Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,17 +23,21 @@ def format_time(seconds):
|
|
23 |
# Function to split text into segments by punctuation or limit to 7-8 words
|
24 |
def split_text_into_segments(text):
|
25 |
segments = []
|
|
|
26 |
raw_segments = re.split(r'([.!?])', text)
|
27 |
for i in range(0, len(raw_segments) - 1, 2):
|
|
|
28 |
sentence = raw_segments[i].strip() + raw_segments[i + 1]
|
29 |
words = sentence.split()
|
30 |
|
|
|
31 |
if len(words) > 8:
|
32 |
for j in range(0, len(words), 8):
|
33 |
segments.append(" ".join(words[j:j+8]))
|
34 |
else:
|
35 |
segments.append(sentence.strip())
|
36 |
|
|
|
37 |
if len(raw_segments) % 2 == 1:
|
38 |
remaining_text = raw_segments[-1].strip()
|
39 |
words = remaining_text.split()
|
@@ -43,22 +47,27 @@ def split_text_into_segments(text):
|
|
43 |
return segments
|
44 |
|
45 |
# Function to generate SRT with accurate timing per batch and cross-check timing
|
46 |
-
async def generate_accurate_srt(batch_text, batch_num, start_offset, pitch,
|
47 |
audio_file = f"batch_{batch_num}_audio.wav"
|
48 |
|
49 |
# Generate the audio using edge-tts with pitch and rate adjustment
|
50 |
tts = edge_tts.Communicate(batch_text, voice, rate=f"{rate}%", pitch=f"{pitch}Hz")
|
51 |
await tts.save(audio_file)
|
52 |
|
|
|
53 |
actual_length = get_audio_length(audio_file)
|
|
|
|
|
54 |
segments = split_text_into_segments(batch_text)
|
55 |
-
segment_duration = actual_length / len(segments)
|
56 |
start_time = start_offset
|
57 |
|
|
|
58 |
srt_content = ""
|
59 |
for index, segment in enumerate(segments):
|
60 |
end_time = start_time + segment_duration
|
61 |
|
|
|
62 |
if end_time > start_offset + actual_length:
|
63 |
end_time = start_offset + actual_length
|
64 |
|
@@ -66,28 +75,35 @@ async def generate_accurate_srt(batch_text, batch_num, start_offset, pitch, voic
|
|
66 |
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
|
67 |
srt_content += segment + "\n\n"
|
68 |
|
|
|
69 |
start_time = end_time
|
70 |
|
71 |
-
return srt_content, audio_file, start_time
|
72 |
|
73 |
# Batch processing function with cumulative timing, progress indicator, and final SRT validation
|
74 |
-
async def batch_process_srt_and_audio(script_text, pitch,
|
75 |
batches = [script_text[i:i+500] for i in range(0, len(script_text), 500)]
|
76 |
all_srt_content = ""
|
77 |
combined_audio = AudioSegment.empty()
|
78 |
-
start_offset = 0.0
|
79 |
|
|
|
80 |
for batch_num, batch_text in enumerate(batches):
|
81 |
-
srt_content, audio_file, end_offset = await generate_accurate_srt(batch_text, batch_num, start_offset, pitch,
|
82 |
all_srt_content += srt_content
|
83 |
|
|
|
84 |
batch_audio = AudioSegment.from_file(audio_file)
|
85 |
combined_audio += batch_audio
|
86 |
-
start_offset = end_offset
|
87 |
|
|
|
88 |
os.remove(audio_file)
|
|
|
|
|
89 |
progress((batch_num + 1) / len(batches))
|
90 |
|
|
|
91 |
total_audio_length = combined_audio.duration_seconds
|
92 |
validated_srt_content = ""
|
93 |
for line in all_srt_content.strip().splitlines():
|
@@ -100,50 +116,42 @@ async def batch_process_srt_and_audio(script_text, pitch, voice, rate, progress=
|
|
100 |
line = f"{format_time(start_time)} --> {format_time(end_time)}"
|
101 |
validated_srt_content += line + "\n"
|
102 |
|
|
|
103 |
unique_id = uuid.uuid4()
|
104 |
-
final_audio_path = f"final_audio_{unique_id}.mp3"
|
105 |
final_srt_path = f"final_subtitles_{unique_id}.srt"
|
106 |
|
|
|
107 |
combined_audio.export(final_audio_path, format="mp3", bitrate="320k")
|
108 |
|
|
|
109 |
with open(final_srt_path, "w") as srt_file:
