Spaces:
Paused
Paused
sachinkidzure
commited on
initial (#1)
Browse files- initial commit (2824520ee9bee1d4946a97c06f6be74eca025ff7)
This view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- PowerPaint_v2 +1 -0
- README.md +97 -13
- app.py +449 -0
- gradio_PowerPaint.py +573 -0
- model/BrushNet_CA.py +960 -0
- model/__init__.py +0 -0
- model/__pycache__/BrushNet_CA.cpython-310.pyc +0 -0
- model/__pycache__/__init__.cpython-310.pyc +0 -0
- model/diffusers_c/__init__.py +789 -0
- model/diffusers_c/__pycache__/__init__.cpython-310.pyc +0 -0
- model/diffusers_c/__pycache__/configuration_utils.cpython-310.pyc +0 -0
- model/diffusers_c/__pycache__/dependency_versions_check.cpython-310.pyc +0 -0
- model/diffusers_c/__pycache__/dependency_versions_table.cpython-310.pyc +0 -0
- model/diffusers_c/__pycache__/image_processor.cpython-310.pyc +0 -0
- model/diffusers_c/commands/__init__.py +27 -0
- model/diffusers_c/commands/diffusers_cli.py +43 -0
- model/diffusers_c/commands/env.py +84 -0
- model/diffusers_c/commands/fp16_safetensors.py +132 -0
- model/diffusers_c/configuration_utils.py +703 -0
- model/diffusers_c/dependency_versions_check.py +34 -0
- model/diffusers_c/dependency_versions_table.py +45 -0
- model/diffusers_c/experimental/README.md +5 -0
- model/diffusers_c/experimental/__init__.py +1 -0
- model/diffusers_c/experimental/rl/__init__.py +1 -0
- model/diffusers_c/experimental/rl/value_guided_sampling.py +153 -0
- model/diffusers_c/image_processor.py +990 -0
- model/diffusers_c/loaders/__init__.py +88 -0
- model/diffusers_c/loaders/__pycache__/__init__.cpython-310.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/__init__.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/autoencoder.cpython-310.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/autoencoder.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/controlnet.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/ip_adapter.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/lora.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/lora_conversion_utils.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/peft.cpython-310.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/peft.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/single_file.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/single_file_utils.cpython-310.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/single_file_utils.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/textual_inversion.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/unet.cpython-310.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/unet.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/utils.cpython-310.pyc +0 -0
- model/diffusers_c/loaders/__pycache__/utils.cpython-39.pyc +0 -0
- model/diffusers_c/loaders/autoencoder.py +146 -0
- model/diffusers_c/loaders/controlnet.py +136 -0
- model/diffusers_c/loaders/ip_adapter.py +281 -0
- model/diffusers_c/loaders/lora.py +1349 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 OpenMMLab
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
PowerPaint_v2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 8e039c8f98d8bbdf0c7258104275a4dcf1d1f5fb
|
README.md
CHANGED
@@ -1,13 +1,97 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting
|
2 |
+
|
3 |
+
|
4 |
+
### [Project Page](https://powerpaint.github.io/) | [Paper](https://arxiv.org/abs/2312.03594) | [Online Demo(OpenXlab)](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint#basic-information)
|
5 |
+
|
6 |
+
This README provides a step-by-step guide to download the repository, set up the required virtual environment named "PowerPaint" using conda, and run PowerPaint with or without ControlNet.
|
7 |
+
|
8 |
+
**Feel free to try it and give it a star!**:star:
|
9 |
+
|
10 |
+
## 🚀 News
|
11 |
+
|
12 |
+
**May 22, 2024**:fire:
|
13 |
+
|
14 |
+
- We have open-sourced the model weights for PowerPaint v2-1, rectifying some existing issues that were present during the training process of version 2. [![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/JunhaoZhuang/PowerPaint-v2-1)
|
15 |
+
|
16 |
+
**April 7, 2024**:fire:
|
17 |
+
|
18 |
+
- We open source the model weights and code for PowerPaint v2. [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/zhuangjunhao/PowerPaint_v2) [![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/JunhaoZhuang/PowerPaint_v2)
|
19 |
+
|
20 |
+
**April 6, 2024**:
|
21 |
+
|
22 |
+
- We have retrained a new PowerPaint, taking inspiration from Brushnet. The [Online Demo](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) has been updated accordingly. **We plan to release the model weights and code as open source in the next few days**.
|
23 |
+
- Tips: We preserve the cross-attention layer that was deleted by BrushNet for the task prompts input.
|
24 |
+
|
25 |
+
| | Object insertion | Object Removal|Shape-guided Object Insertion|Outpainting|
|
26 |
+
|-----------------|-----------------|-----------------|-----------------|-----------------|
|
27 |
+
| Original Image| ![cropinput](https://github.com/Sanster/IOPaint/assets/108931120/bf91a1e8-8eaf-4be6-b47d-b8e43c9d182a)|![cropinput](https://github.com/Sanster/IOPaint/assets/108931120/c7e56119-aa57-4761-b6aa-56f8a0b72456)|![image](https://github.com/Sanster/IOPaint/assets/108931120/cbbfe84e-2bf1-425b-8349-f7874f2e978c)|![cropinput](https://github.com/Sanster/IOPaint/assets/108931120/134bb707-0fe5-4d22-a0ca-d440fa521365)|
|
28 |
+
| Output| ![image](https://github.com/Sanster/IOPaint/assets/108931120/ee777506-d336-4275-94f6-31abf9521866)| ![image](https://github.com/Sanster/IOPaint/assets/108931120/e9d8cf6c-13b8-443c-b327-6f27da54cda6)|![image](https://github.com/Sanster/IOPaint/assets/108931120/cc3008c9-37dd-4d98-ad43-58f67be872dc)|![image](https://github.com/Sanster/IOPaint/assets/108931120/18d8ca23-e6d7-4680-977f-e66341312476)|
|
29 |
+
|
30 |
+
**December 22, 2023**:wrench:
|
31 |
+
|
32 |
+
- The logical error in loading ControlNet has been rectified. The `gradio_PowerPaint.py` file and [Online Demo](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) have also been updated.
|
33 |
+
|
34 |
+
**December 18, 2023**
|
35 |
+
|
36 |
+
*Enhanced PowerPaint Model*
|
37 |
+
|
38 |
+
- We are delighted to announce the release of more stable model weights. These refined weights can now be accessed on [Hugging Face](https://huggingface.co/JunhaoZhuang/PowerPaint-v1/tree/main). The `gradio_PowerPaint.py` file and [Online Demo](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) have also been updated as part of this release.
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
________________
|
43 |
+
<img src='https://github.com/open-mmlab/mmagic/assets/12782558/acd01391-c73f-4997-aafd-0869aebcc915'/>
|
44 |
+
|
45 |
+
## Getting Started
|
46 |
+
|
47 |
+
```bash
|
48 |
+
# Clone the Repository
|
49 |
+
git clone https://github.com/zhuang2002/PowerPaint.git
|
50 |
+
|
51 |
+
# Navigate to the Repository
|
52 |
+
cd projects/powerpaint
|
53 |
+
|
54 |
+
# Create Virtual Environment with Conda
|
55 |
+
conda create --name PowerPaint python=3.9
|
56 |
+
conda activate PowerPaint
|
57 |
+
|
58 |
+
# Install Dependencies
|
59 |
+
pip install -r requirements.txt
|
60 |
+
```
|
61 |
+
## PowerPaint v2
|
62 |
+
|
63 |
+
```bash
|
64 |
+
python gradio_PowerPaint_BrushNet.py
|
65 |
+
```
|
66 |
+
|
67 |
+
## PowerPaint v1
|
68 |
+
|
69 |
+
```bash
|
70 |
+
# Create Models Folder
|
71 |
+
mkdir models
|
72 |
+
|
73 |
+
# Set up Git LFS
|
74 |
+
git lfs install
|
75 |
+
|
76 |
+
# Clone PowerPaint Model
|
77 |
+
git lfs clone https://huggingface.co/JunhaoZhuang/PowerPaint-v1/ ./models
|
78 |
+
|
79 |
+
python gradio_PowerPaint.py
|
80 |
+
```
|
81 |
+
|
82 |
+
This command will launch the Gradio interface for PowerPaint.
|
83 |
+
|
84 |
+
Feel free to explore and edit images with PowerPaint!
|
85 |
+
|
86 |
+
## BibTeX
|
87 |
+
|
88 |
+
```
|
89 |
+
@misc{zhuang2023task,
|
90 |
+
title={A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting},
|
91 |
+
author={Junhao Zhuang and Yanhong Zeng and Wenran Liu and Chun Yuan and Kai Chen},
|
92 |
+
year={2023},
|
93 |
+
eprint={2312.03594},
|
94 |
+
archivePrefix={arXiv},
|
95 |
+
primaryClass={cs.CV}
|
96 |
+
}
|
97 |
+
```
|
app.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from PIL import Image, ImageFilter
|
8 |
+
from transformers import CLIPTextModel
|
9 |
+
|
10 |
+
from diffusers import UniPCMultistepScheduler
|
11 |
+
from model.BrushNet_CA import BrushNetModel
|
12 |
+
from model.diffusers_c.models import UNet2DConditionModel
|
13 |
+
from pipeline.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline
|
14 |
+
from utils.utils import TokenizerWrapper, add_tokens
|
15 |
+
|
16 |
+
|
17 |
+
base_path = "./PowerPaint_v2"
|
18 |
+
os.system("apt install git")
|
19 |
+
os.system("apt install git-lfs")
|
20 |
+
os.system(f"git lfs clone https://code.openxlab.org.cn/zhuangjunhao/PowerPaint_v2.git {base_path}")
|
21 |
+
os.system(f"cd {base_path} && git lfs pull")
|
22 |
+
os.system("cd ..")
|
23 |
+
torch.set_grad_enabled(False)
|
24 |
+
context_prompt = ""
|
25 |
+
context_negative_prompt = ""
|
26 |
+
base_model_path = "./PowerPaint_v2/realisticVisionV60B1_v51VAE/"
|
27 |
+
dtype = torch.float16
|
28 |
+
unet = UNet2DConditionModel.from_pretrained(
|
29 |
+
"runwayml/stable-diffusion-v1-5", subfolder="unet", revision=None, torch_dtype=dtype
|
30 |
+
)
|
31 |
+
text_encoder_brushnet = CLIPTextModel.from_pretrained(
|
32 |
+
"runwayml/stable-diffusion-v1-5", subfolder="text_encoder", revision=None, torch_dtype=dtype
|
33 |
+
)
|
34 |
+
brushnet = BrushNetModel.from_unet(unet)
|
35 |
+
global pipe
|
36 |
+
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
|
37 |
+
base_model_path,
|
38 |
+
brushnet=brushnet,
|
39 |
+
text_encoder_brushnet=text_encoder_brushnet,
|
40 |
+
torch_dtype=dtype,
|
41 |
+
low_cpu_mem_usage=False,
|
42 |
+
safety_checker=None,
|
43 |
+
)
|
44 |
+
pipe.unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", revision=None, torch_dtype=dtype)
|
45 |
+
pipe.tokenizer = TokenizerWrapper(from_pretrained=base_model_path, subfolder="tokenizer", revision=None)
|
46 |
+
add_tokens(
|
47 |
+
tokenizer=pipe.tokenizer,
|
48 |
+
text_encoder=pipe.text_encoder_brushnet,
|
49 |
+
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
|
50 |
+
initialize_tokens=["a", "a", "a"],
|
51 |
+
num_vectors_per_token=10,
|
52 |
+
)
|
53 |
+
from safetensors.torch import load_model
|
54 |
+
|
55 |
+
|
56 |
+
load_model(pipe.brushnet, "./PowerPaint_v2/PowerPaint_Brushnet/diffusion_pytorch_model.safetensors")
|
57 |
+
|
58 |
+
pipe.text_encoder_brushnet.load_state_dict(
|
59 |
+
torch.load("./PowerPaint_v2/PowerPaint_Brushnet/pytorch_model.bin"), strict=False
|
60 |
+
)
|
61 |
+
|
62 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
63 |
+
|
64 |
+
pipe.enable_model_cpu_offload()
|
65 |
+
global current_control
|
66 |
+
current_control = "canny"
|
67 |
+
# controlnet_conditioning_scale = 0.8
|
68 |
+
|
69 |
+
|
70 |
+
def set_seed(seed):
|
71 |
+
torch.manual_seed(seed)
|
72 |
+
torch.cuda.manual_seed(seed)
|
73 |
+
torch.cuda.manual_seed_all(seed)
|
74 |
+
np.random.seed(seed)
|
75 |
+
random.seed(seed)
|
76 |
+
|
77 |
+
|
78 |
+
def add_task(control_type):
|
79 |
+
# print(control_type)
|
80 |
+
if control_type == "object-removal":
|
81 |
+
promptA = "P_ctxt"
|
82 |
+
promptB = "P_ctxt"
|
83 |
+
negative_promptA = "P_obj"
|
84 |
+
negative_promptB = "P_obj"
|
85 |
+
elif control_type == "context-aware":
|
86 |
+
promptA = "P_ctxt"
|
87 |
+
promptB = "P_ctxt"
|
88 |
+
negative_promptA = ""
|
89 |
+
negative_promptB = ""
|
90 |
+
elif control_type == "shape-guided":
|
91 |
+
promptA = "P_shape"
|
92 |
+
promptB = "P_ctxt"
|
93 |
+
negative_promptA = "P_shape"
|
94 |
+
negative_promptB = "P_ctxt"
|
95 |
+
elif control_type == "image-outpainting":
|
96 |
+
promptA = "P_ctxt"
|
97 |
+
promptB = "P_ctxt"
|
98 |
+
negative_promptA = "P_obj"
|
99 |
+
negative_promptB = "P_obj"
|
100 |
+
else:
|
101 |
+
promptA = "P_obj"
|
102 |
+
promptB = "P_obj"
|
103 |
+
negative_promptA = "P_obj"
|
104 |
+
negative_promptB = "P_obj"
|
105 |
+
|
106 |
+
return promptA, promptB, negative_promptA, negative_promptB
|
107 |
+
|
108 |
+
|
109 |
+
def predict(
|
110 |
+
input_image,
|
111 |
+
prompt,
|
112 |
+
fitting_degree,
|
113 |
+
ddim_steps,
|
114 |
+
scale,
|
115 |
+
seed,
|
116 |
+
negative_prompt,
|
117 |
+
task,
|
118 |
+
vertical_expansion_ratio,
|
119 |
+
horizontal_expansion_ratio,
|
120 |
+
):
|
121 |
+
size1, size2 = input_image["image"].convert("RGB").size
|
122 |
+
|
123 |
+
if task != "image-outpainting":
|
124 |
+
if size1 < size2:
|
125 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
|
126 |
+
else:
|
127 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
|
128 |
+
else:
|
129 |
+
if size1 < size2:
|
130 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512)))
|
131 |
+
else:
|
132 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512))
|
133 |
+
|
134 |
+
if task == "image-outpainting" or task == "context-aware":
|
135 |
+
prompt = prompt + " empty scene"
|
136 |
+
if task == "object-removal":
|
137 |
+
prompt = prompt + " empty scene blur"
|
138 |
+
|
139 |
+
if vertical_expansion_ratio != None and horizontal_expansion_ratio != None:
|
140 |
+
o_W, o_H = input_image["image"].convert("RGB").size
|
141 |
+
c_W = int(horizontal_expansion_ratio * o_W)
|
142 |
+
c_H = int(vertical_expansion_ratio * o_H)
|
143 |
+
|
144 |
+
expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
|
145 |
+
original_img = np.array(input_image["image"])
|
146 |
+
expand_img[
|
147 |
+
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
|
148 |
+
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
|
149 |
+
:,
|
150 |
+
] = original_img
|
151 |
+
|
152 |
+
blurry_gap = 10
|
153 |
+
|
154 |
+
expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
|
155 |
+
if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1:
|
156 |
+
expand_mask[
|
157 |
+
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
|
158 |
+
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
|
159 |
+
:,
|
160 |
+
] = 0
|
161 |
+
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1:
|
162 |
+
expand_mask[
|
163 |
+
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
|
164 |
+
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
|
165 |
+
:,
|
166 |
+
] = 0
|
167 |
+
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1:
|
168 |
+
expand_mask[
|
169 |
+
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
|
170 |
+
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
|
171 |
+
:,
|
172 |
+
] = 0
|
173 |
+
|
174 |
+
input_image["image"] = Image.fromarray(expand_img)
|
175 |
+
input_image["mask"] = Image.fromarray(expand_mask)
|
176 |
+
|
177 |
+
promptA, promptB, negative_promptA, negative_promptB = add_task(task)
|
178 |
+
img = np.array(input_image["image"].convert("RGB"))
|
179 |
+
|
180 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
181 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
182 |
+
input_image["image"] = input_image["image"].resize((H, W))
|
183 |
+
input_image["mask"] = input_image["mask"].resize((H, W))
|
184 |
+
|
185 |
+
np_inpimg = np.array(input_image["image"])
|
186 |
+
np_inmask = np.array(input_image["mask"]) / 255.0
|
187 |
+
|
188 |
+
np_inpimg = np_inpimg * (1 - np_inmask)
|
189 |
+
|
190 |
+
input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
|
191 |
+
|
192 |
+
set_seed(seed)
|
193 |
+
global pipe
|
194 |
+
result = pipe(
|
195 |
+
promptA=promptA,
|
196 |
+
promptB=promptB,
|
197 |
+
promptU=prompt,
|
198 |
+
tradoff=fitting_degree,
|
199 |
+
tradoff_nag=fitting_degree,
|
200 |
+
image=input_image["image"].convert("RGB"),
|
201 |
+
mask=input_image["mask"].convert("RGB"),
|
202 |
+
num_inference_steps=ddim_steps,
|
203 |
+
generator=torch.Generator("cuda").manual_seed(seed),
|
204 |
+
brushnet_conditioning_scale=1.0,
|
205 |
+
negative_promptA=negative_promptA,
