Spaces:
Sleeping
Sleeping
File size: 27,205 Bytes
f7e1683 0ce84cc f4b5c65 0ce84cc ecaad35 3a1afda ecaad35 3a1afda c2e3966 a63a008 1c3d9c2 0ce84cc 3b10a63 0ce84cc b2e635f f5e4024 c2e3966 266d5cd c2e3966 4902504 c2e3966 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 4902504 9e1c7c4 c2e3966 4902504 c2e3966 4902504 f5e4024 4902504 c2e3966 9e1c7c4 4902504 b2e635f 4902504 c2e3966 4902504 9e1c7c4 4902504 c2e3966 4902504 0ce84cc ecaad35 4c25f4a a63a008 ecaad35 a63a008 ecaad35 3a1afda ecaad35 3851ab4 ecaad35 81ee5ca ecaad35 0ce84cc ecaad35 a63a008 ecaad35 3b10a63 c2e3966 3a1afda ecaad35 a63a008 3a1afda ecaad35 3851ab4 ecaad35 a63a008 ecaad35 a63a008 c2e3966 ecaad35 a63a008 ecaad35 a63a008 ecaad35 a63a008 ecaad35 a63a008 ecaad35 a63a008 ecaad35 c2e3966 3a1afda c2e3966 3b10a63 ecaad35 266d5cd ecaad35 c2e3966 266d5cd c2e3966 ecaad35 c2e3966 266d5cd ecaad35 c2e3966 266d5cd ecaad35 b2e635f 266d5cd ecaad35 b2e635f ecaad35 266d5cd ecaad35 b2e635f f4b5c65 a63a008 ecaad35 2ff3127 ecaad35 2ff3127 ecaad35 2ff3127 ecaad35 2ff3127 ecaad35 2ff3127 ecaad35 7697af6 ecaad35 0ce84cc f5e4024 0ce84cc a0f7708 ecaad35 4b97382 0ce84cc ecaad35 1c3d9c2 e30549b 9a5e6ca 1c3d9c2 e30549b 9a5e6ca e30549b 9a5e6ca e30549b 9a5e6ca e30549b 9a5e6ca 1c3d9c2 ecaad35 1c3d9c2 ecaad35 1c3d9c2 ecaad35 1c3d9c2 ecaad35 1c3d9c2 ecaad35 1c3d9c2 ecaad35 077e0e7 ecaad35 a63a008 ecaad35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
import gradio as gr
from pydub import AudioSegment
import edge_tts
import os
import asyncio
import uuid
import re
import time
import tempfile
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple, Optional, Dict, Any
import math
from dataclasses import dataclass
import multiprocessing
import psutil
import concurrent.futures
import gc
from gradio.themes import Monochrome
class TimingManager:
def __init__(self):
self.current_time = 0
self.segment_gap = 100 # ms gap between segments
def get_timing(self, duration):
start_time = self.current_time
end_time = start_time + duration
self.current_time = end_time + self.segment_gap
return start_time, end_time
def get_audio_length(audio_file):
audio = AudioSegment.from_file(audio_file)
return len(audio) / 1000
def format_time_ms(milliseconds):
seconds, ms = divmod(int(milliseconds), 1000)
mins, secs = divmod(seconds, 60)
hrs, mins = divmod(mins, 60)
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
@dataclass
class Segment:
id: int
text: str
start_time: int = 0
end_time: int = 0
duration: int = 0
audio: Optional[AudioSegment] = None
lines: List[str] = None # Add lines field for display purposes only
class TextProcessor:
def __init__(self, words_per_line: int, lines_per_segment: int):
self.words_per_line = words_per_line
self.lines_per_segment = lines_per_segment
self.min_segment_words = 3
self.max_segment_words = words_per_line * lines_per_segment * 1.5 # Allow 50% more for natural breaks
self.punctuation_weights = {
'.': 1.0, # Strong break
'!': 1.0,
'?': 1.0,
';': 0.8, # Medium-strong break
':': 0.7,
',': 0.5, # Medium break
'-': 0.3, # Weak break
'(': 0.2,
')': 0.2
}
def analyze_sentence_complexity(self, text: str) -> float:
"""Analyze sentence complexity to determine optimal segment length"""
words = text.split()
complexity = 1.0
# Adjust for sentence length
if len(words) > self.words_per_line * 2:
complexity *= 1.2
# Adjust for punctuation density
punct_count = sum(text.count(p) for p in self.punctuation_weights.keys())
complexity *= (1 + (punct_count / len(words)) * 0.5)
return complexity
def find_natural_breaks(self, text: str) -> List[Tuple[int, float]]:
