Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,17 @@ from concurrent.futures import ThreadPoolExecutor
|
|
9 |
from typing import List, Tuple
|
10 |
import math
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def get_audio_length(audio_file):
|
13 |
audio = AudioSegment.from_file(audio_file)
|
14 |
return len(audio) / 1000
|
@@ -88,71 +99,70 @@ def smart_text_split(text, words_per_line, lines_per_segment):
|
|
88 |
|
89 |
return segments
|
90 |
|
91 |
-
async def process_segment(segment: str, idx: int, voice: str, rate: str, pitch: str) -> Tuple[str, AudioSegment
|
92 |
-
"""Process a single segment
|
93 |
audio_file = f"temp_segment_{idx}_{uuid.uuid4()}.wav"
|
94 |
try:
|
95 |
tts = edge_tts.Communicate(segment, voice, rate=rate, pitch=pitch)
|
96 |
await tts.save(audio_file)
|
97 |
|
98 |
segment_audio = AudioSegment.from_file(audio_file)
|
99 |
-
# Add small silence at the end of each segment
|
100 |
-
segment_audio = segment_audio + AudioSegment.silent(duration=250)
|
101 |
segment_duration = len(segment_audio)
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
finally:
|
105 |
if os.path.exists(audio_file):
|
106 |
os.remove(audio_file)
|
107 |
|
108 |
-
async def process_chunk_parallel(chunks: List[str], start_idx: int, voice: str, rate: str, pitch: str) -> Tuple[str, AudioSegment]:
|
109 |
-
"""Process
|
110 |
-
tasks = [
|
111 |
-
process_segment(segment, i + start_idx, voice, rate, pitch)
|
112 |
-
for i, segment in enumerate(chunks, 1)
|
113 |
-
]
|
114 |
-
|
115 |
-
results = await asyncio.gather(*tasks)
|
116 |
-
|
117 |
combined_audio = AudioSegment.empty()
|
118 |
srt_content = ""
|
119 |
-
current_time = 0
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
# Format SRT entry
|
127 |
-
srt_content += f"{idx}\n"
|
128 |
-
srt_content += f"{format_time_ms(start_time)} --> {format_time_ms(end_time)}\n"
|
129 |
-
srt_content += chunks[idx - start_idx] + "\n\n"
|
130 |
-
|
131 |
combined_audio += audio_part
|
132 |
-
# Add the duration plus a small gap
|
133 |
-
current_time = end_time + 100 # 100ms gap between segments
|
134 |
|
135 |
return srt_content, combined_audio
|
136 |
|
137 |
async def generate_accurate_srt(text, voice, rate, pitch, words_per_line, lines_per_segment):
|
138 |
segments = smart_text_split(text, words_per_line, lines_per_segment)
|
|
|
139 |
|
140 |
-
# Process smaller chunks
|
141 |
-
chunk_size = 5
|
142 |
chunks = [segments[i:i + chunk_size] for i in range(0, len(segments), chunk_size)]
|
143 |
|
144 |
final_srt = ""
|
145 |
final_audio = AudioSegment.empty()
|
146 |
-
|
147 |
-
# Process chunks in sequence for better timing accuracy
|
148 |
current_index = 1
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
final_srt += srt_content
|
154 |
final_audio += audio_content
|
155 |
-
current_index += len(chunk)
|
156 |
|
157 |
# Export final files
|
158 |
unique_id = uuid.uuid4()
|
|
|
9 |
from typing import List, Tuple
|
10 |
import math
|
11 |
|
12 |
+
class TimingManager:
|
13 |
+
def __init__(self):
|
14 |
+
self.current_time = 0
|
15 |
+
self.segment_gap = 100 # ms gap between segments
|
16 |
+
|
17 |
+
def get_timing(self, duration):
|
18 |
+
start_time = self.current_time
|
19 |
+