|
206 |
+
negative_promptB=negative_promptB,
|
207 |
+
negative_promptU=negative_prompt,
|
208 |
+
guidance_scale=scale,
|
209 |
+
width=H,
|
210 |
+
height=W,
|
211 |
+
).images[0]
|
212 |
+
mask_np = np.array(input_image["mask"].convert("RGB"))
|
213 |
+
red = np.array(result).astype("float") * 1
|
214 |
+
red[:, :, 0] = 180.0
|
215 |
+
red[:, :, 2] = 0
|
216 |
+
red[:, :, 1] = 0
|
217 |
+
result_m = np.array(result)
|
218 |
+
result_m = Image.fromarray(
|
219 |
+
(
|
220 |
+
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
221 |
+
).astype("uint8")
|
222 |
+
)
|
223 |
+
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
|
224 |
+
m_img = np.asarray(m_img) / 255.0
|
225 |
+
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
|
226 |
+
ours_np = np.asarray(result) / 255.0
|
227 |
+
ours_np = ours_np * m_img + (1 - m_img) * img_np
|
228 |
+
result_paste = Image.fromarray(np.uint8(ours_np * 255))
|
229 |
+
|
230 |
+
dict_res = [input_image["mask"].convert("RGB"), result_m]
|
231 |
+
|
232 |
+
dict_out = [result]
|
233 |
+
|
234 |
+
return dict_out, dict_res
|
235 |
+
|
236 |
+
|
237 |
+
def infer(
|
238 |
+
input_image,
|
239 |
+
text_guided_prompt,
|
240 |
+
text_guided_negative_prompt,
|
241 |
+
shape_guided_prompt,
|
242 |
+
shape_guided_negative_prompt,
|
243 |
+
fitting_degree,
|
244 |
+
ddim_steps,
|
245 |
+
scale,
|
246 |
+
seed,
|
247 |
+
task,
|
248 |
+
vertical_expansion_ratio,
|
249 |
+
horizontal_expansion_ratio,
|
250 |
+
outpaint_prompt,
|
251 |
+
outpaint_negative_prompt,
|
252 |
+
removal_prompt,
|
253 |
+
removal_negative_prompt,
|
254 |
+
context_prompt,
|
255 |
+
context_negative_prompt,
|
256 |
+
):
|
257 |
+
if task == "text-guided":
|
258 |
+
prompt = text_guided_prompt
|
259 |
+
negative_prompt = text_guided_negative_prompt
|
260 |
+
elif task == "shape-guided":
|
261 |
+
prompt = shape_guided_prompt
|
262 |
+
negative_prompt = shape_guided_negative_prompt
|
263 |
+
elif task == "object-removal":
|
264 |
+
prompt = removal_prompt
|
265 |
+
negative_prompt = removal_negative_prompt
|
266 |
+
elif task == "context-aware":
|
267 |
+
prompt = context_prompt
|
268 |
+
negative_prompt = context_negative_prompt
|
269 |
+
elif task == "image-outpainting":
|
270 |
+
prompt = outpaint_prompt
|
271 |
+
negative_prompt = outpaint_negative_prompt
|
272 |
+
return predict(
|
273 |
+
input_image,
|
274 |
+
prompt,
|
275 |
+
fitting_degree,
|
276 |
+
ddim_steps,
|
277 |
+
scale,
|
278 |
+
seed,
|
279 |
+
negative_prompt,
|
280 |
+
task,
|
281 |
+
vertical_expansion_ratio,
|
282 |
+
horizontal_expansion_ratio,
|
283 |
+
)
|
284 |
+
else:
|
285 |
+
task = "text-guided"
|
286 |
+
prompt = text_guided_prompt
|
287 |
+
negative_prompt = text_guided_negative_prompt
|
288 |
+
|
289 |
+
return predict(input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None)
|
290 |
+
|
291 |
+
|
292 |
+
def select_tab_text_guided():
|
293 |
+
return "text-guided"
|
294 |
+
|
295 |
+
|
296 |
+
def select_tab_object_removal():
|
297 |
+
return "object-removal"
|
298 |
+
|
299 |
+
|
300 |
+
def select_tab_context_aware():
|
301 |
+
return "context-aware"
|
302 |
+
|
303 |
+
|
304 |
+
def select_tab_image_outpainting():
|
305 |
+
return "image-outpainting"
|
306 |
+
|
307 |
+
|
308 |
+
def select_tab_shape_guided():
|
309 |
+
return "shape-guided"
|
310 |
+
|
311 |
+
|
312 |
+
with gr.Blocks(css="style.css") as demo:
|
313 |
+
with gr.Row():
|
314 |
+
gr.Markdown(
|
315 |
+
"<div align='center'><font size='18'>PowerPaint: High-Quality Versatile Image Inpainting</font></div>" # noqa
|
316 |
+
)
|
317 |
+
with gr.Row():
|
318 |
+
gr.Markdown(
|
319 |
+
"<div align='center'><font size='5'><a href='https://powerpaint.github.io/'>Project Page</a>  " # noqa
|
320 |
+
"<a href='https://arxiv.org/abs/2312.03594/'>Paper</a>  "
|
321 |
+
"<a href='https://github.com/zhuang2002/PowerPaint'>Code</a> </font></div>" # noqa
|
322 |
+
)
|
323 |
+
with gr.Row():
|
324 |
+
gr.Markdown(
|
325 |
+
"**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content." # noqa
|
326 |
+
)
|
327 |
+
# Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content.
|
328 |
+
with gr.Row():
|
329 |
+
with gr.Column():
|
330 |
+
gr.Markdown("### Input image and draw mask")
|
331 |
+
input_image = gr.Image(source="upload", tool="sketch", type="pil")
|
332 |
+
|
333 |
+
task = gr.Radio(
|
334 |
+
["text-guided", "object-removal", "shape-guided", "image-outpainting"], show_label=False, visible=False
|
335 |
+
)
|
336 |
+
|
337 |
+
# Text-guided object inpainting
|
338 |
+
with gr.Tab("Text-guided object inpainting") as tab_text_guided:
|
339 |
+
enable_text_guided = gr.Checkbox(
|
340 |
+
label="Enable text-guided object inpainting", value=True, interactive=False
|
341 |
+
)
|
342 |
+
text_guided_prompt = gr.Textbox(label="Prompt")
|
343 |
+
text_guided_negative_prompt = gr.Textbox(label="negative_prompt")
|
344 |
+
tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task)
|
345 |
+
|
346 |
+
# Object removal inpainting
|
347 |
+
with gr.Tab("Object removal inpainting") as tab_object_removal:
|
348 |
+
enable_object_removal = gr.Checkbox(
|
349 |
+
label="Enable object removal inpainting",
|
350 |
+
value=True,
|
351 |
+
info="The recommended configuration for the Guidance Scale is 10 or higher. \
|
352 |
+
If undesired objects appear in the masked area, \
|
353 |
+
you can address this by specifically increasing the Guidance Scale.",
|
354 |
+
interactive=False,
|
355 |
+
)
|
356 |
+
removal_prompt = gr.Textbox(label="Prompt")
|
357 |
+
removal_negative_prompt = gr.Textbox(label="negative_prompt")
|
358 |
+
context_prompt = removal_prompt
|
359 |
+
context_negative_prompt = removal_negative_prompt
|
360 |
+
tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task)
|
361 |
+
|
362 |
+
# Object image outpainting
|
363 |
+
with gr.Tab("Image outpainting") as tab_image_outpainting:
|
364 |
+
enable_object_removal = gr.Checkbox(
|
365 |
+
label="Enable image outpainting",
|
366 |
+
value=True,
|
367 |
+
info="The recommended configuration for the Guidance Scale is 15 or higher. \
|
368 |
+
If unwanted random objects appear in the extended image region, \
|
369 |
+
you can enhance the cleanliness of the extension area by increasing the Guidance Scale.",
|
370 |
+
interactive=False,
|
371 |
+
)
|
372 |
+
outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
|
373 |
+
outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
|
374 |
+
horizontal_expansion_ratio = gr.Slider(
|
375 |
+
label="horizontal expansion ratio",
|
376 |
+
minimum=1,
|
377 |
+
maximum=4,
|
378 |
+
step=0.05,
|
379 |
+
value=1,
|
380 |
+
)
|
381 |
+
vertical_expansion_ratio = gr.Slider(
|
382 |
+
label="vertical expansion ratio",
|
383 |
+
minimum=1,
|
384 |
+
maximum=4,
|
385 |
+
step=0.05,
|
386 |
+
value=1,
|
387 |
+
)
|
388 |
+
tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task)
|
389 |
+
|
390 |
+
# Shape-guided object inpainting
|
391 |
+
with gr.Tab("Shape-guided object inpainting") as tab_shape_guided:
|
392 |
+
enable_shape_guided = gr.Checkbox(
|
393 |
+
label="Enable shape-guided object inpainting", value=True, interactive=False
|
394 |
+
)
|
395 |
+
shape_guided_prompt = gr.Textbox(label="shape_guided_prompt")
|
396 |
+
shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt")
|
397 |
+
fitting_degree = gr.Slider(
|
398 |
+
label="fitting degree",
|
399 |
+
minimum=0.3,
|
400 |
+
maximum=1,
|
401 |
+
step=0.05,
|
402 |
+
value=1,
|
403 |
+
)
|
404 |
+
tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task)
|
405 |
+
|
406 |
+
run_button = gr.Button(label="Run")
|
407 |
+
with gr.Accordion("Advanced options", open=False):
|
408 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=50, step=1)
|
409 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=45.0, value=12, step=0.1)
|
410 |
+
seed = gr.Slider(
|
411 |
+
label="Seed",
|
412 |
+
minimum=0,
|
413 |
+
maximum=2147483647,
|
414 |
+
step=1,
|
415 |
+
randomize=True,
|
416 |
+
)
|
417 |
+
with gr.Column():
|
418 |
+
gr.Markdown("### Inpainting result")
|
419 |
+
inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2)
|
420 |
+
gr.Markdown("### Mask")
|
421 |
+
gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2)
|
422 |
+
|
423 |
+
run_button.click(
|
424 |
+
fn=infer,
|
425 |
+
inputs=[
|
426 |
+
input_image,
|
427 |
+
text_guided_prompt,
|
428 |
+
text_guided_negative_prompt,
|
429 |
+
shape_guided_prompt,
|
430 |
+
shape_guided_negative_prompt,
|
431 |
+
fitting_degree,
|
432 |
+
ddim_steps,
|
433 |
+
scale,
|
434 |
+
seed,
|
435 |
+
task,
|
436 |
+
vertical_expansion_ratio,
|
437 |
+
horizontal_expansion_ratio,
|
438 |
+
outpaint_prompt,
|
439 |
+
outpaint_negative_prompt,
|
440 |
+
removal_prompt,
|
441 |
+
removal_negative_prompt,
|
442 |
+
context_prompt,
|
443 |
+
context_negative_prompt,
|
444 |
+
],
|
445 |
+
outputs=[inpaint_result, gallery],
|
446 |
+
)
|
447 |
+
|
448 |
+
demo.queue()
|
449 |
+
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
|
gradio_PowerPaint.py
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from controlnet_aux import HEDdetector, OpenposeDetector
|
8 |
+
from PIL import Image, ImageFilter
|
9 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
10 |
+
|
11 |
+
from diffusers.pipelines.controlnet.pipeline_controlnet import ControlNetModel
|
12 |
+
from pipeline.pipeline_PowerPaint import StableDiffusionInpaintPipeline as Pipeline
|
13 |
+
from pipeline.pipeline_PowerPaint_ControlNet import StableDiffusionControlNetInpaintPipeline as controlnetPipeline
|
14 |
+
from utils.utils import TokenizerWrapper, add_tokens
|
15 |
+
|
16 |
+
|
17 |
+
torch.set_grad_enabled(False)
|
18 |
+
|
19 |
+
weight_dtype = torch.float16
|
20 |
+
global pipe
|
21 |
+
pipe = Pipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=weight_dtype)
|
22 |
+
pipe.tokenizer = TokenizerWrapper(
|
23 |
+
from_pretrained="runwayml/stable-diffusion-v1-5", subfolder="tokenizer", revision=None
|
24 |
+
)
|
25 |
+
|
26 |
+
add_tokens(
|
27 |
+
tokenizer=pipe.tokenizer,
|
28 |
+
text_encoder=pipe.text_encoder,
|
29 |
+
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
|
30 |
+
initialize_tokens=["a", "a", "a"],
|
31 |
+
num_vectors_per_token=10,
|
32 |
+
)
|
33 |
+
|
34 |
+
from safetensors.torch import load_model
|
35 |
+
|
36 |
+
|
37 |
+
load_model(pipe.unet, "./models/unet/unet.safetensors")
|
38 |
+
load_model(pipe.text_encoder, "./models/unet/text_encoder.safetensors")
|
39 |
+
pipe = pipe.to("cuda")
|
40 |
+
|
41 |
+
|
42 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
43 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
44 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
45 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
46 |
+
|
47 |
+
global current_control
|
48 |
+
current_control = "canny"
|
49 |
+
# controlnet_conditioning_scale = 0.8
|
50 |
+
|
51 |
+
|
52 |
+
def set_seed(seed):
|
53 |
+
torch.manual_seed(seed)
|
54 |
+
torch.cuda.manual_seed(seed)
|
55 |
+
torch.cuda.manual_seed_all(seed)
|
56 |
+
np.random.seed(seed)
|
57 |
+
random.seed(seed)
|
58 |
+
|
59 |
+
|
60 |
+
def get_depth_map(image):
|
61 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
62 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
63 |
+
depth_map = depth_estimator(image).predicted_depth
|
64 |
+
|
65 |
+
depth_map = torch.nn.functional.interpolate(
|
66 |
+
depth_map.unsqueeze(1),
|
67 |
+
size=(1024, 1024),
|
68 |
+
mode="bicubic",
|
69 |
+
align_corners=False,
|
70 |
+
)
|
71 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
72 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
73 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
74 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
75 |
+
|
76 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
77 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
78 |
+
return image
|
79 |
+
|
80 |
+
|
81 |
+
def add_task(prompt, negative_prompt, control_type):
|
82 |
+
# print(control_type)
|
83 |
+
if control_type == "object-removal":
|
84 |
+
promptA = "empty scene blur " + prompt + " P_ctxt"
|
85 |
+
promptB = "empty scene blur " + prompt + " P_ctxt"
|
86 |
+
negative_promptA = negative_prompt + " P_obj"
|
87 |
+
negative_promptB = negative_prompt + " P_obj"
|
88 |
+
elif control_type == "shape-guided":
|
89 |
+
promptA = prompt + " P_shape"
|
90 |
+
promptB = prompt + " P_ctxt"
|
91 |
+
negative_promptA = (
|
92 |
+
negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry P_shape"
|
93 |
+
)
|
94 |
+
negative_promptB = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry P_ctxt"
|
95 |
+
elif control_type == "image-outpainting":
|
96 |
+
promptA = "empty scene " + prompt + " P_ctxt"
|
97 |
+
promptB = "empty scene " + prompt + " P_ctxt"
|
98 |
+
negative_promptA = negative_prompt + " P_obj"
|
99 |
+
negative_promptB = negative_prompt + " P_obj"
|
100 |
+
else:
|
101 |
+
promptA = prompt + " P_obj"
|
102 |
+
promptB = prompt + " P_obj"
|
103 |
+
negative_promptA = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry, P_obj"
|
104 |
+
negative_promptB = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry, P_obj"
|
105 |
+
|
106 |
+
return promptA, promptB, negative_promptA, negative_promptB
|
107 |
+
|
108 |
+
|
109 |
+
def predict(
|
110 |
+
input_image,
|
111 |
+
prompt,
|
112 |
+
fitting_degree,
|
113 |
+
ddim_steps,
|
114 |
+
scale,
|
115 |
+
seed,
|
116 |
+
negative_prompt,
|
117 |
+
task,
|
118 |
+
vertical_expansion_ratio,
|
119 |
+
horizontal_expansion_ratio,
|
120 |
+
):
|
121 |
+
size1, size2 = input_image["image"].convert("RGB").size
|
122 |
+
|
123 |
+
if task != "image-outpainting":
|
124 |
+
if size1 < size2:
|
125 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
|
126 |
+
else:
|
127 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
|
128 |
+
else:
|
129 |
+
if size1 < size2:
|
130 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512)))
|
131 |
+
else:
|
132 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512))
|
133 |
+
|
134 |
+
if vertical_expansion_ratio != None and horizontal_expansion_ratio != None:
|
135 |
+
o_W, o_H = input_image["image"].convert("RGB").size
|
136 |
+
c_W = int(horizontal_expansion_ratio * o_W)
|
137 |
+
c_H = int(vertical_expansion_ratio * o_H)
|
138 |
+
|
139 |
+
expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
|
140 |
+
original_img = np.array(input_image["image"])
|
141 |
+
expand_img[
|
142 |
+
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
|
143 |
+
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
|
144 |
+
:,
|
145 |
+
] = original_img
|
146 |
+
|
147 |
+
blurry_gap = 10
|
148 |
+
|
149 |
+
expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
|
150 |
+
if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1:
|
151 |
+
expand_mask[
|
152 |
+
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
|
153 |
+
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
|
154 |
+
:,
|
155 |
+
] = 0
|
156 |
+
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1:
|
157 |
+
expand_mask[
|
158 |
+
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
|
159 |
+
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
|
160 |
+
:,
|
161 |
+
] = 0
|
162 |
+
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1:
|
163 |
+
expand_mask[
|
164 |
+
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
|
165 |
+
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
|
166 |
+
:,
|
167 |
+
] = 0
|
168 |
+
|
169 |
+
input_image["image"] = Image.fromarray(expand_img)
|
170 |
+
input_image["mask"] = Image.fromarray(expand_mask)
|
171 |
+
|
172 |
+
promptA, promptB, negative_promptA, negative_promptB = add_task(prompt, negative_prompt, task)
|
173 |
+
print(promptA, promptB, negative_promptA, negative_promptB)
|
174 |
+
img = np.array(input_image["image"].convert("RGB"))
|
175 |
+
|
176 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
177 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
178 |
+
input_image["image"] = input_image["image"].resize((H, W))
|
179 |
+
