28661.png +0 -0
- samples/samples_28983.png +0 -0
- samples/samples_30258.png +0 -0
- samples/samples_30809.png +0 -0
- samples/samples_3282.png +0 -0
- samples/samples_3665.png +0 -0
- samples/samples_381.png +0 -0
- samples/samples_4595.png +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
8.JPG filter=lfs diff=lfs merge=lfs -text
|
8.JPG
ADDED
Git LFS Details
|
HackMercedIXRunThrough.glb
ADDED
Binary file (40.6 kB). View file
|
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
title: Awan.AI
|
3 |
-
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Awan.AI
|
3 |
+
app_file: awanai.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 4.24.0
|
|
|
|
|
6 |
---
|
|
|
|
__pycache__/themebuilder.cpython-312.pyc
ADDED
Binary file (266 Bytes). View file
|
|
awanai.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from glob import glob
|
6 |
+
from functools import partial
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torchvision
|
11 |
+
import torch.nn as nn
|
12 |
+
import lightning.pytorch as pl
|
13 |
+
import torchvision.transforms as TF
|
14 |
+
|
15 |
+
from torchmetrics import MeanMetric
|
16 |
+
from torchmetrics.classification import MultilabelF1Score
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class DatasetConfig:
|
21 |
+
IMAGE_SIZE: tuple = (384, 384) # (W, H)
|
22 |
+
CHANNELS: int = 3
|
23 |
+
NUM_CLASSES: int = 10
|
24 |
+
MEAN: tuple = (0.485, 0.456, 0.406)
|
25 |
+
STD: tuple = (0.229, 0.224, 0.225)
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class TrainingConfig:
|
30 |
+
METRIC_THRESH: float = 0.4
|
31 |
+
MODEL_NAME: str = "efficientnet_v2_s"
|
32 |
+
FREEZE_BACKBONE: bool = False
|
33 |
+
|
34 |
+
|
35 |
+
def get_model(model_name: str, num_classes: int, freeze_backbone: bool = True):
|
36 |
+
"""A helper function to load and prepare any classification model
|
37 |
+
available in Torchvision for transfer learning or fine-tuning."""
|
38 |
+
|
39 |
+
model = getattr(torchvision.models, model_name)(weights="DEFAULT")
|
40 |
+
|
41 |
+
if freeze_backbone:
|
42 |
+
# Set all layer to be non-trainable
|
43 |
+
for param in model.parameters():
|
44 |
+
param.requires_grad = False
|
45 |
+
|
46 |
+
model_childrens = [name for name, _ in model.named_children()]
|
47 |
+
|
48 |
+
try:
|
49 |
+
final_layer_in_features = getattr(model, f"{model_childrens[-1]}")[-1].in_features
|
50 |
+
except Exception as e:
|
51 |
+
final_layer_in_features = getattr(model, f"{model_childrens[-1]}").in_features
|
52 |
+
|
53 |
+
new_output_layer = nn.Linear(in_features=final_layer_in_features, out_features=num_classes)
|
54 |
+
|
55 |
+
try:
|
56 |
+
getattr(model, f"{model_childrens[-1]}")[-1] = new_output_layer
|
57 |
+
except:
|
58 |
+
setattr(model, model_childrens[-1], new_output_layer)
|
59 |
+
|
60 |
+
return model
|
61 |
+
|
62 |
+
|
63 |
+
class ProteinModel(pl.LightningModule):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
model_name: str,
|
67 |
+
num_classes: int = 10,
|
68 |
+
freeze_backbone: bool = False,
|
69 |
+
init_lr: float = 0.001,
|
70 |
+
optimizer_name: str = "Adam",
|
71 |
+
weight_decay: float = 1e-4,
|
72 |
+
use_scheduler: bool = False,
|
73 |
+
f1_metric_threshold: float = 0.4,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
# Save the arguments as hyperparameters.
|
78 |
+
self.save_hyperparameters()
|
79 |
+
|
80 |
+
# Loading model using the function defined above.
|
81 |
+
self.model = get_model(
|
82 |
+
model_name=self.hparams.model_name,
|
83 |
+
num_classes=self.hparams.num_classes,
|
84 |
+
freeze_backbone=self.hparams.freeze_backbone,
|
85 |
+
)
|
86 |
+
|
87 |
+
# Intialize loss class.
|
88 |
+
self.loss_fn = nn.BCEWithLogitsLoss()
|
89 |
+
|
90 |
+
# Initializing the required metric objects.
|
91 |
+
self.mean_train_loss = MeanMetric()
|
92 |
+
self.mean_train_f1 = MultilabelF1Score(num_labels=self.hparams.num_classes, average="macro", threshold=self.hparams.f1_metric_threshold)
|
93 |
+
self.mean_valid_loss = MeanMetric()
|
94 |
+
self.mean_valid_f1 = MultilabelF1Score(num_labels=self.hparams.num_classes, average="macro", threshold=self.hparams.f1_metric_threshold)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
return self.model(x)
|
98 |
+
|
99 |
+
def training_step(self, batch, *args, **kwargs):
|
100 |
+
data, target = batch
|
101 |
+
logits = self(data)
|
102 |
+
loss = self.loss_fn(logits, target)
|
103 |
+
|
104 |
+
self.mean_train_loss(loss, weight=data.shape[0])
|
105 |
+
self.mean_train_f1(logits, target)
|
106 |
+
|
107 |
+
self.log("train/batch_loss", self.mean_train_loss, prog_bar=True)
|
108 |
+
self.log("train/batch_f1", self.mean_train_f1, prog_bar=True)
|
109 |
+
return loss
|
110 |
+
|
111 |
+
def on_train_epoch_end(self):
