Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,649 Bytes
86da6bf 019cdc1 86da6bf 88c1ef1 86da6bf 68b0288 2b98806 07462e7 2b98806 88c1ef1 86da6bf 2b98806 c320745 68b0288 c320745 86da6bf 1075d8a edc0dc6 86da6bf 07462e7 2b98806 68b0288 2b98806 86da6bf 2b98806 edc0dc6 07462e7 86da6bf 2b98806 edc0dc6 2b98806 86da6bf 2b98806 88c1ef1 2b98806 9cd819b 88c1ef1 9cd819b edc0dc6 2b98806 a48bd1b 2b98806 c320745 2b98806 c320745 86da6bf 88c1ef1 2b98806 edc0dc6 68b0288 2b98806 86da6bf 2b98806 68b0288 2b98806 68b0288 07462e7 2b98806 edc0dc6 07462e7 88c1ef1 40e33a1 2b98806 86da6bf 8c6fc00 86da6bf 8c6fc00 86da6bf d245991 86da6bf 68b0288 8c6fc00 86da6bf 88c1ef1 8c6fc00 5c1d3a1 40e33a1 8c6fc00 86da6bf 8c6fc00 86da6bf 88c1ef1 8c6fc00 88c1ef1 714612e 8c6fc00 d245991 8c6fc00 d245991 8c6fc00 68b0288 86da6bf 88c1ef1 86da6bf 88c1ef1 86da6bf 88c1ef1 86da6bf 88c1ef1 68b0288 88c1ef1 2b98806 88c1ef1 68b0288 88c1ef1 86da6bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# Author: Huzheng Yang
# %%
USE_SPACES = True
if USE_SPACES: # huggingface ZeroGPU
try:
import spaces
except ImportError:
USE_SPACES = False # run on standard GPU
import gradio as gr
import torch
from PIL import Image
import numpy as np
import time
import gradio as gr
from backbone import extract_features
from ncut_pytorch import NCUT, eigenvector_to_rgb
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
embedding_method="UMAP",
num_sample_tsne=300,
perplexity=150,
n_neighbors=150,
min_dist=0.1,
sampling_method="fps",
):
logging_str = ""
num_nodes = np.prod(features.shape[:3])
if num_nodes / 2 < num_eig:
# raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
num_eig = num_nodes // 2 - 1
logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
start = time.time()
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cuda" if torch.cuda.is_available() else "cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
sample_method=sampling_method,
).fit_transform(features.reshape(-1, features.shape[-1]))
# print(f"NCUT time: {time.time() - start:.2f}s")
logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
start = time.time()
_, rgb = eigenvector_to_rgb(
eigvecs,
method=embedding_method,
num_sample=num_sample_tsne,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_distance=min_dist,
knn=knn_tsne,
device="cuda" if torch.cuda.is_available() else "cpu",
)
logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"
rgb = rgb.reshape(features.shape[:3] + (3,))
return rgb, logging_str
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images):
return [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.Resampling.NEAREST)
for image in images
]
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
default_outputs_independent = ['./images/ncut_0_independent.jpg', './images/ncut_1_independent.jpg', './images/ncut_2_independent.jpg', './images/ncut_3_independent.jpg', './images/ncut_5_independent.jpg']
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']
example_items = downscaled_images[:3] + downscaled_outputs[:3]
def ncut_run(
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="UMAP",
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
sampling_method="fps",
old_school_ncut=False,
):
logging_str = ""
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
perplexity = num_sample_tsne - 1
n_neighbors = num_sample_tsne - 1
node_type = node_type.split(":")[0].strip()
images = [image[0] for image in images] # remove the label
start = time.time()
features = extract_features(
images, model_name=model_name, node_type=node_type, layer=layer
)
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
if not old_school_ncut: # joint across all images
rgb, _logging_str = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
)
logging_str += _logging_str
rgb = dont_use_too_much_green(rgb)
if old_school_ncut: # individual images
logging_str += "Running NCut for each image independently\n"
rgb = []
for i_image in range(features.shape[0]):
feature = features[i_image]
_rgb, _logging_str = compute_ncut(
feature[None],
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
sampling_method=sampling_method,
)
logging_str += _logging_str
rgb.append(_rgb[0])
return to_pil_images(rgb), logging_str
def _ncut_run(*args, **kwargs):
try:
return ncut_run(*args, **kwargs)
except Exception as e:
gr.Error(str(e))
return [], "Error: " + str(e)
if USE_SPACES:
@spaces.GPU(duration=13)
def quick_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=30)
def long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=60)
def longer_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
@spaces.GPU(duration=120)
def super_duper_long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
if not USE_SPACES:
def quick_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def longer_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def super_duper_long_run(*args, **kwargs):
return _ncut_run(*args, **kwargs)
def run_fn(
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="UMAP",
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
sampling_method="fps",
old_school_ncut=False,
):
if images is None:
gr.Warning("No images selected.")
return [], "No images selected."