input_image["mask"] = input_image["mask"].resize((H, W))
|
180 |
+
set_seed(seed)
|
181 |
+
global pipe
|
182 |
+
result = pipe(
|
183 |
+
promptA=promptA,
|
184 |
+
promptB=promptB,
|
185 |
+
tradoff=fitting_degree,
|
186 |
+
tradoff_nag=fitting_degree,
|
187 |
+
negative_promptA=negative_promptA,
|
188 |
+
negative_promptB=negative_promptB,
|
189 |
+
image=input_image["image"].convert("RGB"),
|
190 |
+
mask_image=input_image["mask"].convert("RGB"),
|
191 |
+
width=H,
|
192 |
+
height=W,
|
193 |
+
guidance_scale=scale,
|
194 |
+
num_inference_steps=ddim_steps,
|
195 |
+
).images[0]
|
196 |
+
mask_np = np.array(input_image["mask"].convert("RGB"))
|
197 |
+
red = np.array(result).astype("float") * 1
|
198 |
+
red[:, :, 0] = 180.0
|
199 |
+
red[:, :, 2] = 0
|
200 |
+
red[:, :, 1] = 0
|
201 |
+
result_m = np.array(result)
|
202 |
+
result_m = Image.fromarray(
|
203 |
+
(
|
204 |
+
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
205 |
+
).astype("uint8")
|
206 |
+
)
|
207 |
+
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
|
208 |
+
m_img = np.asarray(m_img) / 255.0
|
209 |
+
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
|
210 |
+
ours_np = np.asarray(result) / 255.0
|
211 |
+
ours_np = ours_np * m_img + (1 - m_img) * img_np
|
212 |
+
result_paste = Image.fromarray(np.uint8(ours_np * 255))
|
213 |
+
|
214 |
+
dict_res = [input_image["mask"].convert("RGB"), result_m]
|
215 |
+
|
216 |
+
dict_out = [input_image["image"].convert("RGB"), result_paste]
|
217 |
+
|
218 |
+
return dict_out, dict_res
|
219 |
+
|
220 |
+
|
221 |
+
def predict_controlnet(
|
222 |
+
input_image,
|
223 |
+
input_control_image,
|
224 |
+
control_type,
|
225 |
+
prompt,
|
226 |
+
ddim_steps,
|
227 |
+
scale,
|
228 |
+
seed,
|
229 |
+
negative_prompt,
|
230 |
+
controlnet_conditioning_scale,
|
231 |
+
):
|
232 |
+
promptA = prompt + " P_obj"
|
233 |
+
promptB = prompt + " P_obj"
|
234 |
+
negative_promptA = negative_prompt
|
235 |
+
negative_promptB = negative_prompt
|
236 |
+
size1, size2 = input_image["image"].convert("RGB").size
|
237 |
+
|
238 |
+
if size1 < size2:
|
239 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
|
240 |
+
else:
|
241 |
+
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
|
242 |
+
img = np.array(input_image["image"].convert("RGB"))
|
243 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
244 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
245 |
+
input_image["image"] = input_image["image"].resize((H, W))
|
246 |
+
input_image["mask"] = input_image["mask"].resize((H, W))
|
247 |
+
|
248 |
+
global current_control
|
249 |
+
global pipe
|
250 |
+
|
251 |
+
base_control = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype)
|
252 |
+
control_pipe = controlnetPipeline(
|
253 |
+
pipe.vae, pipe.text_encoder, pipe.tokenizer, pipe.unet, base_control, pipe.scheduler, None, None, False
|
254 |
+
)
|
255 |
+
control_pipe = control_pipe.to("cuda")
|
256 |
+
current_control = "canny"
|
257 |
+
if current_control != control_type:
|
258 |
+
if control_type == "canny" or control_type is None:
|
259 |
+
control_pipe.controlnet = ControlNetModel.from_pretrained(
|
260 |
+
"lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype
|
261 |
+
)
|
262 |
+
elif control_type == "pose":
|
263 |
+
control_pipe.controlnet = ControlNetModel.from_pretrained(
|
264 |
+
"lllyasviel/sd-controlnet-openpose", torch_dtype=weight_dtype
|
265 |
+
)
|
266 |
+
elif control_type == "depth":
|
267 |
+
control_pipe.controlnet = ControlNetModel.from_pretrained(
|
268 |
+
"lllyasviel/sd-controlnet-depth", torch_dtype=weight_dtype
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
control_pipe.controlnet = ControlNetModel.from_pretrained(
|
272 |
+
"lllyasviel/sd-controlnet-hed", torch_dtype=weight_dtype
|
273 |
+
)
|
274 |
+
control_pipe = control_pipe.to("cuda")
|
275 |
+
current_control = control_type
|
276 |
+
|
277 |
+
controlnet_image = input_control_image
|
278 |
+
if current_control == "canny":
|
279 |
+
controlnet_image = controlnet_image.resize((H, W))
|
280 |
+
controlnet_image = np.array(controlnet_image)
|
281 |
+
controlnet_image = cv2.Canny(controlnet_image, 100, 200)
|
282 |
+
controlnet_image = controlnet_image[:, :, None]
|
283 |
+
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
|
284 |
+
controlnet_image = Image.fromarray(controlnet_image)
|
285 |
+
elif current_control == "pose":
|
286 |
+
controlnet_image = openpose(controlnet_image)
|
287 |
+
elif current_control == "depth":
|
288 |
+
controlnet_image = controlnet_image.resize((H, W))
|
289 |
+
controlnet_image = get_depth_map(controlnet_image)
|
290 |
+
else:
|
291 |
+
controlnet_image = hed(controlnet_image)
|
292 |
+
|
293 |
+
mask_np = np.array(input_image["mask"].convert("RGB"))
|
294 |
+
controlnet_image = controlnet_image.resize((H, W))
|
295 |
+
set_seed(seed)
|
296 |
+
result = control_pipe(
|
297 |
+
promptA=promptB,
|
298 |
+
promptB=promptA,
|
299 |
+
tradoff=1.0,
|
300 |
+
tradoff_nag=1.0,
|
301 |
+
negative_promptA=negative_promptA,
|
302 |
+
negative_promptB=negative_promptB,
|
303 |
+
image=input_image["image"].convert("RGB"),
|
304 |
+
mask_image=input_image["mask"].convert("RGB"),
|
305 |
+
control_image=controlnet_image,
|
306 |
+
width=H,
|
307 |
+
height=W,
|
308 |
+
guidance_scale=scale,
|
309 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
310 |
+
num_inference_steps=ddim_steps,
|
311 |
+
).images[0]
|
312 |
+
red = np.array(result).astype("float") * 1
|
313 |
+
red[:, :, 0] = 180.0
|
314 |
+
red[:, :, 2] = 0
|
315 |
+
red[:, :, 1] = 0
|
316 |
+
result_m = np.array(result)
|
317 |
+
result_m = Image.fromarray(
|
318 |
+
(
|
319 |
+
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
320 |
+
).astype("uint8")
|
321 |
+
)
|
322 |
+
|
323 |
+
mask_np = np.array(input_image["mask"].convert("RGB"))
|
324 |
+
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=4))
|
325 |
+
m_img = np.asarray(m_img) / 255.0
|
326 |
+
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
|
327 |
+
ours_np = np.asarray(result) / 255.0
|
328 |
+
ours_np = ours_np * m_img + (1 - m_img) * img_np
|
329 |
+
result_paste = Image.fromarray(np.uint8(ours_np * 255))
|
330 |
+
return [input_image["image"].convert("RGB"), result_paste], [controlnet_image, result_m]
|
331 |
+
|
332 |
+
|
333 |
+
def infer(
|
334 |
+
input_image,
|
335 |
+
text_guided_prompt,
|
336 |
+
text_guided_negative_prompt,
|
337 |
+
shape_guided_prompt,
|
338 |
+
shape_guided_negative_prompt,
|
339 |
+
fitting_degree,
|
340 |
+
ddim_steps,
|
341 |
+
scale,
|
342 |
+
seed,
|
343 |
+
task,
|
344 |
+
enable_control,
|
345 |
+
input_control_image,
|
346 |
+
control_type,
|
347 |
+
vertical_expansion_ratio,
|
348 |
+
horizontal_expansion_ratio,
|
349 |
+
outpaint_prompt,
|
350 |
+
outpaint_negative_prompt,
|
351 |
+
controlnet_conditioning_scale,
|
352 |
+
removal_prompt,
|
353 |
+
removal_negative_prompt,
|
354 |
+
):
|
355 |
+
if task == "text-guided":
|
356 |
+
prompt = text_guided_prompt
|
357 |
+
negative_prompt = text_guided_negative_prompt
|
358 |
+
elif task == "shape-guided":
|
359 |
+
prompt = shape_guided_prompt
|
360 |
+
negative_prompt = shape_guided_negative_prompt
|
361 |
+
elif task == "object-removal":
|
362 |
+
prompt = removal_prompt
|
363 |
+
negative_prompt = removal_negative_prompt
|
364 |
+
elif task == "image-outpainting":
|
365 |
+
prompt = outpaint_prompt
|
366 |
+
negative_prompt = outpaint_negative_prompt
|
367 |
+
return predict(
|
368 |
+
input_image,
|
369 |
+
prompt,
|
370 |
+
fitting_degree,
|
371 |
+
ddim_steps,
|
372 |
+
scale,
|
373 |
+
seed,
|
374 |
+
negative_prompt,
|
375 |
+
task,
|
376 |
+
vertical_expansion_ratio,
|
377 |
+
horizontal_expansion_ratio,
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
task = "text-guided"
|
381 |
+
prompt = text_guided_prompt
|
382 |
+
negative_prompt = text_guided_negative_prompt
|
383 |
+
|
384 |
+
if enable_control and task == "text-guided":
|
385 |
+
return predict_controlnet(
|
386 |
+
input_image,
|
387 |
+
input_control_image,
|
388 |
+
control_type,
|
389 |
+
prompt,
|
390 |
+
ddim_steps,
|
391 |
+
scale,
|
392 |
+
seed,
|
393 |
+
negative_prompt,
|
394 |
+
controlnet_conditioning_scale,
|
395 |
+
)
|
396 |
+
else:
|
397 |
+
return predict(input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None)
|
398 |
+
|
399 |
+
|
400 |
+
def select_tab_text_guided():
|
401 |
+
return "text-guided"
|
402 |
+
|
403 |
+
|
404 |
+
def select_tab_object_removal():
|
405 |
+
return "object-removal"
|
406 |
+
|
407 |
+
|
408 |
+
def select_tab_image_outpainting():
|
409 |
+
return "image-outpainting"
|
410 |
+
|
411 |
+
|
412 |
+
def select_tab_shape_guided():
|
413 |
+
return "shape-guided"
|
414 |
+
|
415 |
+
|
416 |
+
with gr.Blocks(css="style.css") as demo:
|
417 |
+
with gr.Row():
|
418 |
+
gr.Markdown(
|
419 |
+
"<div align='center'><font size='18'>PowerPaint: High-Quality Versatile Image Inpainting</font></div>" # noqa
|
420 |
+
)
|
421 |
+
with gr.Row():
|
422 |
+
gr.Markdown(
|
423 |
+
"<div align='center'><font size='5'><a href='https://powerpaint.github.io/'>Project Page</a>  " # noqa
|
424 |
+
"<a href='https://arxiv.org/abs/2312.03594/'>Paper</a>  "
|
425 |
+
"<a href='https://github.com/open-mmlab/mmagic/tree/main/projects/powerpaint'>Code</a> </font></div>" # noqa
|
426 |
+
)
|
427 |
+
with gr.Row():
|
428 |
+
gr.Markdown(
|
429 |
+
"**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content." # noqa
|
430 |
+
)
|
431 |
+
# Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content.
|
432 |
+
with gr.Row():
|
433 |
+
with gr.Column():
|
434 |
+
gr.Markdown("### Input image and draw mask")
|
435 |
+
input_image = gr.Image(source="upload", tool="sketch", type="pil")
|
436 |
+
|
437 |
+
task = gr.Radio(
|
438 |
+
["text-guided", "object-removal", "shape-guided", "image-outpainting"], show_label=False, visible=False
|
439 |
+
)
|
440 |
+
|
441 |
+
# Text-guided object inpainting
|
442 |
+
with gr.Tab("Text-guided object inpainting") as tab_text_guided:
|
443 |
+
enable_text_guided = gr.Checkbox(
|
444 |
+
label="Enable text-guided object inpainting", value=True, interactive=False
|
445 |
+
)
|
446 |
+
text_guided_prompt = gr.Textbox(label="Prompt")
|
447 |
+
text_guided_negative_prompt = gr.Textbox(label="negative_prompt")
|
448 |
+
gr.Markdown("### Controlnet setting")
|
449 |
+
enable_control = gr.Checkbox(
|
450 |
+
label="Enable controlnet", info="Enable this if you want to use controlnet"
|
451 |
+
)
|
452 |
+
controlnet_conditioning_scale = gr.Slider(
|
453 |
+
label="controlnet conditioning scale",
|
454 |
+
minimum=0,
|
455 |
+
maximum=1,
|
456 |
+
step=0.05,
|
457 |
+
value=0.5,
|
458 |
+
)
|
459 |
+
control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type")
|
460 |
+
input_control_image = gr.Image(source="upload", type="pil")
|
461 |
+
tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task)
|
462 |
+
|
463 |
+
# Object removal inpainting
|
464 |
+
with gr.Tab("Object removal inpainting") as tab_object_removal:
|
465 |
+
enable_object_removal = gr.Checkbox(
|
466 |
+
label="Enable object removal inpainting",
|
467 |
+
value=True,
|
468 |
+
info="The recommended configuration for the Guidance Scale is 10 or higher. \
|
469 |
+
If undesired objects appear in the masked area, \
|
470 |
+
you can address this by specifically increasing the Guidance Scale.",
|
471 |
+
interactive=False,
|
472 |
+
)
|
473 |
+
removal_prompt = gr.Textbox(label="Prompt")
|
474 |
+
removal_negative_prompt = gr.Textbox(label="negative_prompt")
|
475 |
+
tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task)
|
476 |
+
|
477 |
+
# Object image outpainting
|
478 |
+
with gr.Tab("Image outpainting") as tab_image_outpainting:
|
479 |
+
enable_object_removal = gr.Checkbox(
|
480 |
+
label="Enable image outpainting",
|
481 |
+
value=True,
|
482 |
+
info="The recommended configuration for the Guidance Scale is 10 or higher. \
|
483 |
+
If unwanted random objects appear in the extended image region, \
|
484 |
+
you can enhance the cleanliness of the extension area by increasing the Guidance Scale.",
|
485 |
+
interactive=False,
|
486 |
+
)
|
487 |
+
outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
|
488 |
+
outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
|
489 |
+
horizontal_expansion_ratio = gr.Slider(
|
490 |
+
label="horizontal expansion ratio",
|
491 |
+
minimum=1,
|
492 |
+
maximum=4,
|
493 |
+
step=0.05,
|
494 |
+
value=1,
|
495 |
+
)
|
496 |
+
vertical_expansion_ratio = gr.Slider(
|
497 |
+
label="vertical expansion ratio",
|
498 |
+
minimum=1,
|
499 |
+
maximum=4,
|
500 |
+
step=0.05,
|
501 |
+
value=1,
|
502 |
+
)
|
503 |
+
tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task)
|
504 |
+
|
505 |
+
# Shape-guided object inpainting
|
506 |
+
with gr.Tab("Shape-guided object inpainting") as tab_shape_guided:
|
507 |
+
enable_shape_guided = gr.Checkbox(
|
508 |
+
label="Enable shape-guided object inpainting", value=True, interactive=False
|
509 |
+
)
|
510 |
+
shape_guided_prompt = gr.Textbox(label="shape_guided_prompt")
|
511 |
+
shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt")
|
512 |
+
fitting_degree = gr.Slider(
|
513 |
+
label="fitting degree",
|
514 |
+
minimum=0,
|
515 |
+
maximum=1,
|
516 |
+
step=0.05,
|
517 |
+
value=1,
|
518 |
+
)
|
519 |
+
tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task)
|
520 |
+
|
521 |
+
run_button = gr.Button(label="Run")
|
522 |
+
with gr.Accordion("Advanced options", open=False):
|
523 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
|
524 |
+
scale = gr.Slider(
|
525 |
+
label="Guidance Scale",
|
526 |
+
info="For object removal and image outpainting, it is recommended to set the value at 10 or above.",
|
527 |
+
minimum=0.1,
|
528 |
+
maximum=30.0,
|
529 |
+
value=7.5,
|
530 |
+
step=0.1,
|
531 |
+
)
|
532 |
+
seed = gr.Slider(
|
533 |
+
label="Seed",
|
534 |
+
minimum=0,
|
535 |
+
maximum=2147483647,
|
536 |
+
step=1,
|
537 |
+
randomize=True,
|
538 |
+
)
|
539 |
+
with gr.Column():
|
540 |
+
gr.Markdown("### Inpainting result")
|
541 |
+
inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2)
|
542 |
+
gr.Markdown("### Mask")
|
543 |
+
gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2)
|
544 |
+
|
545 |
+
run_button.click(
|
546 |
+
fn=infer,
|
547 |
+
inputs=[
|
548 |
+
input_image,
|
549 |
+
text_guided_prompt,
|
550 |
+
text_guided_negative_prompt,
|
551 |
+
shape_guided_prompt,
|
552 |
+
shape_guided_negative_prompt,
|
553 |
+
fitting_degree,
|
554 |
+
ddim_steps,
|
555 |
+
scale,
|
556 |
+
seed,
|
557 |
+
task,
|
558 |
+
enable_control,
|
559 |
+
input_control_image,
|
560 |
+
control_type,
|
561 |
+
vertical_expansion_ratio,
|
562 |
+
horizontal_expansion_ratio,
|
563 |
+
outpaint_prompt,
|
564 |
+
outpaint_negative_prompt,
|
565 |
+
controlnet_conditioning_scale,
|
566 |
+
removal_prompt,
|
567 |
+
removal_negative_prompt,
|
568 |
+
],
|
569 |
+
outputs=[inpaint_result, gallery],
|
570 |
+
)
|
571 |
+
|
572 |
+
demo.queue()
|
573 |
+
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
|
model/BrushNet_CA.py
ADDED
@@ -0,0 +1,960 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
|
6 |
+
sys.path.append(".model")
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
13 |
+
CROSS_ATTENTION_PROCESSORS,
|
14 |
+
AttentionProcessor,
|
15 |
+
AttnAddedKVProcessor,
|
16 |
+
AttnProcessor,
|
17 |
+
)
|
18 |
+
from diffusers.models.embeddings import (
|
19 |
+
TextImageProjection,
|
20 |
+
TextImageTimeEmbedding,
|
21 |
+
TextTimeEmbedding,
|
22 |
+
TimestepEmbedding,
|
23 |
+
Timesteps,
|
24 |
+
)
|
25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from model.diffusers_c.models.unets.unet_2d_blocks import (
|
28 |
+
CrossAttnDownBlock2D,
|
29 |
+
DownBlock2D,
|
30 |
+
get_down_block,
|
31 |
+
get_mid_block,
|
32 |
+
get_up_block,
|
33 |
+
)
|
34 |
+
from model.diffusers_c.models.unets.unet_2d_condition import UNet2DConditionModel
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class BrushNetOutput(BaseOutput):
|
42 |
+
"""
|
43 |
+
The output of [`BrushNetModel`].