"""Find natural break points with their weights"""
breaks = []
words = text.split()
for i, word in enumerate(words):
weight = 0
# Check for punctuation
for punct, punct_weight in self.punctuation_weights.items():
if word.endswith(punct):
weight = max(weight, punct_weight)
# Check for natural phrase boundaries
phrase_starters = {'however', 'therefore', 'moreover', 'furthermore', 'meanwhile', 'although', 'because'}
if i < len(words) - 1 and words[i+1].lower() in phrase_starters:
weight = max(weight, 0.6)
# Check for conjunctions at natural points
if i > self.min_segment_words:
conjunctions = {'and', 'but', 'or', 'nor', 'for', 'yet', 'so'}
if word.lower() in conjunctions:
weight = max(weight, 0.4)
if weight > 0:
breaks.append((i, weight))
return breaks
def split_into_segments(self, text: str) -> List[Segment]:
# Normalize text and add proper spacing around punctuation
text = re.sub(r'\s+', ' ', text.strip())
text = re.sub(r'([.!?,;:])\s*', r'\1 ', text)
text = re.sub(r'\s+([.!?,;:])', r'\1', text)
# First, split into major segments by strong punctuation
segments = []
current_segment = []
current_text = ""
words = text.split()
i = 0
while i < len(words):
complexity = self.analyze_sentence_complexity(' '.join(words[i:i + self.words_per_line * 2]))
breaks = self.find_natural_breaks(' '.join(words[i:i + int(self.max_segment_words * complexity)]))
# Find best break point
best_break = None
best_weight = 0
for break_idx, weight in breaks:
actual_idx = i + break_idx
if (actual_idx - i >= self.min_segment_words and
actual_idx - i <= self.max_segment_words):
if weight > best_weight:
best_break = break_idx
best_weight = weight
if best_break is None:
# If no good break found, use maximum length
best_break = min(self.words_per_line * self.lines_per_segment, len(words) - i)
# Create segment
segment_words = words[i:i + best_break + 1]
segment_text = ' '.join(segment_words)
# Split segment into lines
lines = self.split_into_lines(segment_text)
final_segment_text = '\n'.join(lines)
segments.append(Segment(
id=len(segments) + 1,
text=final_segment_text
))
i += best_break + 1
return segments
def split_into_lines(self, text: str) -> List[str]:
"""Split segment text into natural lines"""
words = text.split()
lines = []
current_line = []
word_count = 0
for word in words:
current_line.append(word)
word_count += 1
# Check for natural line breaks
is_break = (
word_count >= self.words_per_line or
any(word.endswith(p) for p in '.!?') or
(word_count >= self.words_per_line * 0.7 and
any(word.endswith(p) for p in ',;:'))
)
if is_break:
lines.append(' '.join(current_line))
current_line = []
word_count = 0
if current_line:
lines.append(' '.join(current_line))
return lines
# IMPROVEMENT 1: Enhanced Error Handling
class TTSError(Exception):
"""Custom exception for TTS processing errors"""
pass
class ResourceOptimizer:
@staticmethod
def get_optimal_workers():
cpu_count = multiprocessing.cpu_count()
return max(cpu_count - 1, 1) # Leave one core for system
@staticmethod
def get_memory_limit():
# Use up to 70% of available RAM
return int(psutil.virtual_memory().available * 0.7)
@staticmethod
def get_batch_size(total_segments):
# Calculate optimal batch size based on CPU cores
return min(total_segments, ResourceOptimizer.get_optimal_workers() * 2)
async def process_segment_with_timing(segment: Segment, voice: str, rate: str, pitch: str) -> Segment:
"""Process a complete segment as a single TTS unit with improved error handling"""
# Pre-allocate memory for audio processing
gc.collect() # Force garbage collection before processing