if sampling_method == "fps":
sampling_method = "farthest"
kwargs = {
"model_name": model_name,
"layer": layer,
"num_eig": num_eig,
"node_type": node_type,
"affinity_focal_gamma": affinity_focal_gamma,
"num_sample_ncut": num_sample_ncut,
"knn_ncut": knn_ncut,
"embedding_method": embedding_method,
"num_sample_tsne": num_sample_tsne,
"knn_tsne": knn_tsne,
"perplexity": perplexity,
"n_neighbors": n_neighbors,
"min_dist": min_dist,
"sampling_method": sampling_method,
"old_school_ncut": old_school_ncut,
}
num_images = len(images)
if num_images > 100:
return super_duper_long_run(images, **kwargs)
if num_images > 50:
return longer_run(images, **kwargs)
if num_images > 10:
return long_run(images, **kwargs)
if embedding_method == "UMAP":
if perplexity >= 250 or num_sample_tsne >= 500:
return longer_run(images, **kwargs)
return long_run(images, **kwargs)
if embedding_method == "t-SNE":
if perplexity >= 250 or num_sample_tsne >= 500:
return long_run(images, **kwargs)
return quick_run(images, **kwargs)
return quick_run(images, **kwargs)
def make_input_images_section():
gr.Markdown('### Input Images')
input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
return input_gallery, submit_button, clear_images_button
def make_example_images_section():
gr.Markdown('### Load from Cloud Dataset 👇')
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
hide_button = gr.Button("Hide Example", elem_id="hide-button")
hide_button.click(
fn=lambda: gr.update(visible=False),
outputs=example_gallery
)
return load_images_button, example_gallery, hide_button
def make_dataset_images_section():
with gr.Accordion("➜ Load from dataset", open=True):
dataset_names = [
'UCSC-VLAA/Recap-COCO-30K',
'nateraw/pascal-voc-2012',
'johnowhitaker/imagenette2-320',
'jainr3/diffusiondb-pixelart',
'JapanDegitalMaterial/Places_in_Japan',
'Borismile/Anime-dataset',
]
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
random_seed_slider = gr.Number(0, label="Random seed", value=42, elem_id="random_seed")
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
from datasets import load_dataset
try:
dataset = load_dataset(dataset_name)
key = list(dataset.keys())[0]
dataset = dataset[key]
except Exception as e:
gr.Error(f"Error loading dataset {dataset_name}: {e}")
return None
if num_images > len(dataset):
num_images = len(dataset)
image_idx = np.random.RandomState(random_seed).choice(len(dataset), num_images, replace=False)
image_idx = image_idx.tolist()
images = [dataset[i]['image'] for i in image_idx]
return images
load_dataset_button.click(load_dataset_images, inputs=[dataset_dropdown, num_images_slider, random_seed_slider], outputs=[input_gallery])
return dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button
def make_output_images_section():
gr.Markdown('### Output Images')
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
return output_gallery
def make_parameters_section():
gr.Markdown('### Parameters')
model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)", "MAE(vit_base)"], label="Backbone", value="SAM(sam_vit_b)", elem_id="model_name")
layer_slider = gr.Slider(0, 11, step=1, label="Backbone: Layer index", value=11, elem_id="layer")
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
with gr.Accordion("➜ Click to expand: more parameters", open=False):
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
perplexity_slider = gr.Slider(10, 500, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
n_neighbors_slider = gr.Slider(10, 500, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown]
with gr.Blocks() as demo:
with gr.Tab('AlignedCut (Images)'):
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
load_images_button, example_gallery, hide_button = make_example_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown
] = make_parameters_section()
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
load_images_button.click(lambda x: (default_images, default_outputs), outputs=[input_gallery, output_gallery])
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
],
outputs=[output_gallery, logging_text]
)
with gr.Tab('NCut (Legacy)'):
gr.Markdown('#### Ncut, not aligned, no Nyström approximation')
gr.Markdown('1. Each image is solved independently, _color is not aligned across images_')
gr.Markdown('2. No Nyström approximation')
gr.Markdown('### NCut (Legacy) vs. AlignedCut:')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('#### Pros')
gr.Markdown('- Easy Solution. Use less eigenvectors.')
gr.Markdown('- Exact solution. No Nyström approximation.')
with gr.Column(scale=5, min_width=200):
gr.Markdown('#### Cons')
gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
gr.Markdown('---')
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown(' ')
with gr.Column(scale=5, min_width=200):
gr.Markdown('_color is not aligned across images_ 👇')
with gr.Row():
with gr.Column(scale=5, min_width=200):
input_gallery, submit_button, clear_images_button = make_input_images_section()
load_images_button, example_gallery, hide_button = make_example_images_section()
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
example_gallery.visible = False
hide_button.visible = False
with gr.Column(scale=5, min_width=200):
output_gallery = make_output_images_section()
[
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider,
sampling_method_dropdown
] = make_parameters_section()
old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, knn_ncut_slider,
num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown]
for item in invisible_list:
item.visible = False
# logging text box
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
load_images_button.click(lambda x: (default_images, default_outputs_independent), outputs=[input_gallery, output_gallery])
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
submit_button.click(
run_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
old_school_ncut_checkbox
],
outputs=[output_gallery, logging_text]
)
demo.launch(share=True)
# %%
|