|
44 |
+
|
45 |
+
Args:
|
46 |
+
up_block_res_samples (`tuple[torch.Tensor]`):
|
47 |
+
A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
|
48 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
49 |
+
used to condition the original UNet's upsampling activations.
|
50 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
51 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
52 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
53 |
+
used to condition the original UNet's downsampling activations.
|
54 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
55 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
56 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
57 |
+
Output can be used to condition the original UNet's middle block activation.
|
58 |
+
"""
|
59 |
+
|
60 |
+
up_block_res_samples: Tuple[torch.Tensor]
|
61 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
62 |
+
mid_block_res_sample: torch.Tensor
|
63 |
+
|
64 |
+
|
65 |
+
class BrushNetModel(ModelMixin, ConfigMixin):
|
66 |
+
"""
|
67 |
+
A BrushNet model.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
in_channels (`int`, defaults to 4):
|
71 |
+
The number of channels in the input sample.
|
72 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
73 |
+
Whether to flip the sin to cos in the time embedding.
|
74 |
+
freq_shift (`int`, defaults to 0):
|
75 |
+
The frequency shift to apply to the time embedding.
|
76 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
77 |
+
The tuple of downsample blocks to use.
|
78 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
79 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
80 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
81 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
82 |
+
The tuple of upsample blocks to use.
|
83 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
84 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
85 |
+
The tuple of output channels for each block.
|
86 |
+
layers_per_block (`int`, defaults to 2):
|
87 |
+
The number of layers per block.
|
88 |
+
downsample_padding (`int`, defaults to 1):
|
89 |
+
The padding to use for the downsampling convolution.
|
90 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
91 |
+
The scale factor to use for the mid block.
|
92 |
+
act_fn (`str`, defaults to "silu"):
|
93 |
+
The activation function to use.
|
94 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
95 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
96 |
+
in post-processing.
|
97 |
+
norm_eps (`float`, defaults to 1e-5):
|
98 |
+
The epsilon to use for the normalization.
|
99 |
+
cross_attention_dim (`int`, defaults to 1280):
|
100 |
+
The dimension of the cross attention features.
|
101 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
102 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
103 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
104 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
105 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
106 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
107 |
+
dimension to `cross_attention_dim`.
|
108 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
109 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
110 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
111 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
112 |
+
The dimension of the attention heads.
|
113 |
+
use_linear_projection (`bool`, defaults to `False`):
|
114 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
115 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
116 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
117 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
118 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
119 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
120 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
121 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
122 |
+
class conditioning with `class_embed_type` equal to `None`.
|
123 |
+
upcast_attention (`bool`, defaults to `False`):
|
124 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
125 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
126 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
127 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
128 |
+
`class_embed_type="projection"`.
|
129 |
+
brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
130 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
131 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
132 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
133 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
134 |
+
TODO(Patrick) - unused parameter.
|
135 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
136 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
137 |
+
"""
|
138 |
+
|
139 |
+
_supports_gradient_checkpointing = True
|
140 |
+
|
141 |
+
@register_to_config
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
in_channels: int = 4,
|
145 |
+
conditioning_channels: int = 5,
|
146 |
+
flip_sin_to_cos: bool = True,
|
147 |
+
freq_shift: int = 0,
|
148 |
+
down_block_types: Tuple[str, ...] = (
|
149 |
+
"CrossAttnDownBlock2D",
|
150 |
+
"CrossAttnDownBlock2D",
|
151 |
+
"CrossAttnDownBlock2D",
|
152 |
+
"DownBlock2D",
|
153 |
+
),
|
154 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
155 |
+
up_block_types: Tuple[str, ...] = (
|
156 |
+
"UpBlock2D",
|
157 |
+
"CrossAttnUpBlock2D",
|
158 |
+
"CrossAttnUpBlock2D",
|
159 |
+
"CrossAttnUpBlock2D",
|
160 |
+
),
|
161 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
162 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
163 |
+
layers_per_block: int = 2,
|
164 |
+
downsample_padding: int = 1,
|
165 |
+
mid_block_scale_factor: float = 1,
|
166 |
+
act_fn: str = "silu",
|
167 |
+
norm_num_groups: Optional[int] = 32,
|
168 |
+
norm_eps: float = 1e-5,
|
169 |
+
cross_attention_dim: int = 1280,
|
170 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
171 |
+
encoder_hid_dim: Optional[int] = None,
|
172 |
+
encoder_hid_dim_type: Optional[str] = None,
|
173 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
174 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
175 |
+
use_linear_projection: bool = False,
|
176 |
+
class_embed_type: Optional[str] = None,
|
177 |
+
addition_embed_type: Optional[str] = None,
|
178 |
+
addition_time_embed_dim: Optional[int] = None,
|
179 |
+
num_class_embeds: Optional[int] = None,
|
180 |
+
upcast_attention: bool = False,
|
181 |
+
resnet_time_scale_shift: str = "default",
|
182 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
183 |
+
brushnet_conditioning_channel_order: str = "rgb",
|
184 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
185 |
+
global_pool_conditions: bool = False,
|
186 |
+
addition_embed_type_num_heads: int = 64,
|
187 |
+
):
|
188 |
+
super().__init__()
|
189 |
+
|
190 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
191 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
192 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
193 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
194 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
195 |
+
# which is why we correct for the naming here.
|
196 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
197 |
+
|
198 |
+
# Check inputs
|
199 |
+
if len(down_block_types) != len(up_block_types):
|
200 |
+
raise ValueError(
|
201 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
202 |
+
)
|
203 |
+
|
204 |
+
if len(block_out_channels) != len(down_block_types):
|
205 |
+
raise ValueError(
|
206 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
207 |
+
)
|
208 |
+
|
209 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
210 |
+
raise ValueError(
|
211 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
212 |
+
)
|
213 |
+
|
214 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
215 |
+
raise ValueError(
|
216 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
217 |
+
)
|
218 |
+
|
219 |
+
if isinstance(transformer_layers_per_block, int):
|
220 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
221 |
+
|
222 |
+
# input
|
223 |
+
conv_in_kernel = 3
|
224 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
225 |
+
self.conv_in_condition = nn.Conv2d(
|
226 |
+
in_channels + conditioning_channels,
|
227 |
+
block_out_channels[0],
|
228 |
+
kernel_size=conv_in_kernel,
|
229 |
+
padding=conv_in_padding,
|
230 |
+
)
|
231 |
+
|
232 |
+
# time
|
233 |
+
time_embed_dim = block_out_channels[0] * 4
|
234 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
235 |
+
timestep_input_dim = block_out_channels[0]
|
236 |
+
self.time_embedding = TimestepEmbedding(
|
237 |
+
timestep_input_dim,
|
238 |
+
time_embed_dim,
|
239 |
+
act_fn=act_fn,
|
240 |
+
)
|
241 |
+
|
242 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
243 |
+
encoder_hid_dim_type = "text_proj"
|
244 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
245 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
246 |
+
|
247 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
248 |
+
raise ValueError(
|
249 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
250 |
+
)
|
251 |
+
|
252 |
+
if encoder_hid_dim_type == "text_proj":
|
253 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
254 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
255 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
256 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
257 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
258 |
+
self.encoder_hid_proj = TextImageProjection(
|
259 |
+
text_embed_dim=encoder_hid_dim,
|
260 |
+
image_embed_dim=cross_attention_dim,
|
261 |
+
cross_attention_dim=cross_attention_dim,
|
262 |
+
)
|
263 |
+
|
264 |
+
elif encoder_hid_dim_type is not None:
|
265 |
+
raise ValueError(
|
266 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
self.encoder_hid_proj = None
|
270 |
+
|
271 |
+
# class embedding
|
272 |
+
if class_embed_type is None and num_class_embeds is not None:
|
273 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
274 |
+
elif class_embed_type == "timestep":
|
275 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
276 |
+
elif class_embed_type == "identity":
|
277 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
278 |
+
elif class_embed_type == "projection":
|
279 |
+
if projection_class_embeddings_input_dim is None:
|
280 |
+
raise ValueError(
|
281 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
282 |
+
)
|
283 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
284 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
285 |
+
# 2. it projects from an arbitrary input dimension.
|
286 |
+
#
|
287 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
288 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
289 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
290 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
291 |
+
else:
|
292 |
+
self.class_embedding = None
|
293 |
+
|
294 |
+
if addition_embed_type == "text":
|
295 |
+
if encoder_hid_dim is not None:
|
296 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
297 |
+
else:
|
298 |
+
text_time_embedding_from_dim = cross_attention_dim
|
299 |
+
|
300 |
+
self.add_embedding = TextTimeEmbedding(
|
301 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
302 |
+
)
|
303 |
+
elif addition_embed_type == "text_image":
|
304 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
305 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
306 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
307 |
+
self.add_embedding = TextImageTimeEmbedding(
|
308 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
309 |
+
)
|
310 |
+
elif addition_embed_type == "text_time":
|
311 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
312 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
313 |
+
|
314 |
+
elif addition_embed_type is not None:
|
315 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
316 |
+
|
317 |
+
self.down_blocks = nn.ModuleList([])
|
318 |
+
self.brushnet_down_blocks = nn.ModuleList([])
|
319 |
+
|
320 |
+
if isinstance(only_cross_attention, bool):
|
321 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
322 |
+
|
323 |
+
if isinstance(attention_head_dim, int):
|
324 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
325 |
+
|
326 |
+
if isinstance(num_attention_heads, int):
|
327 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
328 |
+
|
329 |
+
# down
|
330 |
+
output_channel = block_out_channels[0]
|
331 |
+
|
332 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
333 |
+
brushnet_block = zero_module(brushnet_block)
|
334 |
+
self.brushnet_down_blocks.append(brushnet_block)
|
335 |
+
|
336 |
+
for i, down_block_type in enumerate(down_block_types):
|
337 |
+
input_channel = output_channel
|
338 |
+
output_channel = block_out_channels[i]
|
339 |
+
is_final_block = i == len(block_out_channels) - 1
|
340 |
+
|
341 |
+
down_block = get_down_block(
|
342 |
+
down_block_type,
|
343 |
+
num_layers=layers_per_block,
|
344 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
345 |
+
in_channels=input_channel,
|
346 |
+
out_channels=output_channel,
|
347 |
+
temb_channels=time_embed_dim,
|
348 |
+
add_downsample=not is_final_block,
|
349 |
+
resnet_eps=norm_eps,
|
350 |
+
resnet_act_fn=act_fn,
|
351 |
+
resnet_groups=norm_num_groups,
|
352 |
+
cross_attention_dim=cross_attention_dim,
|
353 |
+
num_attention_heads=num_attention_heads[i],
|
354 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
355 |
+
downsample_padding=downsample_padding,
|
356 |
+
use_linear_projection=use_linear_projection,
|
357 |
+
only_cross_attention=only_cross_attention[i],
|
358 |
+
upcast_attention=upcast_attention,
|
359 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
360 |
+
)
|
361 |
+
self.down_blocks.append(down_block)
|
362 |
+
|
363 |
+
for _ in range(layers_per_block):
|
364 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
365 |
+
brushnet_block = zero_module(brushnet_block)
|
366 |
+
self.brushnet_down_blocks.append(brushnet_block)
|
367 |
+
|
368 |
+
if not is_final_block:
|
369 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
370 |
+
brushnet_block = zero_module(brushnet_block)
|
371 |
+
self.brushnet_down_blocks.append(brushnet_block)
|
372 |
+
|
373 |
+
# mid
|
374 |
+
mid_block_channel = block_out_channels[-1]
|
375 |
+
|
376 |
+
brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
377 |
+
brushnet_block = zero_module(brushnet_block)
|
378 |
+
self.brushnet_mid_block = brushnet_block
|
379 |
+
|
380 |
+
self.mid_block = get_mid_block(
|
381 |
+
mid_block_type,
|
382 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
383 |
+
in_channels=mid_block_channel,
|
384 |
+
temb_channels=time_embed_dim,
|
385 |
+
resnet_eps=norm_eps,
|
386 |
+
resnet_act_fn=act_fn,
|
387 |
+
output_scale_factor=mid_block_scale_factor,
|
388 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
389 |
+
cross_attention_dim=cross_attention_dim,
|
390 |
+
num_attention_heads=num_attention_heads[-1],
|
391 |
+
resnet_groups=norm_num_groups,
|
392 |
+
use_linear_projection=use_linear_projection,
|
393 |
+
upcast_attention=upcast_attention,
|
394 |
+
)
|
395 |
+
|
396 |
+
# count how many layers upsample the images
|
397 |
+
self.num_upsamplers = 0
|
398 |
+
|
399 |
+
# up
|
400 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
401 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
402 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
403 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
404 |
+
|
405 |
+
output_channel = reversed_block_out_channels[0]
|
406 |
+
|
407 |
+
self.up_blocks = nn.ModuleList([])
|
408 |
+
self.brushnet_up_blocks = nn.ModuleList([])
|
409 |
+
|
410 |
+
for i, up_block_type in enumerate(up_block_types):
|
411 |
+
is_final_block = i == len(block_out_channels) - 1
|
412 |
+
|
413 |
+
prev_output_channel = output_channel
|
414 |
+
output_channel = reversed_block_out_channels[i]
|
415 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
416 |
+
|
417 |
+
# add upsample block for all BUT final layer
|
418 |
+
if not is_final_block:
|
419 |
+
add_upsample = True
|
420 |
+
self.num_upsamplers += 1
|
421 |
+
else:
|
422 |
+
add_upsample = False
|
423 |
+
|
424 |
+
up_block = get_up_block(
|
425 |
+
up_block_type,
|
426 |
+
num_layers=layers_per_block + 1,
|
427 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
428 |
+
in_channels=input_channel,
|
429 |
+
out_channels=output_channel,
|
430 |
+
prev_output_channel=prev_output_channel,
|
431 |
+
temb_channels=time_embed_dim,
|
432 |
+
add_upsample=add_upsample,
|
433 |
+
resnet_eps=norm_eps,
|
434 |
+
resnet_act_fn=act_fn,
|
435 |
+
resolution_idx=i,
|
436 |
+
resnet_groups=norm_num_groups,
|
437 |
+
cross_attention_dim=cross_attention_dim,
|
438 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
439 |
+
use_linear_projection=use_linear_projection,
|
440 |
+
only_cross_attention=only_cross_attention[i],
|
441 |
+
upcast_attention=upcast_attention,
|
442 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
443 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
444 |
+
)
|
445 |
+
self.up_blocks.append(up_block)
|
446 |
+
prev_output_channel = output_channel
|
447 |
+
|
448 |
+
for _ in range(layers_per_block + 1):
|
449 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
450 |
+
brushnet_block = zero_module(brushnet_block)
|
451 |
+
self.brushnet_up_blocks.append(brushnet_block)
|
452 |
+
|
453 |
+
if not is_final_block:
|
454 |
+
brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
455 |
+
brushnet_block = zero_module(brushnet_block)
|
456 |
+
self.brushnet_up_blocks.append(brushnet_block)
|
457 |
+
|
458 |
+
@classmethod
|
459 |
+
def from_unet(
|
460 |
+
cls,
|
461 |
+
unet: UNet2DConditionModel,
|
462 |
+
brushnet_conditioning_channel_order: str = "rgb",
|
463 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
464 |
+
load_weights_from_unet: bool = True,
|
465 |
+
conditioning_channels: int = 5,
|
466 |
+
):
|
467 |
+
r"""
|
468 |
+
Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
|
469 |
+
|
470 |
+
Parameters:
|
471 |
+
unet (`UNet2DConditionModel`):
|
472 |
+
The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
|
473 |
+
where applicable.