|
110 |
srt_file.write(validated_srt_content)
|
111 |
|
112 |
return final_srt_path, final_audio_path
|
113 |
|
114 |
# Gradio interface function
|
115 |
-
async def process_script(script_text, pitch,
|
116 |
-
srt_path, audio_path = await batch_process_srt_and_audio(script_text, pitch,
|
117 |
return srt_path, audio_path, audio_path
|
118 |
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
"Guy": "en-US-GuyNeural",
|
123 |
-
"Ana": "en-US-AnaNeural",
|
124 |
-
"Aria": "en-US-AriaNeural",
|
125 |
-
"Brian": "en-US-BrianNeural",
|
126 |
-
"Christopher": "en-US-ChristopherNeural",
|
127 |
-
"Eric": "en-US-EricNeural",
|
128 |
-
"Michelle": "en-US-MichelleNeural",
|
129 |
-
"Roger": "en-US-RogerNeural",
|
130 |
-
}
|
131 |
-
|
132 |
-
# Gradio interface setup with voice selection and speech rate adjustment
|
133 |
app = gr.Interface(
|
134 |
fn=process_script,
|
135 |
inputs=[
|
136 |
gr.Textbox(label="Enter Script Text", lines=10),
|
137 |
-
gr.
|
138 |
-
gr.Slider(label="
|
139 |
-
gr.
|
140 |
],
|
141 |
outputs=[
|
142 |
gr.File(label="Download SRT File"),
|
143 |
gr.File(label="Download Audio File"),
|
144 |
gr.Audio(label="Play Audio")
|
145 |
],
|
146 |
-
description="HIVEcorp TTS Generator with
|
147 |
)
|
148 |
|
149 |
app.launch()
|
|
|
23 |
# Function to split text into segments by punctuation or limit to 7-8 words
|
24 |
def split_text_into_segments(text):
|
25 |
segments = []
|
26 |
+
# Split by punctuation (., !, ?)
|
27 |
raw_segments = re.split(r'([.!?])', text)
|
28 |
for i in range(0, len(raw_segments) - 1, 2):
|
29 |
+
# Combine segment with following punctuation
|
30 |
sentence = raw_segments[i].strip() + raw_segments[i + 1]
|
31 |
words = sentence.split()
|
32 |
|
33 |
+
# If segment is longer than 8 words, split into 7-8 word chunks
|
34 |
if len(words) > 8:
|
35 |
for j in range(0, len(words), 8):
|
36 |
segments.append(" ".join(words[j:j+8]))
|
37 |
else:
|
38 |
segments.append(sentence.strip())
|
39 |
|
40 |
+
# Handle remaining text after the last punctuation
|
41 |
if len(raw_segments) % 2 == 1:
|
42 |
remaining_text = raw_segments[-1].strip()
|
43 |
words = remaining_text.split()
|
|
|
47 |
return segments
|
48 |
|
49 |
# Function to generate SRT with accurate timing per batch and cross-check timing
|
50 |
+
async def generate_accurate_srt(batch_text, batch_num, start_offset, pitch, rate, voice):
|
51 |
audio_file = f"batch_{batch_num}_audio.wav"
|
52 |
|
53 |
# Generate the audio using edge-tts with pitch and rate adjustment
|
54 |
tts = edge_tts.Communicate(batch_text, voice, rate=f"{rate}%", pitch=f"{pitch}Hz")
|
55 |
await tts.save(audio_file)
|
56 |
|
57 |
+
# Get the actual length of the audio file
|
58 |
actual_length = get_audio_length(audio_file)
|
59 |
+
|
60 |
+
# Split the text into segments based on punctuation and word count
|
61 |
segments = split_text_into_segments(batch_text)
|
62 |
+
segment_duration = actual_length / len(segments) # Duration per segment
|
63 |
start_time = start_offset
|
64 |
|
65 |
+
# Initialize SRT content
|
66 |
srt_content = ""
|
67 |
for index, segment in enumerate(segments):
|
68 |
end_time = start_time + segment_duration
|
69 |
|
70 |
+
# If end_time exceeds actual audio length of the batch, adjust it
|
71 |
if end_time > start_offset + actual_length:
|
72 |
end_time = start_offset + actual_length
|
73 |
|
|
|
75 |
srt_content += f"{format_time(start_time)} --> {format_time(end_time)}\n"
|
76 |
srt_content += segment + "\n\n"
|
77 |
|
78 |
+
# Update start time for next segment
|
79 |
start_time = end_time
|
80 |
|