end_time = start_time + duration
|
20 |
+
self.current_time = end_time + self.segment_gap
|
21 |
+
return start_time, end_time
|
22 |
+
|
23 |
def get_audio_length(audio_file):
|
24 |
audio = AudioSegment.from_file(audio_file)
|
25 |
return len(audio) / 1000
|
|
|
99 |
|
100 |
return segments
|
101 |
|
102 |
+
async def process_segment(segment: str, idx: int, voice: str, rate: str, pitch: str, timing_mgr: TimingManager) -> Tuple[str, AudioSegment]:
|
103 |
+
"""Process a single segment with accurate timing"""
|
104 |
audio_file = f"temp_segment_{idx}_{uuid.uuid4()}.wav"
|
105 |
try:
|
106 |
tts = edge_tts.Communicate(segment, voice, rate=rate, pitch=pitch)
|
107 |
await tts.save(audio_file)
|
108 |
|
109 |
segment_audio = AudioSegment.from_file(audio_file)
|
|
|
|
|
110 |
segment_duration = len(segment_audio)
|
111 |
|
112 |
+
# Get timing from manager
|
113 |
+
start_time, end_time = timing_mgr.get_timing(segment_duration)
|
114 |
+
|
115 |
+
# Format SRT entry
|
116 |
+
srt_content = (
|
117 |
+
f"{idx}\n"
|
118 |
+
f"{format_time_ms(start_time)} --> {format_time_ms(end_time)}\n"
|
119 |
+
f"{segment}\n\n"
|
120 |
+
)
|
121 |
+
|
122 |
+
return srt_content, segment_audio
|
123 |
finally:
|
124 |
if os.path.exists(audio_file):
|
125 |
os.remove(audio_file)
|
126 |
|
127 |
+
async def process_chunk_parallel(chunks: List[str], start_idx: int, voice: str, rate: str, pitch: str, timing_mgr: TimingManager) -> Tuple[str, AudioSegment]:
|
128 |
+
"""Process chunks with sequential timing"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
combined_audio = AudioSegment.empty()
|
130 |
srt_content = ""
|
|
|
131 |
|
132 |
+
# Process segments sequentially to maintain timing
|
133 |
+
for i, segment in enumerate(chunks, start_idx):
|
134 |
+
srt_part, audio_part = await process_segment(segment, i, voice, rate, pitch, timing_mgr)
|
135 |
+
srt_content += srt_part
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
combined_audio += audio_part
|
|
|
|
|
137 |
|
138 |
return srt_content, combined_audio
|
139 |
|
140 |
async def generate_accurate_srt(text, voice, rate, pitch, words_per_line, lines_per_segment):
|
141 |
segments = smart_text_split(text, words_per_line, lines_per_segment)
|
142 |
+
timing_mgr = TimingManager()
|
143 |
|
144 |
+
# Process in smaller chunks
|
145 |
+
chunk_size = 5
|
146 |
chunks = [segments[i:i + chunk_size] for i in range(0, len(segments), chunk_size)]
|
147 |
|
148 |
final_srt = ""
|
149 |
final_audio = AudioSegment.empty()
|
|
|
|
|
150 |
current_index = 1
|
151 |
+
|
152 |
+
# Process chunks in parallel but maintain sequential timing
|
153 |
+
chunk_tasks = []
|
154 |
+
for i, chunk in enumerate(chunks):
|
155 |
+
start_idx = current_index + (i * chunk_size)
|
156 |
+
task = process_chunk_parallel(chunk, start_idx, voice, rate, pitch, timing_mgr)
|
157 |
+
chunk_tasks.append(task)
|
158 |
+
|
159 |
+
# Gather results in order
|
160 |
+
chunk_results = await asyncio.gather(*chunk_tasks)
|
161 |
+
|
162 |
+
# Combine results
|
163 |
+
for srt_content, audio_content in chunk_results:
|
164 |
final_srt += srt_content
|
165 |
final_audio += audio_content
|
|
|
166 |
|
167 |
# Export final files
|
168 |
unique_id = uuid.uuid4()
|