|
474 |
+
"""
|
475 |
+
transformer_layers_per_block = (
|
476 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
477 |
+
)
|
478 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
479 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
480 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
481 |
+
addition_time_embed_dim = (
|
482 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
483 |
+
)
|
484 |
+
|
485 |
+
brushnet = cls(
|
486 |
+
in_channels=unet.config.in_channels,
|
487 |
+
conditioning_channels=conditioning_channels,
|
488 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
489 |
+
freq_shift=unet.config.freq_shift,
|
490 |
+
# down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'],
|
491 |
+
down_block_types=[
|
492 |
+
"CrossAttnDownBlock2D",
|
493 |
+
"CrossAttnDownBlock2D",
|
494 |
+
"CrossAttnDownBlock2D",
|
495 |
+
"DownBlock2D",
|
496 |
+
],
|
497 |
+
# mid_block_type='MidBlock2D',
|
498 |
+
mid_block_type="UNetMidBlock2DCrossAttn",
|
499 |
+
# up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'],
|
500 |
+
up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"],
|
501 |
+
only_cross_attention=unet.config.only_cross_attention,
|
502 |
+
block_out_channels=unet.config.block_out_channels,
|
503 |
+
layers_per_block=unet.config.layers_per_block,
|
504 |
+
downsample_padding=unet.config.downsample_padding,
|
505 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
506 |
+
act_fn=unet.config.act_fn,
|
507 |
+
norm_num_groups=unet.config.norm_num_groups,
|
508 |
+
norm_eps=unet.config.norm_eps,
|
509 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
510 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
511 |
+
encoder_hid_dim=encoder_hid_dim,
|
512 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
513 |
+
attention_head_dim=unet.config.attention_head_dim,
|
514 |
+
num_attention_heads=unet.config.num_attention_heads,
|
515 |
+
use_linear_projection=unet.config.use_linear_projection,
|
516 |
+
class_embed_type=unet.config.class_embed_type,
|
517 |
+
addition_embed_type=addition_embed_type,
|
518 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
519 |
+
num_class_embeds=unet.config.num_class_embeds,
|
520 |
+
upcast_attention=unet.config.upcast_attention,
|
521 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
522 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
523 |
+
brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
|
524 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
525 |
+
)
|
526 |
+
|
527 |
+
if load_weights_from_unet:
|
528 |
+
conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight)
|
529 |
+
conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight
|
530 |
+
conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight
|
531 |
+
brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight)
|
532 |
+
brushnet.conv_in_condition.bias = unet.conv_in.bias
|
533 |
+
|
534 |
+
brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
535 |
+
brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
536 |
+
|
537 |
+
if brushnet.class_embedding:
|
538 |
+
brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
539 |
+
|
540 |
+
brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
|
541 |
+
brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
|
542 |
+
brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False)
|
543 |
+
|
544 |
+
return brushnet.to(unet.dtype)
|
545 |
+
|
546 |
+
@property
|
547 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
548 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
549 |
+
r"""
|
550 |
+
Returns:
|
551 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
552 |
+
indexed by its weight name.
|
553 |
+
"""
|
554 |
+
# set recursively
|
555 |
+
processors = {}
|
556 |
+
|
557 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
558 |
+
if hasattr(module, "get_processor"):
|
559 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
560 |
+
|
561 |
+
for sub_name, child in module.named_children():
|
562 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
563 |
+
|
564 |
+
return processors
|
565 |
+
|
566 |
+
for name, module in self.named_children():
|
567 |
+
fn_recursive_add_processors(name, module, processors)
|
568 |
+
|
569 |
+
return processors
|
570 |
+
|
571 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
572 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
573 |
+
r"""
|
574 |
+
Sets the attention processor to use to compute attention.
|
575 |
+
|
576 |
+
Parameters:
|
577 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
578 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
579 |
+
for **all** `Attention` layers.
|
580 |
+
|
581 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
582 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
583 |
+
|
584 |
+
"""
|
585 |
+
count = len(self.attn_processors.keys())
|
586 |
+
|
587 |
+
if isinstance(processor, dict) and len(processor) != count:
|
588 |
+
raise ValueError(
|
589 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
590 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
591 |
+
)
|
592 |
+
|
593 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
594 |
+
if hasattr(module, "set_processor"):
|
595 |
+
if not isinstance(processor, dict):
|
596 |
+
module.set_processor(processor)
|
597 |
+
else:
|
598 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
599 |
+
|
600 |
+
for sub_name, child in module.named_children():
|
601 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
602 |
+
|
603 |
+
for name, module in self.named_children():
|
604 |
+
fn_recursive_attn_processor(name, module, processor)
|
605 |
+
|
606 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
607 |
+
def set_default_attn_processor(self):
|
608 |
+
"""
|
609 |
+
Disables custom attention processors and sets the default attention implementation.
|
610 |
+
"""
|
611 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
612 |
+
processor = AttnAddedKVProcessor()
|
613 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
614 |
+
processor = AttnProcessor()
|
615 |
+
else:
|
616 |
+
raise ValueError(
|
617 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
618 |
+
)
|
619 |
+
|
620 |
+
self.set_attn_processor(processor)
|
621 |
+
|
622 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
623 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
624 |
+
r"""
|
625 |
+
Enable sliced attention computation.
|
626 |
+
|
627 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
628 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
629 |
+
|
630 |
+
Args:
|
631 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
632 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
633 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
634 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
635 |
+
must be a multiple of `slice_size`.
|
636 |
+
"""
|
637 |
+
sliceable_head_dims = []
|
638 |
+
|
639 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
640 |
+
if hasattr(module, "set_attention_slice"):
|
641 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
642 |
+
|
643 |
+
for child in module.children():
|
644 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
645 |
+
|
646 |
+
# retrieve number of attention layers
|
647 |
+
for module in self.children():
|
648 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
649 |
+
|
650 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
651 |
+
|
652 |
+
if slice_size == "auto":
|
653 |
+
# half the attention head size is usually a good trade-off between
|
654 |
+
# speed and memory
|
655 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
656 |
+
elif slice_size == "max":
|
657 |
+
# make smallest slice possible
|
658 |
+
slice_size = num_sliceable_layers * [1]
|
659 |
+
|
660 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
661 |
+
|
662 |
+
if len(slice_size) != len(sliceable_head_dims):
|
663 |
+
raise ValueError(
|
664 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
665 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
666 |
+
)
|
667 |
+
|
668 |
+
for i in range(len(slice_size)):
|
669 |
+
size = slice_size[i]
|
670 |
+
dim = sliceable_head_dims[i]
|
671 |
+
if size is not None and size > dim:
|
672 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
673 |
+
|
674 |
+
# Recursively walk through all the children.
|
675 |
+
# Any children which exposes the set_attention_slice method
|
676 |
+
# gets the message
|
677 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
678 |
+
if hasattr(module, "set_attention_slice"):
|
679 |
+
module.set_attention_slice(slice_size.pop())
|
680 |
+
|
681 |
+
for child in module.children():
|
682 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
683 |
+
|
684 |
+
reversed_slice_size = list(reversed(slice_size))
|
685 |
+
for module in self.children():
|
686 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
687 |
+
|
688 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
689 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
690 |
+
module.gradient_checkpointing = value
|
691 |
+
|
692 |
+
def forward(
|
693 |
+
self,
|
694 |
+
sample: torch.FloatTensor,
|
695 |
+
timestep: Union[torch.Tensor, float, int],
|
696 |
+
encoder_hidden_states: torch.Tensor,
|
697 |
+
brushnet_cond: torch.FloatTensor,
|
698 |
+
conditioning_scale: float = 1.0,
|
699 |
+
class_labels: Optional[torch.Tensor] = None,
|
700 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
701 |
+
attention_mask: Optional[torch.Tensor] = None,
|
702 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
703 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
704 |
+
guess_mode: bool = False,
|
705 |
+
return_dict: bool = True,
|
706 |
+
) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
707 |
+
"""
|
708 |
+
The [`BrushNetModel`] forward method.
|
709 |
+
|
710 |
+
Args:
|
711 |
+
sample (`torch.FloatTensor`):
|
712 |
+
The noisy input tensor.
|
713 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
714 |
+
The number of timesteps to denoise an input.
|
715 |
+
encoder_hidden_states (`torch.Tensor`):
|
716 |
+
The encoder hidden states.
|
717 |
+
brushnet_cond (`torch.FloatTensor`):
|
718 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
719 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
720 |
+
The scale factor for BrushNet outputs.
|
721 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
722 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
723 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
724 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
725 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
726 |
+
embeddings.
|
727 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
728 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
729 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
730 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
731 |
+
added_cond_kwargs (`dict`):
|
732 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
733 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
734 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
735 |
+
guess_mode (`bool`, defaults to `False`):
|
736 |
+
In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
|
737 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
738 |
+
return_dict (`bool`, defaults to `True`):
|
739 |
+
Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
|
740 |
+
|
741 |
+
Returns:
|
742 |
+
[`~models.brushnet.BrushNetOutput`] **or** `tuple`:
|
743 |
+
If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
|
744 |
+
returned where the first element is the sample tensor.
|
745 |
+
"""
|
746 |
+
# check channel order
|
747 |
+
channel_order = self.config.brushnet_conditioning_channel_order
|
748 |
+
|
749 |
+
if channel_order == "rgb":
|
750 |
+
# in rgb order by default
|
751 |
+
...
|
752 |
+
elif channel_order == "bgr":
|
753 |
+
brushnet_cond = torch.flip(brushnet_cond, dims=[1])
|
754 |
+
else:
|
755 |
+
raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}")
|
756 |
+
|
757 |
+
# prepare attention_mask
|
758 |
+
if attention_mask is not None:
|
759 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
760 |
+
attention_mask = attention_mask.unsqueeze(1)
|
761 |
+
|
762 |
+
# 1. time
|
763 |
+
timesteps = timestep
|
764 |
+
if not torch.is_tensor(timesteps):
|
765 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
766 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
767 |
+
is_mps = sample.device.type == "mps"
|
768 |
+
if isinstance(timestep, float):
|
769 |
+
dtype = torch.float32 if is_mps else torch.float64
|
770 |
+
else:
|
771 |
+
dtype = torch.int32 if is_mps else torch.int64
|
772 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
773 |
+
elif len(timesteps.shape) == 0:
|
774 |
+
timesteps = timesteps[None].to(sample.device)
|
775 |
+
|
776 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
777 |
+
timesteps = timesteps.expand(sample.shape[0])
|
778 |
+
|
779 |
+
t_emb = self.time_proj(timesteps)
|
780 |
+
|
781 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
782 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
783 |
+
# there might be better ways to encapsulate this.
|
784 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
785 |
+
|
786 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
787 |
+
aug_emb = None
|
788 |
+
|
789 |
+
if self.class_embedding is not None:
|
790 |
+
if class_labels is None:
|
791 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
792 |
+
|
793 |
+
if self.config.class_embed_type == "timestep":
|
794 |
+
class_labels = self.time_proj(class_labels)
|
795 |
+
|
796 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
797 |
+
emb = emb + class_emb
|
798 |
+
|
799 |
+
if self.config.addition_embed_type is not None:
|
800 |
+
if self.config.addition_embed_type == "text":
|
801 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
802 |
+
|
803 |
+
elif self.config.addition_embed_type == "text_time":
|
804 |
+
if "text_embeds" not in added_cond_kwargs:
|
805 |
+
raise ValueError(
|
806 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
807 |
+
)
|
808 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
809 |
+
if "time_ids" not in added_cond_kwargs:
|
810 |
+
raise ValueError(
|
811 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
812 |
+
)
|
813 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
814 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
815 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
816 |
+
|
817 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
818 |
+
add_embeds = add_embeds.to(emb.dtype)
|
819 |
+
aug_emb = self.add_embedding(add_embeds)
|
820 |
+
|
821 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
822 |
+
|
823 |
+
# 2. pre-process
|
824 |
+
brushnet_cond = torch.concat([sample, brushnet_cond], 1)
|
825 |
+
sample = self.conv_in_condition(brushnet_cond)
|
826 |
+
|
827 |
+
# 3. down
|
828 |
+
down_block_res_samples = (sample,)
|
829 |
+
for downsample_block in self.down_blocks:
|
830 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
831 |
+
sample, res_samples = downsample_block(
|
832 |
+
hidden_states=sample,
|
833 |
+
temb=emb,
|
834 |
+
encoder_hidden_states=encoder_hidden_states,
|
835 |
+
attention_mask=attention_mask,
|
836 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
837 |
+
)
|
838 |
+
else:
|
839 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
840 |
+
|
841 |
+
down_block_res_samples += res_samples
|
842 |
+
|
843 |
+
# 4. PaintingNet down blocks
|
844 |
+
brushnet_down_block_res_samples = ()
|
845 |
+
for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks):
|
846 |
+
down_block_res_sample = brushnet_down_block(down_block_res_sample)
|
847 |
+
brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,)
|
848 |
+
|
849 |
+
# 5. mid
|
850 |
+
if self.mid_block is not None:
|
851 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
852 |
+
sample = self.mid_block(
|
853 |
+
sample,
|
854 |
+
emb,
|
855 |
+
encoder_hidden_states=encoder_hidden_states,
|
856 |
+
attention_mask=attention_mask,
|
857 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
858 |
+
)
|
859 |
+
else:
|
860 |
+
sample = self.mid_block(sample, emb)
|
861 |
+
|
862 |
+
# 6. BrushNet mid blocks
|
863 |
+
brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
|
864 |
+
|
865 |
+
# 7. up
|
866 |
+
up_block_res_samples = ()
|
867 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
868 |
+
is_final_block = i == len(self.up_blocks) - 1
|
869 |
+
|
870 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
871 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
872 |
+
|
873 |
+
# if we have not reached the final block and need to forward the
|
874 |
+
# upsample size, we do it here
|
875 |
+
if not is_final_block:
|
876 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
877 |
+
|
878 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
879 |
+
sample, up_res_samples = upsample_block(
|
880 |
+
hidden_states=sample,
|
881 |
+
temb=emb,
|
882 |
+
res_hidden_states_tuple=res_samples,
|
883 |
+
encoder_hidden_states=encoder_hidden_states,
|
884 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
885 |
+
upsample_size=upsample_size,
|
886 |
+
attention_mask=attention_mask,
|
887 |
+
return_res_samples=True,
|
888 |
+
)
|
889 |
+
else:
|
890 |
+
sample, up_res_samples = upsample_block(
|
891 |
+
hidden_states=sample,
|
892 |
+
temb=emb,
|
893 |
+
res_hidden_states_tuple=res_samples,
|
894 |
+
upsample_size=upsample_size,
|
895 |
+
return_res_samples=True,
|
896 |
+
)
|
897 |
+
|
898 |
+
up_block_res_samples += up_res_samples
|
899 |
+
|
900 |
+
# 8. BrushNet up blocks
|
901 |
+
brushnet_up_block_res_samples = ()
|
902 |
+
for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks):
|
903 |
+
up_block_res_sample = brushnet_up_block(up_block_res_sample)
|
904 |
+
brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,)
|
905 |
+
|
906 |
+
# 6. scaling
|
907 |
+
if guess_mode and not self.config.global_pool_conditions:
|
908 |
+
scales = torch.logspace(
|
909 |
+
-1,
|
910 |
+
0,
|
911 |
+
len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples),
|
912 |
+
device=sample.device,
|
913 |
+
) # 0.1 to 1.0
|
914 |
+
scales = scales * conditioning_scale
|
915 |
+
|
916 |
+
brushnet_down_block_res_samples = [
|
917 |
+
sample * scale
|
918 |
+
for sample, scale in zip(
|
919 |
+
brushnet_down_block_res_samples, scales[: len(brushnet_down_block_res_samples)]
|
920 |
+
)
|
921 |
+
]
|
922 |
+
brushnet_mid_block_res_sample = (
|
923 |
+
brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)]
|
924 |
+
)
|
925 |
+
brushnet_up_block_res_samples = [
|
926 |
+
sample * scale
|
927 |
+
for sample, scale in zip(
|
928 |
+
brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples) + 1 :]
|
929 |
+
)
|
930 |
+
]
|
931 |
+
else:
|
932 |
+
brushnet_down_block_res_samples = [
|
933 |
+
sample * conditioning_scale for sample in brushnet_down_block_res_samples
|
934 |
+
]
|
935 |
+
brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale
|
936 |
+
brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples]
|
937 |
+
|
938 |
+
if self.config.global_pool_conditions:
|
939 |
+
brushnet_down_block_res_samples = [
|
940 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples
|
941 |
+
]
|
942 |
+
brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True)
|
943 |
+
brushnet_up_block_res_samples = [
|
944 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples
|
945 |
+
]
|
946 |
+
|
947 |
+
if not return_dict:
|
948 |
+
return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples)
|
949 |
+
|
950 |
+
return BrushNetOutput(
|
951 |
+
down_block_res_samples=brushnet_down_block_res_samples,
|
952 |
+
mid_block_res_sample=brushnet_mid_block_res_sample,
|
953 |
+
up_block_res_samples=brushnet_up_block_res_samples,
|
954 |
+
)
|
955 |
+
|
956 |
+
|
957 |
+
def zero_module(module):
|
958 |
+
for p in module.parameters():
|
959 |
+
nn.init.zeros_(p)
|
960 |
+
return module
|
model/__init__.py
ADDED
File without changes
|
model/__pycache__/BrushNet_CA.cpython-310.pyc
ADDED
Binary file (29.1 kB). View file
|
|
model/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (130 Bytes). View file
|
|
model/diffusers_c/__init__.py
ADDED
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__version__ = "0.27.0.dev0"
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
from .utils import (
|
6 |
+
DIFFUSERS_SLOW_IMPORT,
|
7 |
+
OptionalDependencyNotAvailable,
|
8 |
+
_LazyModule,
|
9 |
+
is_flax_available,
|
10 |
+
is_k_diffusion_available,
|
11 |
+
is_librosa_available,
|
12 |
+
is_note_seq_available,
|
13 |
+
is_onnx_available,
|
14 |
+
is_scipy_available,
|
15 |
+
is_torch_available,
|
16 |
+
is_torchsde_available,
|
17 |
+
is_transformers_available,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
# Lazy Import based on
|
22 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/__init__.py
|
23 |
+
|
24 |
+
# When adding a new object to this init, please add it to `_import_structure`. The `_import_structure` is a dictionary submodule to list of object names,
|
25 |
+
# and is used to defer the actual importing for when the objects are requested.
|
26 |
+
# This way `import diffusers` provides the names in the namespace without actually importing anything (and especially none of the backends).