|
112 |
+
# Computing and logging the training mean loss & mean f1.
|
113 |
+
self.log("train/loss", self.mean_train_loss, prog_bar=True)
|
114 |
+
self.log("train/f1", self.mean_train_f1, prog_bar=True)
|
115 |
+
self.log("step", self.current_epoch)
|
116 |
+
|
117 |
+
def validation_step(self, batch, *args, **kwargs):
|
118 |
+
data, target = batch # Unpacking validation dataloader tuple
|
119 |
+
logits = self(data)
|
120 |
+
loss = self.loss_fn(logits, target)
|
121 |
+
|
122 |
+
self.mean_valid_loss.update(loss, weight=data.shape[0])
|
123 |
+
self.mean_valid_f1.update(logits, target)
|
124 |
+
|
125 |
+
def on_validation_epoch_end(self):
|
126 |
+
# Computing and logging the validation mean loss & mean f1.
|
127 |
+
self.log("valid/loss", self.mean_valid_loss, prog_bar=True)
|
128 |
+
self.log("valid/f1", self.mean_valid_f1, prog_bar=True)
|
129 |
+
self.log("step", self.current_epoch)
|
130 |
+
|
131 |
+
def configure_optimizers(self):
|
132 |
+
optimizer = getattr(torch.optim, self.hparams.optimizer_name)(
|
133 |
+
filter(lambda p: p.requires_grad, self.model.parameters()),
|
134 |
+
lr=self.hparams.init_lr,
|
135 |
+
weight_decay=self.hparams.weight_decay,
|
136 |
+
)
|
137 |
+
|
138 |
+
if self.hparams.use_scheduler:
|
139 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
140 |
+
optimizer,
|
141 |
+
milestones=[
|
142 |
+
self.trainer.max_epochs // 2,
|
143 |
+
],
|
144 |
+
gamma=0.1,
|
145 |
+
)
|
146 |
+
|
147 |
+
# The lr_scheduler_config is a dictionary that contains the scheduler
|
148 |
+
# and its associated configuration.
|
149 |
+
lr_scheduler_config = {
|
150 |
+
"scheduler": lr_scheduler,
|
151 |
+
"interval": "epoch",
|
152 |
+
"name": "multi_step_lr",
|
153 |
+
}
|
154 |
+
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config}
|
155 |
+
|
156 |
+
else:
|
157 |
+
return optimizer
|
158 |
+
|
159 |
+
|
160 |
+
@torch.inference_mode()
|
161 |
+
def predict(input_image, threshold=0.4, model=None, preprocess_fn=None, device="cpu", idx2labels=None):
|
162 |
+
input_tensor = preprocess_fn(input_image)
|
163 |
+
input_tensor = input_tensor.unsqueeze(0).to(device)
|
164 |
+
|
165 |
+
# Generate predictions
|
166 |
+
output = model(input_tensor).cpu()
|
167 |
+
|
168 |
+
probabilities = torch.sigmoid(output)[0].numpy().tolist()
|
169 |
+
|
170 |
+
output_probs = dict()
|
171 |
+
predicted_classes = []
|
172 |
+
|
173 |
+
for idx, prob in enumerate(probabilities):
|
174 |
+
output_probs[idx2labels[idx]] = prob
|
175 |
+
if prob >= threshold:
|
176 |
+
predicted_classes.append(idx2labels[idx])
|
177 |
+
|
178 |
+
predicted_classes = "\n".join(predicted_classes)
|
179 |
+
return predicted_classes, output_probs
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
labels = {
|
184 |
+
0: "Mitochondria",
|
185 |
+
1: "Nuclear bodies",
|
186 |
+
2: "Nucleoli",
|
187 |
+
3: "Golgi apparatus",
|
188 |
+
4: "Nucleoplasm",
|
189 |
+
5: "Nucleoli fibrillar center",
|
190 |
+
6: "Cytosol",
|
191 |
+
7: "Plasma membrane",
|
192 |
+
8: "Centrosome",
|
193 |
+
9: "Nuclear speckles",
|
194 |
+
}
|
195 |
+
|
196 |
+
DEVICE = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
197 |
+
CKPT_PATH = os.path.join(os.getcwd(), r"ckpt_022-vloss_0.1756_vf1_0.7919.ckpt")
|
198 |
+
model = ProteinModel.load_from_checkpoint(CKPT_PATH)
|
199 |
+
model.to(DEVICE)
|
200 |
+
model.eval()
|
201 |
+
_ = model(torch.randn(1, DatasetConfig.CHANNELS, *DatasetConfig.IMAGE_SIZE[::-1], device=DEVICE))
|
202 |
+
|
203 |
+
preprocess = TF.Compose(
|
204 |
+
[
|
205 |
+
TF.Resize(size=DatasetConfig.IMAGE_SIZE[::-1]),
|
206 |
+
TF.ToTensor(),
|
207 |
+
TF.Normalize(DatasetConfig.MEAN, DatasetConfig.STD, inplace=True),
