Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from ...models.attention_processor import Attention | |
from ...models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
from ...utils import USE_PEFT_BACKEND | |
class WuerstchenLayerNorm(nn.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x): | |
x = x.permute(0, 2, 3, 1) | |
x = super().forward(x) | |
return x.permute(0, 3, 1, 2) | |
class TimestepBlock(nn.Module): | |
def __init__(self, c, c_timestep): | |
super().__init__() | |
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
self.mapper = linear_cls(c_timestep, c * 2) | |
def forward(self, x, t): | |
a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1) | |
return x * (1 + a) + b | |
class ResBlock(nn.Module): | |
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): | |
super().__init__() | |
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
self.depthwise = conv_cls(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) | |
self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.channelwise = nn.Sequential( | |
linear_cls(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), linear_cls(c * 4, c) | |
) | |
def forward(self, x, x_skip=None): | |
x_res = x | |
if x_skip is not None: | |
x = torch.cat([x, x_skip], dim=1) | |
x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1) | |
x = self.channelwise(x).permute(0, 3, 1, 2) | |
return x + x_res | |
# from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 | |
class GlobalResponseNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
def forward(self, x): | |
agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * stand_div_norm) + self.beta + x | |
class AttnBlock(nn.Module): | |
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): | |
super().__init__() | |
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
self.self_attn = self_attn | |
self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) | |
self.kv_mapper = nn.Sequential(nn.SiLU(), linear_cls(c_cond, c)) | |
def forward(self, x, kv): | |
kv = self.kv_mapper(kv) | |
norm_x = self.norm(x) | |
if self.self_attn: | |
batch_size, channel, _, _ = x.shape | |
kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) | |
x = x + self.attention(norm_x, encoder_hidden_states=kv) | |
return x | |