|
27 |
+
|
28 |
+
_import_structure = {
|
29 |
+
"configuration_utils": ["ConfigMixin"],
|
30 |
+
"models": [],
|
31 |
+
"pipelines": [],
|
32 |
+
"schedulers": [],
|
33 |
+
"utils": [
|
34 |
+
"OptionalDependencyNotAvailable",
|
35 |
+
"is_flax_available",
|
36 |
+
"is_inflect_available",
|
37 |
+
"is_invisible_watermark_available",
|
38 |
+
"is_k_diffusion_available",
|
39 |
+
"is_k_diffusion_version",
|
40 |
+
"is_librosa_available",
|
41 |
+
"is_note_seq_available",
|
42 |
+
"is_onnx_available",
|
43 |
+
"is_scipy_available",
|
44 |
+
"is_torch_available",
|
45 |
+
"is_torchsde_available",
|
46 |
+
"is_transformers_available",
|
47 |
+
"is_transformers_version",
|
48 |
+
"is_unidecode_available",
|
49 |
+
"logging",
|
50 |
+
],
|
51 |
+
}
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_onnx_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
from .utils import dummy_onnx_objects # noqa F403
|
58 |
+
|
59 |
+
_import_structure["utils.dummy_onnx_objects"] = [
|
60 |
+
name for name in dir(dummy_onnx_objects) if not name.startswith("_")
|
61 |
+
]
|
62 |
+
|
63 |
+
else:
|
64 |
+
_import_structure["pipelines"].extend(["OnnxRuntimeModel"])
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_torch_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
from .utils import dummy_pt_objects # noqa F403
|
71 |
+
|
72 |
+
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
|
73 |
+
|
74 |
+
else:
|
75 |
+
_import_structure["models"].extend(
|
76 |
+
[
|
77 |
+
"AsymmetricAutoencoderKL",
|
78 |
+
"AutoencoderKL",
|
79 |
+
"AutoencoderKLTemporalDecoder",
|
80 |
+
"AutoencoderTiny",
|
81 |
+
"ConsistencyDecoderVAE",
|
82 |
+
"BrushNetModel",
|
83 |
+
"ControlNetModel",
|
84 |
+
"I2VGenXLUNet",
|
85 |
+
"Kandinsky3UNet",
|
86 |
+
"ModelMixin",
|
87 |
+
"MotionAdapter",
|
88 |
+
"MultiAdapter",
|
89 |
+
"PriorTransformer",
|
90 |
+
"StableCascadeUNet",
|
91 |
+
"T2IAdapter",
|
92 |
+
"T5FilmDecoder",
|
93 |
+
"Transformer2DModel",
|
94 |
+
"UNet1DModel",
|
95 |
+
"UNet2DConditionModel",
|
96 |
+
"UNet2DModel",
|
97 |
+
"UNet3DConditionModel",
|
98 |
+
"UNetMotionModel",
|
99 |
+
"UNetSpatioTemporalConditionModel",
|
100 |
+
"UVit2DModel",
|
101 |
+
"VQModel",
|
102 |
+
]
|
103 |
+
)
|
104 |
+
|
105 |
+
_import_structure["optimization"] = [
|
106 |
+
"get_constant_schedule",
|
107 |
+
"get_constant_schedule_with_warmup",
|
108 |
+
"get_cosine_schedule_with_warmup",
|
109 |
+
"get_cosine_with_hard_restarts_schedule_with_warmup",
|
110 |
+
"get_linear_schedule_with_warmup",
|
111 |
+
"get_polynomial_decay_schedule_with_warmup",
|
112 |
+
"get_scheduler",
|
113 |
+
]
|
114 |
+
_import_structure["pipelines"].extend(
|
115 |
+
[
|
116 |
+
"AudioPipelineOutput",
|
117 |
+
"AutoPipelineForImage2Image",
|
118 |
+
"AutoPipelineForInpainting",
|
119 |
+
"AutoPipelineForText2Image",
|
120 |
+
"ConsistencyModelPipeline",
|
121 |
+
"DanceDiffusionPipeline",
|
122 |
+
"DDIMPipeline",
|
123 |
+
"DDPMPipeline",
|
124 |
+
"DiffusionPipeline",
|
125 |
+
"DiTPipeline",
|
126 |
+
"ImagePipelineOutput",
|
127 |
+
"KarrasVePipeline",
|
128 |
+
"LDMPipeline",
|
129 |
+
"LDMSuperResolutionPipeline",
|
130 |
+
"PNDMPipeline",
|
131 |
+
"RePaintPipeline",
|
132 |
+
"ScoreSdeVePipeline",
|
133 |
+
"StableDiffusionMixin",
|
134 |
+
]
|
135 |
+
)
|
136 |
+
_import_structure["schedulers"].extend(
|
137 |
+
[
|
138 |
+
"AmusedScheduler",
|
139 |
+
"CMStochasticIterativeScheduler",
|
140 |
+
"DDIMInverseScheduler",
|
141 |
+
"DDIMParallelScheduler",
|
142 |
+
"DDIMScheduler",
|
143 |
+
"DDPMParallelScheduler",
|
144 |
+
"DDPMScheduler",
|
145 |
+
"DDPMWuerstchenScheduler",
|
146 |
+
"DEISMultistepScheduler",
|
147 |
+
"DPMSolverMultistepInverseScheduler",
|
148 |
+
"DPMSolverMultistepScheduler",
|
149 |
+
"DPMSolverSinglestepScheduler",
|
150 |
+
"EDMDPMSolverMultistepScheduler",
|
151 |
+
"EDMEulerScheduler",
|
152 |
+
"EulerAncestralDiscreteScheduler",
|
153 |
+
"EulerDiscreteScheduler",
|
154 |
+
"HeunDiscreteScheduler",
|
155 |
+
"IPNDMScheduler",
|
156 |
+
"KarrasVeScheduler",
|
157 |
+
"KDPM2AncestralDiscreteScheduler",
|
158 |
+
"KDPM2DiscreteScheduler",
|
159 |
+
"LCMScheduler",
|
160 |
+
"PNDMScheduler",
|
161 |
+
"RePaintScheduler",
|
162 |
+
"SASolverScheduler",
|
163 |
+
"SchedulerMixin",
|
164 |
+
"ScoreSdeVeScheduler",
|
165 |
+
"TCDScheduler",
|
166 |
+
"UnCLIPScheduler",
|
167 |
+
"UniPCMultistepScheduler",
|
168 |
+
"VQDiffusionScheduler",
|
169 |
+
]
|
170 |
+
)
|
171 |
+
_import_structure["training_utils"] = ["EMAModel"]
|
172 |
+
|
173 |
+
try:
|
174 |
+
if not (is_torch_available() and is_scipy_available()):
|
175 |
+
raise OptionalDependencyNotAvailable()
|
176 |
+
except OptionalDependencyNotAvailable:
|
177 |
+
from .utils import dummy_torch_and_scipy_objects # noqa F403
|
178 |
+
|
179 |
+
_import_structure["utils.dummy_torch_and_scipy_objects"] = [
|
180 |
+
name for name in dir(dummy_torch_and_scipy_objects) if not name.startswith("_")
|
181 |
+
]
|
182 |
+
|
183 |
+
else:
|
184 |
+
_import_structure["schedulers"].extend(["LMSDiscreteScheduler"])
|
185 |
+
|
186 |
+
try:
|
187 |
+
if not (is_torch_available() and is_torchsde_available()):
|
188 |
+
raise OptionalDependencyNotAvailable()
|
189 |
+
except OptionalDependencyNotAvailable:
|
190 |
+
from .utils import dummy_torch_and_torchsde_objects # noqa F403
|
191 |
+
|
192 |
+
_import_structure["utils.dummy_torch_and_torchsde_objects"] = [
|
193 |
+
name for name in dir(dummy_torch_and_torchsde_objects) if not name.startswith("_")
|
194 |
+
]
|
195 |
+
|
196 |
+
else:
|
197 |
+
_import_structure["schedulers"].extend(["DPMSolverSDEScheduler"])
|
198 |
+
|
199 |
+
try:
|
200 |
+
if not (is_torch_available() and is_transformers_available()):
|
201 |
+
raise OptionalDependencyNotAvailable()
|
202 |
+
except OptionalDependencyNotAvailable:
|
203 |
+
from .utils import dummy_torch_and_transformers_objects # noqa F403
|
204 |
+
|
205 |
+
_import_structure["utils.dummy_torch_and_transformers_objects"] = [
|
206 |
+
name for name in dir(dummy_torch_and_transformers_objects) if not name.startswith("_")
|
207 |
+
]
|
208 |
+
|
209 |
+
else:
|
210 |
+
_import_structure["pipelines"].extend(
|
211 |
+
[
|
212 |
+
"AltDiffusionImg2ImgPipeline",
|
213 |
+
"AltDiffusionPipeline",
|
214 |
+
"AmusedImg2ImgPipeline",
|
215 |
+
"AmusedInpaintPipeline",
|
216 |
+
"AmusedPipeline",
|
217 |
+
"AnimateDiffPipeline",
|
218 |
+
"AnimateDiffVideoToVideoPipeline",
|
219 |
+
"AudioLDM2Pipeline",
|
220 |
+
"AudioLDM2ProjectionModel",
|
221 |
+
"AudioLDM2UNet2DConditionModel",
|
222 |
+
"AudioLDMPipeline",
|
223 |
+
"BlipDiffusionControlNetPipeline",
|
224 |
+
"BlipDiffusionPipeline",
|
225 |
+
"CLIPImageProjection",
|
226 |
+
"CycleDiffusionPipeline",
|
227 |
+
"I2VGenXLPipeline",
|
228 |
+
"IFImg2ImgPipeline",
|
229 |
+
"IFImg2ImgSuperResolutionPipeline",
|
230 |
+
"IFInpaintingPipeline",
|
231 |
+
"IFInpaintingSuperResolutionPipeline",
|
232 |
+
"IFPipeline",
|
233 |
+
"IFSuperResolutionPipeline",
|
234 |
+
"ImageTextPipelineOutput",
|
235 |
+
"Kandinsky3Img2ImgPipeline",
|
236 |
+
"Kandinsky3Pipeline",
|
237 |
+
"KandinskyCombinedPipeline",
|
238 |
+
"KandinskyImg2ImgCombinedPipeline",
|
239 |
+
"KandinskyImg2ImgPipeline",
|
240 |
+
"KandinskyInpaintCombinedPipeline",
|
241 |
+
"KandinskyInpaintPipeline",
|
242 |
+
"KandinskyPipeline",
|
243 |
+
"KandinskyPriorPipeline",
|
244 |
+
"KandinskyV22CombinedPipeline",
|
245 |
+
"KandinskyV22ControlnetImg2ImgPipeline",
|
246 |
+
"KandinskyV22ControlnetPipeline",
|
247 |
+
"KandinskyV22Img2ImgCombinedPipeline",
|
248 |
+
"KandinskyV22Img2ImgPipeline",
|
249 |
+
"KandinskyV22InpaintCombinedPipeline",
|
250 |
+
"KandinskyV22InpaintPipeline",
|
251 |
+
"KandinskyV22Pipeline",
|
252 |
+
"KandinskyV22PriorEmb2EmbPipeline",
|
253 |
+
"KandinskyV22PriorPipeline",
|
254 |
+
"LatentConsistencyModelImg2ImgPipeline",
|
255 |
+
"LatentConsistencyModelPipeline",
|
256 |
+
"LDMTextToImagePipeline",
|
257 |
+
"MusicLDMPipeline",
|
258 |
+
"PaintByExamplePipeline",
|
259 |
+
"PIAPipeline",
|
260 |
+
"PixArtAlphaPipeline",
|
261 |
+
"SemanticStableDiffusionPipeline",
|
262 |
+
"ShapEImg2ImgPipeline",
|
263 |
+
"ShapEPipeline",
|
264 |
+
"StableCascadeCombinedPipeline",
|
265 |
+
"StableCascadeDecoderPipeline",
|
266 |
+
"StableCascadePriorPipeline",
|
267 |
+
"StableDiffusionAdapterPipeline",
|
268 |
+
"StableDiffusionAttendAndExcitePipeline",
|
269 |
+
"StableDiffusionBrushNetPipeline",
|
270 |
+
"StableDiffusionBrushNetPowerPaintPipeline",
|
271 |
+
"StableDiffusionControlNetImg2ImgPipeline",
|
272 |
+
"StableDiffusionControlNetInpaintPipeline",
|
273 |
+
"StableDiffusionControlNetPipeline",
|
274 |
+
"StableDiffusionDepth2ImgPipeline",
|
275 |
+
"StableDiffusionDiffEditPipeline",
|
276 |
+
"StableDiffusionGLIGENPipeline",
|
277 |
+
"StableDiffusionGLIGENTextImagePipeline",
|
278 |
+
"StableDiffusionImageVariationPipeline",
|
279 |
+
"StableDiffusionImg2ImgPipeline",
|
280 |
+
"StableDiffusionInpaintPipeline",
|
281 |
+
"StableDiffusionInpaintPipelineLegacy",
|
282 |
+
"StableDiffusionInstructPix2PixPipeline",
|
283 |
+
"StableDiffusionLatentUpscalePipeline",
|
284 |
+
"StableDiffusionLDM3DPipeline",
|
285 |
+
"StableDiffusionModelEditingPipeline",
|
286 |
+
"StableDiffusionPanoramaPipeline",
|
287 |
+
"StableDiffusionParadigmsPipeline",
|
288 |
+
"StableDiffusionPipeline",
|
289 |
+
"StableDiffusionPipelineSafe",
|
290 |
+
"StableDiffusionPix2PixZeroPipeline",
|
291 |
+
"StableDiffusionSAGPipeline",
|
292 |
+
"StableDiffusionUpscalePipeline",
|
293 |
+
"StableDiffusionXLAdapterPipeline",
|
294 |
+
"StableDiffusionXLControlNetImg2ImgPipeline",
|
295 |
+
"StableDiffusionXLControlNetInpaintPipeline",
|
296 |
+
"StableDiffusionXLControlNetPipeline",
|
297 |
+
"StableDiffusionXLImg2ImgPipeline",
|
298 |
+
"StableDiffusionXLInpaintPipeline",
|
299 |
+
"StableDiffusionXLInstructPix2PixPipeline",
|
300 |
+
"StableDiffusionXLPipeline",
|
301 |
+
"StableUnCLIPImg2ImgPipeline",
|
302 |
+
"StableUnCLIPPipeline",
|
303 |
+
"StableVideoDiffusionPipeline",
|
304 |
+
"TextToVideoSDPipeline",
|
305 |
+
"TextToVideoZeroPipeline",
|
306 |
+
"TextToVideoZeroSDXLPipeline",
|
307 |
+
"UnCLIPImageVariationPipeline",
|
308 |
+
"UnCLIPPipeline",
|
309 |
+
"UniDiffuserModel",
|
310 |
+
"UniDiffuserPipeline",
|
311 |
+
"UniDiffuserTextDecoder",
|
312 |
+
"VersatileDiffusionDualGuidedPipeline",
|
313 |
+
"VersatileDiffusionImageVariationPipeline",
|
314 |
+
"VersatileDiffusionPipeline",
|
315 |
+
"VersatileDiffusionTextToImagePipeline",
|
316 |
+
"VideoToVideoSDPipeline",
|
317 |
+
"VQDiffusionPipeline",
|
318 |
+
"WuerstchenCombinedPipeline",
|
319 |
+
"WuerstchenDecoderPipeline",
|
320 |
+
"WuerstchenPriorPipeline",
|
321 |
+
]
|
322 |
+
)
|
323 |
+
|
324 |
+
try:
|
325 |
+
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
326 |
+
raise OptionalDependencyNotAvailable()
|
327 |
+
except OptionalDependencyNotAvailable:
|
328 |
+
from .utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
|
329 |
+
|
330 |
+
_import_structure["utils.dummy_torch_and_transformers_and_k_diffusion_objects"] = [
|
331 |
+
name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith("_")
|
332 |
+
]
|
333 |
+
|
334 |
+
else:
|
335 |
+
_import_structure["pipelines"].extend(["StableDiffusionKDiffusionPipeline", "StableDiffusionXLKDiffusionPipeline"])
|
336 |
+
|
337 |
+
try:
|
338 |
+
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
|
339 |
+
raise OptionalDependencyNotAvailable()
|
340 |
+
except OptionalDependencyNotAvailable:
|
341 |
+
from .utils import dummy_torch_and_transformers_and_onnx_objects # noqa F403
|
342 |
+
|
343 |
+
_import_structure["utils.dummy_torch_and_transformers_and_onnx_objects"] = [
|
344 |
+
name for name in dir(dummy_torch_and_transformers_and_onnx_objects) if not name.startswith("_")
|
345 |
+
]
|
346 |
+
|
347 |
+
else:
|
348 |
+
_import_structure["pipelines"].extend(
|
349 |
+
[
|
350 |
+
"OnnxStableDiffusionImg2ImgPipeline",
|
351 |
+
"OnnxStableDiffusionInpaintPipeline",
|
352 |
+
"OnnxStableDiffusionInpaintPipelineLegacy",
|
353 |
+
"OnnxStableDiffusionPipeline",
|
354 |
+
"OnnxStableDiffusionUpscalePipeline",
|
355 |
+
"StableDiffusionOnnxPipeline",
|
356 |
+
]
|
357 |
+
)
|
358 |
+
|
359 |
+
try:
|
360 |
+
if not (is_torch_available() and is_librosa_available()):
|
361 |
+
raise OptionalDependencyNotAvailable()
|
362 |
+
except OptionalDependencyNotAvailable:
|
363 |
+
from .utils import dummy_torch_and_librosa_objects # noqa F403
|
364 |
+
|
365 |
+
_import_structure["utils.dummy_torch_and_librosa_objects"] = [
|
366 |
+
name for name in dir(dummy_torch_and_librosa_objects) if not name.startswith("_")
|
367 |
+
]
|
368 |
+
|
369 |
+
else:
|
370 |
+
_import_structure["pipelines"].extend(["AudioDiffusionPipeline", "Mel"])
|
371 |
+
|
372 |
+
try:
|
373 |
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
374 |
+
raise OptionalDependencyNotAvailable()
|
375 |
+
except OptionalDependencyNotAvailable:
|
376 |
+
from .utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
|
377 |
+
|
378 |
+
_import_structure["utils.dummy_transformers_and_torch_and_note_seq_objects"] = [
|
379 |
+
name for name in dir(dummy_transformers_and_torch_and_note_seq_objects) if not name.startswith("_")
|
380 |
+
]
|
381 |
+
|
382 |
+
|
383 |
+
else:
|
384 |
+
_import_structure["pipelines"].extend(["SpectrogramDiffusionPipeline"])
|
385 |
+
|
386 |
+
try:
|
387 |
+
if not is_flax_available():
|
388 |
+
raise OptionalDependencyNotAvailable()
|
389 |
+
except OptionalDependencyNotAvailable:
|
390 |
+
from .utils import dummy_flax_objects # noqa F403
|
391 |
+
|
392 |
+
_import_structure["utils.dummy_flax_objects"] = [
|
393 |
+