81 |
+
return srt_content, audio_file, start_time # Return updated start time for cumulative tracking
|
82 |
|
83 |
# Batch processing function with cumulative timing, progress indicator, and final SRT validation
|
84 |
+
async def batch_process_srt_and_audio(script_text, pitch, rate, voice, progress=gr.Progress()):
|
85 |
batches = [script_text[i:i+500] for i in range(0, len(script_text), 500)]
|
86 |
all_srt_content = ""
|
87 |
combined_audio = AudioSegment.empty()
|
88 |
+
start_offset = 0.0 # Track cumulative time offset for SRT timing
|
89 |
|
90 |
+
# Process each batch sequentially to ensure proper timing and cumulative offset tracking
|
91 |
for batch_num, batch_text in enumerate(batches):
|
92 |
+
srt_content, audio_file, end_offset = await generate_accurate_srt(batch_text, batch_num, start_offset, pitch, rate, voice)
|
93 |
all_srt_content += srt_content
|
94 |
|
95 |
+
# Append the audio of each batch to the combined audio
|
96 |
batch_audio = AudioSegment.from_file(audio_file)
|
97 |
combined_audio += batch_audio
|
98 |
+
start_offset = end_offset # Update the start offset for the next batch
|
99 |
|
100 |
+
# Clean up the individual batch audio file
|
101 |
os.remove(audio_file)
|
102 |
+
|
103 |
+
# Update progress
|
104 |
progress((batch_num + 1) / len(batches))
|
105 |
|
106 |
+
# Final cross-check: Adjust any subtitle that exceeds the total audio length
|
107 |
total_audio_length = combined_audio.duration_seconds
|
108 |
validated_srt_content = ""
|
109 |
for line in all_srt_content.strip().splitlines():
|
|
|
116 |
line = f"{format_time(start_time)} --> {format_time(end_time)}"
|
117 |
validated_srt_content += line + "\n"
|
118 |
|
119 |
+
# Generate unique names for the final files
|
120 |
unique_id = uuid.uuid4()
|
121 |
+
final_audio_path = f"final_audio_{unique_id}.mp3" # Set to MP3
|
122 |
final_srt_path = f"final_subtitles_{unique_id}.srt"
|
123 |
|
124 |
+
# Export combined audio directly as MP3 with 320 kbps bitrate
|
125 |
combined_audio.export(final_audio_path, format="mp3", bitrate="320k")
|
126 |
|
127 |
+
# Export validated SRT with unique names
|
128 |
with open(final_srt_path, "w") as srt_file:
|
129 |
srt_file.write(validated_srt_content)
|
130 |
|
131 |
return final_srt_path, final_audio_path
|
132 |
|
133 |
# Gradio interface function
|
134 |
+
async def process_script(script_text, pitch, rate, voice):
|
135 |
+
srt_path, audio_path = await batch_process_srt_and_audio(script_text, pitch, rate, voice)
|
136 |
return srt_path, audio_path, audio_path
|
137 |
|
138 |
+
# Gradio interface setup with pitch adjustment slider, rate adjustment slider, and voice selection
|
139 |
+
voice_options = ["en-US-AndrewNeural", "en-US-JennyNeural", "en-US-GuyNeural"] # Example voice options
|
140 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
app = gr.Interface(
|
142 |
fn=process_script,
|
143 |
inputs=[
|
144 |
gr.Textbox(label="Enter Script Text", lines=10),
|
145 |
+
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-100, maximum=100, step=1, value=0),
|
146 |
+
gr.Slider(label="Rate Adjustment (%)", minimum=-100, maximum=100, step=1, value=0),
|
147 |
+
gr.Dropdown(label="Select Speaker", choices=voice_options, value=voice_options[0]) # Dropdown for voice selection
|
148 |
],
|
149 |
outputs=[
|
150 |
gr.File(label="Download SRT File"),
|
151 |
gr.File(label="Download Audio File"),
|
152 |
gr.Audio(label="Play Audio")
|
153 |
],
|
154 |
+
description="HIVEcorp TTS Generator with adjustable pitch, rate, and speaker selection."
|
155 |
)
|
156 |
|
157 |
app.launch()
|