audio_file = os.path.join(tempfile.gettempdir(), f"temp_segment_{segment.id}_{uuid.uuid4()}.wav")
try:
# Process the entire segment text as one unit, replacing newlines with spaces
segment_text = ' '.join(segment.text.split('\n'))
tts = edge_tts.Communicate(segment_text, voice, rate=rate, pitch=pitch)
try:
await tts.save(audio_file)
except Exception as e:
raise TTSError(f"Failed to generate audio for segment {segment.id}: {str(e)}")
if not os.path.exists(audio_file) or os.path.getsize(audio_file) == 0:
raise TTSError(f"Generated audio file is empty or missing for segment {segment.id}")
try:
segment.audio = AudioSegment.from_file(audio_file)
# Optimize memory usage for audio processing
segment.audio = segment.audio.set_channels(1) # Convert to mono for memory efficiency
silence = AudioSegment.silent(duration=30)
segment.audio = silence + segment.audio + silence
segment.duration = len(segment.audio)
except Exception as e:
raise TTSError(f"Failed to process audio file for segment {segment.id}: {str(e)}")
return segment
finally:
if os.path.exists(audio_file):
try:
os.remove(audio_file)
except Exception:
pass
# IMPROVEMENT 2: Better File Management with cleanup
class FileManager:
"""Manages temporary and output files with cleanup capabilities"""
def __init__(self):
self.temp_dir = tempfile.mkdtemp(prefix="tts_app_")
self.output_files = []
self.max_files_to_keep = 5 # Keep only the 5 most recent output pairs
def get_temp_path(self, prefix):
"""Get a path for a temporary file"""
return os.path.join(self.temp_dir, f"{prefix}_{uuid.uuid4()}")
def create_output_paths(self):
"""Create paths for output files"""
unique_id = str(uuid.uuid4())
audio_path = os.path.join(self.temp_dir, f"final_audio_{unique_id}.mp3")
srt_path = os.path.join(self.temp_dir, f"final_subtitles_{unique_id}.srt")
self.output_files.append((srt_path, audio_path))
self.cleanup_old_files()
return srt_path, audio_path
def cleanup_old_files(self):
"""Clean up old output files, keeping only the most recent ones"""
if len(self.output_files) > self.max_files_to_keep:
old_files = self.output_files[:-self.max_files_to_keep]
for srt_path, audio_path in old_files:
try:
if os.path.exists(srt_path):
os.remove(srt_path)
if os.path.exists(audio_path):
os.remove(audio_path)
except Exception:
pass # Ignore deletion errors
# Update the list to only include files we're keeping
self.output_files = self.output_files[-self.max_files_to_keep:]
def cleanup_all(self):
"""Clean up all managed files"""
for srt_path, audio_path in self.output_files:
try:
if os.path.exists(srt_path):
os.remove(srt_path)
if os.path.exists(audio_path):
os.remove(audio_path)
except Exception:
pass # Ignore deletion errors
try:
os.rmdir(self.temp_dir)
except Exception:
pass # Ignore if directory isn't empty or can't be removed
# Create global file manager
file_manager = FileManager()
# IMPROVEMENT 3: Parallel Processing for Segments
async def generate_accurate_srt(
text: str,
voice: str,
rate: str,
pitch: str,
words_per_line: int,
lines_per_segment: int,
progress_callback=None,
parallel: bool = True,
max_workers: Optional[int] = None
) -> Tuple[str, str]:
"""Generate accurate SRT with optimized resource utilization"""
processor = TextProcessor(words_per_line, lines_per_segment)
segments = processor.split_into_segments(text)
total_segments = len(segments)
# Optimize worker count based on system resources
if max_workers is None:
max_workers = ResourceOptimizer.get_optimal_workers()
if parallel and total_segments > 1:
# Enhanced parallel processing with resource optimization
batch_size = ResourceOptimizer.get_batch_size(total_segments)
semaphore = asyncio.Semaphore(max_workers)
processed_segments = []
processed_count = 0
# Process in batches for better resource utilization
for i in range(0, total_segments, batch_size):
batch = segments[i:i + batch_size]
batch_tasks = []
for segment in batch:
batch_tasks.append(
process_with_semaphore(segment, voice, rate, pitch, semaphore)
)
# Process batch with maximum resource utilization
batch_results = await asyncio.gather(*batch_tasks)
processed_segments.extend(batch_results)
# Force garbage collection between batches
gc.collect()
if progress_callback:
processed_count += len(batch)
progress = 0.1 + (0.8 * processed_count / total_segments)
progress_callback(progress, f"Processed {processed_count}/{total_segments} segments")
else:
# Process segments sequentially (original method)
for i, segment in enumerate(segments):
try:
processed_segment = await process_segment_with_timing(segment, voice, rate, pitch)
processed_segments.append(processed_segment)
if progress_callback:
progress = 0.1 + (0.8 * (i + 1) / total_segments)
progress_callback(progress, f"Processed {i + 1}/{total_segments} segments")
except Exception as e:
if progress_callback:
progress_callback(0.9, f"Error processing segment {segment.id}: {str(e)}")
raise TTSError(f"Failed to process segment {segment.id}: {str(e)}")
# Sort segments by ID to ensure correct order
processed_segments.sort(key=lambda s: s.id)
if progress_callback:
progress_callback(0.9, "Finalizing audio and subtitles")
# Now combine the segments in the correct order
current_time = 0
final_audio = AudioSegment.empty()
srt_content = ""
for segment in processed_segments:
# Calculate precise timing
segment.start_time = current_time
segment.end_time = current_time + segment.duration
# Add to SRT with precise timing
srt_content += (
f"{segment.id}\n"
f"{format_time_ms(segment.start_time)} --> {format_time_ms(segment.end_time)}\n"
f"{segment.text}\n\n"
)
# Add to final audio with precise positioning
final_audio = final_audio.append(segment.audio, crossfade=0)
# Update timing with precise gap
current_time = segment.end_time
# Export with high precision
srt_path, audio_path = file_manager.create_output_paths()
try:
# Export with optimized quality settings and compression
export_params = {
'format': 'mp3',
'bitrate': '192k', # Reduced from 320k but still high quality
'parameters': [
'-ar', '44100', # Standard sample rate
'-ac', '2', # Stereo
'-compression_level', '0', # Best compression
'-qscale:a', '2' # High quality VBR encoding
]
}
final_audio.export(audio_path, **export_params)
with open(srt_path, "w", encoding='utf-8') as f:
f.write(srt_content)
except Exception as e:
if progress_callback:
progress_callback(1.0, f"Error exporting final files: {str(e)}")
raise TTSError(f"Failed to export final files: {str(e)}")
if progress_callback:
progress_callback(1.0, "Complete!")
return srt_path, audio_path
async def process_with_semaphore(segment, voice, rate, pitch, semaphore):
async with semaphore:
return await process_segment_with_timing(segment, voice, rate, pitch)
# IMPROVEMENT 4: Progress Reporting with proper error handling for older Gradio versions
async def process_text_with_progress(
text,
pitch,
rate,
voice,
words_per_line,
lines_per_segment,
parallel_processing,
progress=gr.Progress()
):
# Input validation
if not text or text.strip() == "":
return None, None, None, True, "Please enter some text to convert to speech."