name for name in dir(dummy_flax_objects) if not name.startswith("_")
|
394 |
+
]
|
395 |
+
|
396 |
+
|
397 |
+
else:
|
398 |
+
_import_structure["models.controlnet_flax"] = ["FlaxControlNetModel"]
|
399 |
+
_import_structure["models.modeling_flax_utils"] = ["FlaxModelMixin"]
|
400 |
+
_import_structure["models.unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
|
401 |
+
_import_structure["models.vae_flax"] = ["FlaxAutoencoderKL"]
|
402 |
+
_import_structure["pipelines"].extend(["FlaxDiffusionPipeline"])
|
403 |
+
_import_structure["schedulers"].extend(
|
404 |
+
[
|
405 |
+
"FlaxDDIMScheduler",
|
406 |
+
"FlaxDDPMScheduler",
|
407 |
+
"FlaxDPMSolverMultistepScheduler",
|
408 |
+
"FlaxEulerDiscreteScheduler",
|
409 |
+
"FlaxKarrasVeScheduler",
|
410 |
+
"FlaxLMSDiscreteScheduler",
|
411 |
+
"FlaxPNDMScheduler",
|
412 |
+
"FlaxSchedulerMixin",
|
413 |
+
"FlaxScoreSdeVeScheduler",
|
414 |
+
]
|
415 |
+
)
|
416 |
+
|
417 |
+
|
418 |
+
try:
|
419 |
+
if not (is_flax_available() and is_transformers_available()):
|
420 |
+
raise OptionalDependencyNotAvailable()
|
421 |
+
except OptionalDependencyNotAvailable:
|
422 |
+
from .utils import dummy_flax_and_transformers_objects # noqa F403
|
423 |
+
|
424 |
+
_import_structure["utils.dummy_flax_and_transformers_objects"] = [
|
425 |
+
name for name in dir(dummy_flax_and_transformers_objects) if not name.startswith("_")
|
426 |
+
]
|
427 |
+
|
428 |
+
|
429 |
+
else:
|
430 |
+
_import_structure["pipelines"].extend(
|
431 |
+
[
|
432 |
+
"FlaxStableDiffusionControlNetPipeline",
|
433 |
+
"FlaxStableDiffusionImg2ImgPipeline",
|
434 |
+
"FlaxStableDiffusionInpaintPipeline",
|
435 |
+
"FlaxStableDiffusionPipeline",
|
436 |
+
"FlaxStableDiffusionXLPipeline",
|
437 |
+
]
|
438 |
+
)
|
439 |
+
|
440 |
+
try:
|
441 |
+
if not (is_note_seq_available()):
|
442 |
+
raise OptionalDependencyNotAvailable()
|
443 |
+
except OptionalDependencyNotAvailable:
|
444 |
+
from .utils import dummy_note_seq_objects # noqa F403
|
445 |
+
|
446 |
+
_import_structure["utils.dummy_note_seq_objects"] = [
|
447 |
+
name for name in dir(dummy_note_seq_objects) if not name.startswith("_")
|
448 |
+
]
|
449 |
+
|
450 |
+
|
451 |
+
else:
|
452 |
+
_import_structure["pipelines"].extend(["MidiProcessor"])
|
453 |
+
|
454 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
455 |
+
from .configuration_utils import ConfigMixin
|
456 |
+
|
457 |
+
try:
|
458 |
+
if not is_onnx_available():
|
459 |
+
raise OptionalDependencyNotAvailable()
|
460 |
+
except OptionalDependencyNotAvailable:
|
461 |
+
from .utils.dummy_onnx_objects import * # noqa F403
|
462 |
+
else:
|
463 |
+
from .pipelines import OnnxRuntimeModel
|
464 |
+
|
465 |
+
try:
|
466 |
+
if not is_torch_available():
|
467 |
+
raise OptionalDependencyNotAvailable()
|
468 |
+
except OptionalDependencyNotAvailable:
|
469 |
+
from .utils.dummy_pt_objects import * # noqa F403
|
470 |
+
else:
|
471 |
+
from .models import (
|
472 |
+
AsymmetricAutoencoderKL,
|
473 |
+
AutoencoderKL,
|
474 |
+
AutoencoderKLTemporalDecoder,
|
475 |
+
AutoencoderTiny,
|
476 |
+
BrushNetModel,
|
477 |
+
ConsistencyDecoderVAE,
|
478 |
+
ControlNetModel,
|
479 |
+
I2VGenXLUNet,
|
480 |
+
Kandinsky3UNet,
|
481 |
+
ModelMixin,
|
482 |
+
MotionAdapter,
|
483 |
+
MultiAdapter,
|
484 |
+
PriorTransformer,
|
485 |
+
T2IAdapter,
|
486 |
+
T5FilmDecoder,
|
487 |
+
Transformer2DModel,
|
488 |
+
UNet1DModel,
|
489 |
+
UNet2DConditionModel,
|
490 |
+
UNet2DModel,
|
491 |
+
UNet3DConditionModel,
|
492 |
+
UNetMotionModel,
|
493 |
+
UNetSpatioTemporalConditionModel,
|
494 |
+
UVit2DModel,
|
495 |
+
VQModel,
|
496 |
+
)
|
497 |
+
from .optimization import (
|
498 |
+
get_constant_schedule,
|
499 |
+
get_constant_schedule_with_warmup,
|
500 |
+
get_cosine_schedule_with_warmup,
|
501 |
+
get_cosine_with_hard_restarts_schedule_with_warmup,
|
502 |
+
get_linear_schedule_with_warmup,
|
503 |
+
get_polynomial_decay_schedule_with_warmup,
|
504 |
+
get_scheduler,
|
505 |
+
)
|
506 |
+
from .pipelines import (
|
507 |
+
AudioPipelineOutput,
|
508 |
+
AutoPipelineForImage2Image,
|
509 |
+
AutoPipelineForInpainting,
|
510 |
+
AutoPipelineForText2Image,
|
511 |
+
BlipDiffusionControlNetPipeline,
|
512 |
+
BlipDiffusionPipeline,
|
513 |
+
CLIPImageProjection,
|
514 |
+
ConsistencyModelPipeline,
|
515 |
+
DanceDiffusionPipeline,
|
516 |
+
DDIMPipeline,
|
517 |
+
DDPMPipeline,
|
518 |
+
DiffusionPipeline,
|
519 |
+
DiTPipeline,
|
520 |
+
ImagePipelineOutput,
|
521 |
+
KarrasVePipeline,
|
522 |
+
LDMPipeline,
|
523 |
+
LDMSuperResolutionPipeline,
|
524 |
+
PNDMPipeline,
|
525 |
+
RePaintPipeline,
|
526 |
+
ScoreSdeVePipeline,
|
527 |
+
StableDiffusionMixin,
|
528 |
+
)
|
529 |
+
from .schedulers import (
|
530 |
+
AmusedScheduler,
|
531 |
+
CMStochasticIterativeScheduler,
|
532 |
+
DDIMInverseScheduler,
|
533 |
+
DDIMParallelScheduler,
|
534 |
+
DDIMScheduler,
|
535 |
+
DDPMParallelScheduler,
|
536 |
+
DDPMScheduler,
|
537 |
+
DDPMWuerstchenScheduler,
|
538 |
+
DEISMultistepScheduler,
|
539 |
+
DPMSolverMultistepInverseScheduler,
|
540 |
+
DPMSolverMultistepScheduler,
|
541 |
+
DPMSolverSinglestepScheduler,
|
542 |
+
EDMDPMSolverMultistepScheduler,
|
543 |
+
EDMEulerScheduler,
|
544 |
+
EulerAncestralDiscreteScheduler,
|
545 |
+
EulerDiscreteScheduler,
|
546 |
+
HeunDiscreteScheduler,
|
547 |
+
IPNDMScheduler,
|
548 |
+
KarrasVeScheduler,
|
549 |
+
KDPM2AncestralDiscreteScheduler,
|
550 |
+
KDPM2DiscreteScheduler,
|
551 |
+
LCMScheduler,
|
552 |
+
PNDMScheduler,
|
553 |
+
RePaintScheduler,
|
554 |
+
SASolverScheduler,
|
555 |
+
SchedulerMixin,
|
556 |
+
ScoreSdeVeScheduler,
|
557 |
+
TCDScheduler,
|
558 |
+
UnCLIPScheduler,
|
559 |
+
UniPCMultistepScheduler,
|
560 |
+
VQDiffusionScheduler,
|
561 |
+
)
|
562 |
+
from .training_utils import EMAModel
|
563 |
+
|
564 |
+
try:
|
565 |
+
if not (is_torch_available() and is_scipy_available()):
|
566 |
+
raise OptionalDependencyNotAvailable()
|
567 |
+
except OptionalDependencyNotAvailable:
|
568 |
+
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
|
569 |
+
else:
|
570 |
+
from .schedulers import LMSDiscreteScheduler
|
571 |
+
|
572 |
+
try:
|
573 |
+
if not (is_torch_available() and is_torchsde_available()):
|
574 |
+
raise OptionalDependencyNotAvailable()
|
575 |
+
except OptionalDependencyNotAvailable:
|
576 |
+
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
577 |
+
else:
|
578 |
+
from .schedulers import DPMSolverSDEScheduler
|
579 |
+
|
580 |
+
try:
|
581 |
+
if not (is_torch_available() and is_transformers_available()):
|
582 |
+
raise OptionalDependencyNotAvailable()
|
583 |
+
except OptionalDependencyNotAvailable:
|
584 |
+
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
|
585 |
+
else:
|
586 |
+
from .pipelines import (
|
587 |
+
AltDiffusionImg2ImgPipeline,
|
588 |
+
AltDiffusionPipeline,
|
589 |
+
AmusedImg2ImgPipeline,
|
590 |
+
AmusedInpaintPipeline,
|
591 |
+
AmusedPipeline,
|
592 |
+
AnimateDiffPipeline,
|
593 |
+
AnimateDiffVideoToVideoPipeline,
|
594 |
+
AudioLDM2Pipeline,
|
595 |
+
AudioLDM2ProjectionModel,
|
596 |
+
AudioLDM2UNet2DConditionModel,
|
597 |
+
AudioLDMPipeline,
|
598 |
+
CLIPImageProjection,
|
599 |
+
CycleDiffusionPipeline,
|
600 |
+
I2VGenXLPipeline,
|
601 |
+
IFImg2ImgPipeline,
|
602 |
+
IFImg2ImgSuperResolutionPipeline,
|
603 |
+
IFInpaintingPipeline,
|
604 |
+
IFInpaintingSuperResolutionPipeline,
|
605 |
+
IFPipeline,
|
606 |
+
IFSuperResolutionPipeline,
|
607 |
+
ImageTextPipelineOutput,
|
608 |
+
Kandinsky3Img2ImgPipeline,
|
609 |
+
Kandinsky3Pipeline,
|
610 |
+
KandinskyCombinedPipeline,
|
611 |
+
KandinskyImg2ImgCombinedPipeline,
|
612 |
+
KandinskyImg2ImgPipeline,
|
613 |
+
KandinskyInpaintCombinedPipeline,
|
614 |
+
KandinskyInpaintPipeline,
|
615 |
+
KandinskyPipeline,
|
616 |
+
KandinskyPriorPipeline,
|
617 |
+
KandinskyV22CombinedPipeline,
|
618 |
+
KandinskyV22ControlnetImg2ImgPipeline,
|
619 |
+
KandinskyV22ControlnetPipeline,
|
620 |
+
KandinskyV22Img2ImgCombinedPipeline,
|
621 |
+
KandinskyV22Img2ImgPipeline,
|
622 |
+
KandinskyV22InpaintCombinedPipeline,
|
623 |
+
KandinskyV22InpaintPipeline,
|
624 |
+
KandinskyV22Pipeline,
|
625 |
+
KandinskyV22PriorEmb2EmbPipeline,
|
626 |
+
KandinskyV22PriorPipeline,
|
627 |
+
LatentConsistencyModelImg2ImgPipeline,
|
628 |
+
LatentConsistencyModelPipeline,
|
629 |
+
LDMTextToImagePipeline,
|
630 |
+
MusicLDMPipeline,
|
631 |
+
PaintByExamplePipeline,
|
632 |
+
PIAPipeline,
|
633 |
+
PixArtAlphaPipeline,
|
634 |
+
SemanticStableDiffusionPipeline,
|
635 |
+
ShapEImg2ImgPipeline,
|
636 |
+
ShapEPipeline,
|
637 |
+
StableCascadeCombinedPipeline,
|
638 |
+
StableCascadeDecoderPipeline,
|
639 |
+
StableCascadePriorPipeline,
|
640 |
+
StableDiffusionAdapterPipeline,
|
641 |
+
StableDiffusionAttendAndExcitePipeline,
|
642 |
+
StableDiffusionBrushNetPipeline,
|
643 |
+
StableDiffusionBrushNetPowerPaintPipeline,
|
644 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
645 |
+
StableDiffusionControlNetInpaintPipeline,
|
646 |
+
StableDiffusionControlNetPipeline,
|
647 |
+
StableDiffusionDepth2ImgPipeline,
|
648 |
+
StableDiffusionDiffEditPipeline,
|
649 |
+
StableDiffusionGLIGENPipeline,
|
650 |
+
StableDiffusionGLIGENTextImagePipeline,
|
651 |
+
StableDiffusionImageVariationPipeline,
|
652 |
+
StableDiffusionImg2ImgPipeline,
|
653 |
+
StableDiffusionInpaintPipeline,
|
654 |
+
StableDiffusionInpaintPipelineLegacy,
|
655 |
+
StableDiffusionInstructPix2PixPipeline,
|
656 |
+
StableDiffusionLatentUpscalePipeline,
|
657 |
+
StableDiffusionLDM3DPipeline,
|
658 |
+
StableDiffusionModelEditingPipeline,
|
659 |
+
StableDiffusionPanoramaPipeline,
|
660 |
+
StableDiffusionParadigmsPipeline,
|
661 |
+
StableDiffusionPipeline,
|
662 |
+
StableDiffusionPipelineSafe,
|
663 |
+
StableDiffusionPix2PixZeroPipeline,
|
664 |
+
StableDiffusionSAGPipeline,
|
665 |
+
StableDiffusionUpscalePipeline,
|
666 |
+
StableDiffusionXLAdapterPipeline,
|
667 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
668 |
+
StableDiffusionXLControlNetInpaintPipeline,
|
669 |
+
StableDiffusionXLControlNetPipeline,
|
670 |
+
StableDiffusionXLImg2ImgPipeline,
|
671 |
+
StableDiffusionXLInpaintPipeline,
|
672 |
+
StableDiffusionXLInstructPix2PixPipeline,
|
673 |
+
StableDiffusionXLPipeline,
|
674 |
+
StableUnCLIPImg2ImgPipeline,
|
675 |
+
StableUnCLIPPipeline,
|
676 |
+
StableVideoDiffusionPipeline,
|
677 |
+
TextToVideoSDPipeline,
|
678 |
+
TextToVideoZeroPipeline,
|
679 |
+
TextToVideoZeroSDXLPipeline,
|
680 |
+
UnCLIPImageVariationPipeline,
|
681 |
+
UnCLIPPipeline,
|
682 |
+
UniDiffuserModel,
|
683 |
+
UniDiffuserPipeline,
|
684 |
+
UniDiffuserTextDecoder,
|
685 |
+
VersatileDiffusionDualGuidedPipeline,
|
686 |
+
VersatileDiffusionImageVariationPipeline,
|
687 |
+
VersatileDiffusionPipeline,
|
688 |
+
VersatileDiffusionTextToImagePipeline,
|
689 |
+
VideoToVideoSDPipeline,
|
690 |
+
VQDiffusionPipeline,
|
691 |
+
WuerstchenCombinedPipeline,
|
692 |
+
WuerstchenDecoderPipeline,
|
693 |
+
WuerstchenPriorPipeline,
|
694 |
+
)
|
695 |
+
|
696 |
+
try:
|
697 |
+
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
698 |
+
raise OptionalDependencyNotAvailable()
|
699 |
+
except OptionalDependencyNotAvailable:
|
700 |
+
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
|
701 |
+
else:
|
702 |
+
from .pipelines import StableDiffusionKDiffusionPipeline, StableDiffusionXLKDiffusionPipeline
|
703 |
+
|
704 |
+
try:
|
705 |
+
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
|
706 |
+
raise OptionalDependencyNotAvailable()
|
707 |
+
except OptionalDependencyNotAvailable:
|
708 |
+
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
|
709 |
+
else:
|
710 |
+
from .pipelines import (
|
711 |
+
OnnxStableDiffusionImg2ImgPipeline,
|
712 |
+
OnnxStableDiffusionInpaintPipeline,
|
713 |
+
OnnxStableDiffusionInpaintPipelineLegacy,
|
714 |
+
OnnxStableDiffusionPipeline,
|
715 |
+
OnnxStableDiffusionUpscalePipeline,
|
716 |
+
StableDiffusionOnnxPipeline,
|
717 |
+
)
|
718 |
+
|
719 |
+
try:
|
720 |
+
if not (is_torch_available() and is_librosa_available()):
|
721 |
+
raise OptionalDependencyNotAvailable()
|
722 |
+
except OptionalDependencyNotAvailable:
|
723 |
+
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
|
724 |
+
else:
|
725 |
+
from .pipelines import AudioDiffusionPipeline, Mel
|
726 |
+
|
727 |
+
try:
|
728 |
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
729 |
+
raise OptionalDependencyNotAvailable()
|
730 |
+
except OptionalDependencyNotAvailable:
|
731 |
+
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
|
732 |
+
else:
|
733 |
+
from .pipelines import SpectrogramDiffusionPipeline
|
734 |
+
|
735 |
+
try:
|
736 |
+
if not is_flax_available():
|
737 |
+
raise OptionalDependencyNotAvailable()
|
738 |
+
except OptionalDependencyNotAvailable:
|
739 |
+
from .utils.dummy_flax_objects import * # noqa F403
|
740 |
+
else:
|
741 |
+
from .models.controlnet_flax import FlaxControlNetModel
|
742 |
+
from .models.modeling_flax_utils import FlaxModelMixin
|
743 |
+
from .models.unets.unet_2d_condition_flax import FlaxUNet2DConditionModel
|
744 |
+
from .models.vae_flax import FlaxAutoencoderKL
|
745 |
+
from .pipelines import FlaxDiffusionPipeline
|
746 |
+
from .schedulers import (
|
747 |
+
FlaxDDIMScheduler,
|
748 |
+
FlaxDDPMScheduler,
|
749 |
+
FlaxDPMSolverMultistepScheduler,
|
750 |
+
FlaxEulerDiscreteScheduler,
|
751 |
+
FlaxKarrasVeScheduler,
|
752 |
+
FlaxLMSDiscreteScheduler,
|
753 |
+
FlaxPNDMScheduler,
|
754 |
+
FlaxSchedulerMixin,
|
755 |
+
FlaxScoreSdeVeScheduler,
|
756 |
+
)
|
757 |
+
|
758 |
+
try:
|
759 |
+
if not (is_flax_available() and is_transformers_available()):
|
760 |
+
raise OptionalDependencyNotAvailable()
|
761 |
+
except OptionalDependencyNotAvailable:
|
762 |
+