|
208 |
+
]
|
209 |
+
)
|
210 |
+
|
211 |
+
images_dir = glob(os.path.join(os.getcwd(), "samples") + os.sep + "*.png")
|
212 |
+
examples = [[i, TrainingConfig.METRIC_THRESH] for i in np.random.choice(images_dir, size=10, replace=False)]
|
213 |
+
# print(examples)
|
214 |
+
|
215 |
+
|
216 |
+
with gr.Interface(
|
217 |
+
fn=partial(predict, model=model, preprocess_fn=preprocess, device=DEVICE, idx2labels=labels),
|
218 |
+
inputs=[
|
219 |
+
gr.Image(type="pil", label="Image"),
|
220 |
+
gr.Slider(0.0, 1.0, value=0.4, label="Threshold", info="Select the cut-off threshold for a node to be considered as a valid output."),
|
221 |
+
],
|
222 |
+
outputs=[
|
223 |
+
gr.Textbox(label="Labels Present"),
|
224 |
+
gr.Label(label="Probabilities", show_label=False),
|
225 |
+
],
|
226 |
+
|
227 |
+
examples=examples,
|
228 |
+
cache_examples=False,
|
229 |
+
allow_flagging="never",
|
230 |
+
title="Awan AI Medical Image Classification",
|
231 |
+
theme=gr.themes.Soft(primary_hue="sky", secondary_hue="pink"),
|
232 |
+
) as iface:
|
233 |
+
additional_inputs=[gr.Model3D(label="3D Model", value="./HackMercedIXRunThrough.glb", clear_color=[0.4, 0.2, 0.7, 1.0])]
|
234 |
+
iface.launch(share=True)
|
awantest.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def awan(img):
|
5 |
+
sepia_filter = np.array([
|
6 |
+
[.001, .001, .001],
|
7 |
+
[.001, .0, .001],
|
8 |
+
[.001, .001, .001]])
|
9 |
+
|
10 |
+
sepia_img = img.dot(sepia_filter.T)
|
11 |
+
sepia_img /= sepia_img.max()
|
12 |
+
|
13 |
+
output_txt = "You might be sick"
|
14 |
+
return (sepia_img, output_txt)
|
15 |
+
|
16 |
+
awan = gr.Interface(
|
17 |
+
fn = awan,
|
18 |
+
inputs = gr.Image(label="Upload image or take photo here"),
|
19 |
+
outputs = ["image", "text"], title="output image and analysis result",
|
20 |
+
examples = ["8.JPG"],
|
21 |
+
live = True,
|
22 |
+
description = "Input image to get analysis"
|
23 |
+
).launch(share=True,debug=True, auth=("u", "p"), auth_message="Username is \"u\" and Password is \"p\"")
|
ckpt_022-vloss_0.1756_vf1_0.7919.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f0bb009e4d3c07380ed58b5078df7ec08f8adccd742b44aff99b4b35531300e
|
3 |
+
size 243578302
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
+
# torch==2.0.0+cpu
|
3 |
+
torchvision==0.15.0
|
4 |
+
lightning==2.0.1
|
5 |
+
torchmetrics==1.0.0
|
samples/samples_10.png
ADDED
samples/samples_10267.png
ADDED
samples/samples_10423.png
ADDED
samples/samples_116.png
ADDED
samples/samples_11603.png
ADDED
samples/samples_13698.png
ADDED
samples/samples_14311.png
ADDED
samples/samples_14546.png
ADDED
samples/samples_15528.png
ADDED
samples/samples_15561.png
ADDED
samples/samples_16150.png
ADDED
samples/samples_16312.png
ADDED
samples/samples_16411.png
ADDED
samples/samples_16621.png
ADDED
samples/samples_17289.png
ADDED
samples/samples_19682.png
ADDED
samples/samples_19884.png
ADDED
samples/samples_203.png
ADDED
samples/samples_21602.png
ADDED
samples/samples_21920.png
ADDED
samples/samples_22594.png
ADDED
samples/samples_23625.png
ADDED
samples/samples_24.png
ADDED
samples/samples_24136.png
ADDED
samples/samples_24715.png
ADDED
samples/samples_24817.png
ADDED
samples/samples_25140.png
ADDED
samples/samples_2563.png
ADDED
samples/samples_25826.png
ADDED
samples/samples_26591.png
ADDED
samples/samples_2694.png
ADDED
samples/samples_27926.png
ADDED
samples/samples_28.png
ADDED
samples/samples_28661.png
ADDED
samples/samples_28983.png
ADDED
samples/samples_30258.png
ADDED
samples/samples_30809.png
ADDED
samples/samples_3282.png
ADDED
samples/samples_3665.png
ADDED
samples/samples_381.png
ADDED
samples/samples_4595.png
ADDED