# Format pitch and rate strings
pitch_str = f"{pitch:+d}Hz" if pitch != 0 else "+0Hz"
rate_str = f"{rate:+d}%" if rate != 0 else "+0%"
try:
# Start progress tracking
progress(0, "Preparing text...")
def update_progress(value, status):
progress(value, status)
srt_path, audio_path = await generate_accurate_srt(
text,
voice_options[voice],
rate_str,
pitch_str,
words_per_line,
lines_per_segment,
progress_callback=update_progress,
parallel=parallel_processing
)
# If successful, return results and hide error
return srt_path, audio_path, audio_path, False, ""
except TTSError as e:
# Return specific TTS error
return None, None, None, True, f"TTS Error: {str(e)}"
except Exception as e:
# Return any other error
return None, None, None, True, f"Unexpected error: {str(e)}"
# Voice options dictionary
voice_options = {
"Andrew Male": "en-US-AndrewNeural",
"Jenny Female": "en-US-JennyNeural",
"Guy Male": "en-US-GuyNeural",
"Ana Female": "en-US-AnaNeural",
"Aria Female": "en-US-AriaNeural",
"Brian Male": "en-US-BrianNeural",
"Christopher Male": "en-US-ChristopherNeural",
"Eric Male": "en-US-EricNeural",
"Michelle Male": "en-US-MichelleNeural",
"Roger Male": "en-US-RogerNeural",
"Natasha Female": "en-AU-NatashaNeural",
"William Male": "en-AU-WilliamNeural",
"Clara Female": "en-CA-ClaraNeural",
"Liam Female ": "en-CA-LiamNeural",
"Libby Female": "en-GB-LibbyNeural",
"Maisie": "en-GB-MaisieNeural",
"Ryan": "en-GB-RyanNeural",
"Sonia": "en-GB-SoniaNeural",
"Thomas": "en-GB-ThomasNeural",
"Sam": "en-HK-SamNeural",
"Yan": "en-HK-YanNeural",
"Connor": "en-IE-ConnorNeural",
"Emily": "en-IE-EmilyNeural",
"Neerja": "en-IN-NeerjaNeural",
"Prabhat": "en-IN-PrabhatNeural",
"Asilia": "en-KE-AsiliaNeural",
"Chilemba": "en-KE-ChilembaNeural",
"Abeo": "en-NG-AbeoNeural",
"Ezinne": "en-NG-EzinneNeural",
"Mitchell": "en-NZ-MitchellNeural",
"James": "en-PH-JamesNeural",
"Rosa": "en-PH-RosaNeural",
"Luna": "en-SG-LunaNeural",
"Wayne": "en-SG-WayneNeural",
"Elimu": "en-TZ-ElimuNeural",
"Imani": "en-TZ-ImaniNeural",
"Leah": "en-ZA-LeahNeural",
"Luke": "en-ZA-LukeNeural"
# Add other voices as needed
}
# Register cleanup on exit
import atexit
atexit.register(file_manager.cleanup_all)
# Create custom theme
theme = gr.themes.Monochrome(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="zinc",
radius_size=gr.themes.sizes.radius_sm,
font=("Inter", "system-ui", "sans-serif"),
font_mono=("IBM Plex Mono", "monospace")
)
# Create Gradio interface with modern UI
with gr.Blocks(
title="Text to Speech Studio",
theme=theme,
css="""
.container { max-width: 1200px; margin: auto; padding: 2rem; }
.title { text-align: center; margin-bottom: 2.5rem; }
.title h1 { font-size: 2.5rem; font-weight: 700; margin-bottom: 0.5rem; }
.title h3 { font-size: 1.2rem; font-weight: 400; opacity: 0.8; }
.input-group { margin-bottom: 1.5rem; border-radius: 8px; }
.help-text { font-size: 0.9rem; opacity: 0.8; padding: 0.5rem 0; }
.status-area { margin: 1.5rem 0; padding: 1rem; border-radius: 8px; }
.error-message { color: #dc2626; }
.preview-audio { margin: 1rem 0; }
.download-file { padding: 1rem; }
button.primary { transform: scale(1); transition: transform 0.2s; }
button.primary:hover { transform: scale(1.02); }
button.secondary:hover { opacity: 0.9; }
"""
) as app:
with gr.Group(elem_classes="container"):
gr.Markdown(
"""
# ποΈ Text to Speech Studio
### Generate professional quality audio with synchronized subtitles
"""
, elem_classes="title")
with gr.Tabs():
with gr.TabItem("π Text Input"):
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="Your Text",
lines=10,
placeholder="Enter your text here. The AI will automatically segment it into natural phrases...",
elem_classes="input-group"
)
gr.Markdown(
"π‘ **Tip:** For best results, ensure proper punctuation in your text.",
elem_classes="help-text"
)
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("### Voice Settings")
voice_dropdown = gr.Dropdown(
label="Voice",
choices=list(voice_options.keys()),
value="Jenny Female",
elem_classes="input-group"
)
with gr.Row():
with gr.Column():
pitch_slider = gr.Slider(
label="Pitch",
minimum=-10,
maximum=10,
value=0,
step=1,
elem_classes="input-group"
)
with gr.Column():
rate_slider = gr.Slider(
label="Speed",
minimum=-25,
maximum=25,
value=0,
step=1,
elem_classes="input-group"
)
with gr.TabItem("βοΈ Advanced Settings"):
with gr.Row():
with gr.Column():
words_per_line = gr.Slider(
label="Words per Line",
minimum=3,
maximum=12,
value=6,
step=1,
info="π Controls subtitle line length",
elem_classes="input-group"
)
with gr.Column():
lines_per_segment = gr.Slider(
label="Lines per Segment",
minimum=1,
maximum=4,
value=2,
step=1,
info="π Controls subtitle block size",
elem_classes="input-group"
)
with gr.Column():
parallel_processing = gr.Checkbox(
label="Parallel Processing",
value=True,
info="β‘ Faster processing for longer texts",
elem_classes="input-group"
)
with gr.Row():
with gr.Column(scale=2):
submit_btn = gr.Button(
"π― Generate Audio & Subtitles",
variant="primary",
scale=2
)
with gr.Column():
clear_btn = gr.Button("π Clear All", variant="secondary")
with gr.Group(elem_classes="status-area"):
error_output = gr.Textbox(
label="Status",
visible=False,
elem_classes="error-message"
)
with gr.Tabs():
with gr.TabItem("π§ Preview"):
audio_output = gr.Audio(
label="Generated Audio",
elem_classes="preview-audio"
)
with gr.TabItem("π₯ Downloads"):
with gr.Row():
with gr.Column():
srt_file = gr.File(
label="π Subtitle File (SRT)",
elem_classes="download-file"
)
with gr.Column():
audio_file = gr.File(
label="π΅ Audio File (MP3)",
elem_classes="download-file"
)
gr.Markdown(
"""
### π Features
- Professional-quality text-to-speech conversion
- Automatic natural speech segmentation
- Perfectly synchronized subtitles
- Multiple voice options and customization
""",
elem_classes="help-text"
)
# Clear button functionality
def clear_inputs():
return {
text_input: "",
pitch_slider: 0,
rate_slider: 0,
voice_dropdown: "Jenny Female",
words_per_line: 6,
lines_per_segment: 2,
parallel_processing: True,
error_output: gr.update(visible=False),
audio_output: None,
srt_file: None,
audio_file: None
}
clear_btn.click(
fn=clear_inputs,
inputs=[],
outputs=[
text_input, pitch_slider, rate_slider, voice_dropdown,
words_per_line, lines_per_segment, parallel_processing,
error_output, audio_output, srt_file, audio_file
]
)
# Existing button click handler
submit_btn.click(
fn=process_text_with_progress,
inputs=[
text_input, pitch_slider, rate_slider, voice_dropdown,
words_per_line, lines_per_segment, parallel_processing
],
outputs=[
srt_file, audio_file, audio_output, error_output, error_output
],
api_name="generate"
)
if __name__ == "__main__":
# Set process priority to high
p = psutil.Process()
try:
p.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS if os.name == 'nt' else 10)
except Exception:
pass
app.launch() |