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
|
763 |
+
else:
|
764 |
+
from .pipelines import (
|
765 |
+
FlaxStableDiffusionControlNetPipeline,
|
766 |
+
FlaxStableDiffusionImg2ImgPipeline,
|
767 |
+
FlaxStableDiffusionInpaintPipeline,
|
768 |
+
FlaxStableDiffusionPipeline,
|
769 |
+
FlaxStableDiffusionXLPipeline,
|
770 |
+
)
|
771 |
+
|
772 |
+
try:
|
773 |
+
if not (is_note_seq_available()):
|
774 |
+
raise OptionalDependencyNotAvailable()
|
775 |
+
except OptionalDependencyNotAvailable:
|
776 |
+
from .utils.dummy_note_seq_objects import * # noqa F403
|
777 |
+
else:
|
778 |
+
from .pipelines import MidiProcessor
|
779 |
+
|
780 |
+
else:
|
781 |
+
import sys
|
782 |
+
|
783 |
+
sys.modules[__name__] = _LazyModule(
|
784 |
+
__name__,
|
785 |
+
globals()["__file__"],
|
786 |
+
_import_structure,
|
787 |
+
module_spec=__spec__,
|
788 |
+
extra_objects={"__version__": __version__},
|
789 |
+
)
|
model/diffusers_c/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
model/diffusers_c/__pycache__/configuration_utils.cpython-310.pyc
ADDED
Binary file (24 kB). View file
|
|
model/diffusers_c/__pycache__/dependency_versions_check.cpython-310.pyc
ADDED
Binary file (665 Bytes). View file
|
|
model/diffusers_c/__pycache__/dependency_versions_table.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
model/diffusers_c/__pycache__/image_processor.cpython-310.pyc
ADDED
Binary file (30.2 kB). View file
|
|
model/diffusers_c/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseDiffusersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
model/diffusers_c/commands/diffusers_cli.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .env import EnvironmentCommand
|
19 |
+
from .fp16_safetensors import FP16SafetensorsCommand
|
20 |
+
|
21 |
+
|
22 |
+
def main():
|
23 |
+
parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
|
24 |
+
commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
|
25 |
+
|
26 |
+
# Register commands
|
27 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
28 |
+
FP16SafetensorsCommand.register_subcommand(commands_parser)
|
29 |
+
|
30 |
+
# Let's go
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
if not hasattr(args, "func"):
|
34 |
+
parser.print_help()
|
35 |
+
exit(1)
|
36 |
+
|
37 |
+
# Run
|
38 |
+
service = args.func(args)
|
39 |
+
service.run()
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
main()
|
model/diffusers_c/commands/env.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import platform
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
import huggingface_hub
|
19 |
+
|
20 |
+
from .. import __version__ as version
|
21 |
+
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
|
22 |
+
from . import BaseDiffusersCLICommand
|
23 |
+
|
24 |
+
|
25 |
+
def info_command_factory(_):
|
26 |
+
return EnvironmentCommand()
|
27 |
+
|
28 |
+
|
29 |
+
class EnvironmentCommand(BaseDiffusersCLICommand):
|
30 |
+
@staticmethod
|
31 |
+
def register_subcommand(parser: ArgumentParser):
|
32 |
+
download_parser = parser.add_parser("env")
|
33 |
+
download_parser.set_defaults(func=info_command_factory)
|
34 |
+
|
35 |
+
def run(self):
|
36 |
+
hub_version = huggingface_hub.__version__
|
37 |
+
|
38 |
+
pt_version = "not installed"
|
39 |
+
pt_cuda_available = "NA"
|
40 |
+
if is_torch_available():
|
41 |
+
import torch
|
42 |
+
|
43 |
+
pt_version = torch.__version__
|
44 |
+
pt_cuda_available = torch.cuda.is_available()
|
45 |
+
|
46 |
+
transformers_version = "not installed"
|
47 |
+
if is_transformers_available():
|
48 |
+
import transformers
|
49 |
+
|
50 |
+
transformers_version = transformers.__version__
|
51 |
+
|
52 |
+
accelerate_version = "not installed"
|
53 |
+
if is_accelerate_available():
|
54 |
+
import accelerate
|
55 |
+
|
56 |
+
accelerate_version = accelerate.__version__
|
57 |
+
|
58 |
+
xformers_version = "not installed"
|
59 |
+
if is_xformers_available():
|
60 |
+
import xformers
|
61 |
+
|
62 |
+
xformers_version = xformers.__version__
|
63 |
+
|
64 |
+
info = {
|
65 |
+
"`diffusers` version": version,
|
66 |
+
"Platform": platform.platform(),
|
67 |
+
"Python version": platform.python_version(),
|
68 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
69 |
+
"Huggingface_hub version": hub_version,
|
70 |
+
"Transformers version": transformers_version,
|
71 |
+
"Accelerate version": accelerate_version,
|
72 |
+
"xFormers version": xformers_version,
|
73 |
+
"Using GPU in script?": "<fill in>",
|
74 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
75 |
+
}
|
76 |
+
|
77 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
78 |
+
print(self.format_dict(info))
|
79 |
+
|
80 |
+
return info
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def format_dict(d):
|
84 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
model/diffusers_c/commands/fp16_safetensors.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Usage example:
|
17 |
+
diffusers-cli fp16_safetensors --ckpt_id=openai/shap-e --fp16 --use_safetensors
|
18 |
+
"""
|
19 |
+
|
20 |
+
import glob
|
21 |
+
import json
|
22 |
+
import warnings
|
23 |
+
from argparse import ArgumentParser, Namespace
|
24 |
+
from importlib import import_module
|
25 |
+
|
26 |
+
import huggingface_hub
|
27 |
+
import torch
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from packaging import version
|
30 |
+
|
31 |
+
from ..utils import logging
|
32 |
+
from . import BaseDiffusersCLICommand
|
33 |
+
|
34 |
+
|
35 |
+
def conversion_command_factory(args: Namespace):
|
36 |
+
if args.use_auth_token:
|
37 |
+
warnings.warn(
|
38 |
+
"The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now"
|
39 |
+
" handled automatically if user is logged in."
|
40 |
+
)
|
41 |
+
return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors)
|
42 |
+
|
43 |
+
|
44 |
+
class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
45 |
+
@staticmethod
|
46 |
+
def register_subcommand(parser: ArgumentParser):
|
47 |
+
conversion_parser = parser.add_parser("fp16_safetensors")
|
48 |
+
conversion_parser.add_argument(
|
49 |
+
"--ckpt_id",
|
50 |
+
type=str,
|
51 |
+
help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.",
|
52 |
+
)
|
53 |
+
conversion_parser.add_argument(
|
54 |
+
"--fp16", action="store_true", help="If serializing the variables in FP16 precision."
|
55 |
+
)
|
56 |
+
conversion_parser.add_argument(
|
57 |
+
"--use_safetensors", action="store_true", help="If serializing in the safetensors format."
|
58 |
+
)
|
59 |
+
conversion_parser.add_argument(
|
60 |
+
"--use_auth_token",
|
61 |
+
action="store_true",
|
62 |
+
help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.",
|
63 |
+
)
|
64 |
+
conversion_parser.set_defaults(func=conversion_command_factory)
|
65 |
+
|
66 |
+
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool):
|
67 |
+
self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
|
68 |
+
self.ckpt_id = ckpt_id
|
69 |
+
self.local_ckpt_dir = f"/tmp/{ckpt_id}"
|
70 |
+
self.fp16 = fp16
|
71 |
+
|
72 |
+
self.use_safetensors = use_safetensors
|
73 |
+
|
74 |
+
if not self.use_safetensors and not self.fp16:
|
75 |
+
raise NotImplementedError(
|
76 |
+
"When `use_safetensors` and `fp16` both are False, then this command is of no use."
|
77 |
+
)
|
78 |
+
|
79 |
+
def run(self):
|
80 |
+
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
81 |
+
raise ImportError(
|
82 |
+
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
|
83 |
+
" installation."
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
from huggingface_hub import create_commit
|
87 |
+
from huggingface_hub._commit_api import CommitOperationAdd
|
88 |
+
|
89 |
+
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json")
|
90 |
+
with open(model_index, "r") as f:
|
91 |
+
pipeline_class_name = json.load(f)["_class_name"]
|
92 |
+
pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
|
93 |
+
self.logger.info(f"Pipeline class imported: {pipeline_class_name}.")
|
94 |
+
|
95 |
+
# Load the appropriate pipeline. We could have use `DiffusionPipeline`
|
96 |
+
# here, but just to avoid any rough edge cases.
|
97 |
+
pipeline = pipeline_class.from_pretrained(
|
98 |
+
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32
|
99 |
+
)
|
100 |
+
pipeline.save_pretrained(
|
101 |
+
self.local_ckpt_dir,
|
102 |
+
safe_serialization=True if self.use_safetensors else False,
|
103 |
+
variant="fp16" if self.fp16 else None,
|
104 |
+
)
|
105 |
+
self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.")
|
106 |
+
|
107 |
+
# Fetch all the paths.
|
108 |
+
if self.fp16:
|
109 |
+
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*")
|
110 |
+
elif self.use_safetensors:
|
111 |
+
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors")
|
112 |
+
|
113 |
+
# Prepare for the PR.
|
114 |
+
commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}."
|
115 |
+
operations = []
|
116 |
+
for path in modified_paths:
|
117 |
+
operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path))
|
118 |
+
|
119 |
+
# Open the PR.
|
120 |
+
commit_description = (
|
121 |
+
"Variables converted by the [`diffusers`' `fp16_safetensors`"
|
122 |
+
" CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)."
|
123 |
+
)
|
124 |
+
hub_pr_url = create_commit(
|
125 |
+
repo_id=self.ckpt_id,
|
126 |
+
operations=operations,
|
127 |
+
commit_message=commit_message,
|
128 |
+
commit_description=commit_description,
|
129 |
+
repo_type="model",
|
130 |
+
create_pr=True,
|
131 |
+
).pr_url
|
132 |
+
self.logger.info(f"PR created here: {hub_pr_url}.")
|
model/diffusers_c/configuration_utils.py
ADDED
@@ -0,0 +1,703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""ConfigMixin base class and utilities."""
|
16 |
+
|
17 |
+
import dataclasses
|
18 |
+
import functools
|
19 |
+
import importlib
|
20 |
+
import inspect
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
from collections import OrderedDict
|
25 |
+
from pathlib import PosixPath
|
26 |
+
from typing import Any, Dict, Tuple, Union
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
from huggingface_hub import create_repo, hf_hub_download
|
30 |
+
from huggingface_hub.utils import (
|
31 |
+
EntryNotFoundError,
|
32 |
+
RepositoryNotFoundError,
|
33 |
+
RevisionNotFoundError,
|
34 |
+
validate_hf_hub_args,
|
35 |
+
)
|
36 |
+
from requests import HTTPError
|
37 |
+
|
38 |
+
from . import __version__
|
39 |
+
from .utils import (
|
40 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
41 |
+
DummyObject,
|
42 |
+
deprecate,
|
43 |
+
extract_commit_hash,
|
44 |
+
http_user_agent,
|
45 |
+
logging,
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
52 |
+
|
53 |
+
|
54 |
+
class FrozenDict(OrderedDict):
|
55 |
+
def __init__(self, *args, **kwargs):
|
56 |
+
super().__init__(*args, **kwargs)
|
57 |
+
|
58 |
+
for key, value in self.items():
|
59 |
+
setattr(self, key, value)
|
60 |
+
|
61 |
+
self.__frozen = True
|
62 |
+
|
63 |
+
def __delitem__(self, *args, **kwargs):
|
64 |
+
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
|
65 |
+
|
66 |
+
def setdefault(self, *args, **kwargs):
|
67 |
+
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
|
68 |
+
|
69 |
+
def pop(self, *args, **kwargs):
|
70 |
+
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
71 |
+
|
72 |
+
def update(self, *args, **kwargs):
|
73 |
+
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
|
74 |
+
|
75 |
+
def __setattr__(self, name, value):
|
76 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
77 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
78 |
+
super().__setattr__(name, value)
|
79 |
+
|
80 |
+
def __setitem__(self, name, value):
|
81 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
82 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
83 |
+
super().__setitem__(name, value)
|
84 |
+
|
85 |
+
|
86 |
+
class ConfigMixin:
|
87 |
+
r"""
|
88 |
+
Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
|
89 |
+
provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
|
90 |
+
saving classes that inherit from [`ConfigMixin`].
|
91 |
+
|
92 |
+
Class attributes:
|
93 |
+
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
94 |
+
[`~ConfigMixin.save_config`] (should be overridden by parent class).
|
95 |
+
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
96 |
+
overridden by subclass).
|
97 |
+
- **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
|
98 |
+
- **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
|
99 |
+
should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
|
100 |
+
subclass).
|
101 |
+
"""
|
102 |
+
|
103 |
+
config_name = None
|
104 |
+
ignore_for_config = []
|
105 |
+
has_compatibles = False
|
106 |
+
|
107 |
+
_deprecated_kwargs = []
|
108 |
+
|
109 |
+
def register_to_config(self, **kwargs):
|
110 |
+
if self.config_name is None:
|
111 |
+
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
|
112 |
+
# Special case for `kwargs` used in deprecation warning added to schedulers
|
113 |
+
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
|
114 |
+
# or solve in a more general way.
|
115 |
+
kwargs.pop("kwargs", None)
|
116 |
+
|
117 |
+
if not hasattr(self, "_internal_dict"):
|
118 |
+
internal_dict = kwargs
|
119 |
+
else:
|
120 |
+
previous_dict = dict(self._internal_dict)
|
121 |
+
internal_dict = {**self._internal_dict, **kwargs}
|
122 |
+
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
|
123 |
+
|
124 |
+
self._internal_dict = FrozenDict(internal_dict)
|
125 |
+
|
126 |
+
def __getattr__(self, name: str) -> Any:
|
127 |
+
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing
|
128 |
+
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129
|
129 |
+
|
130 |
+
This function is mostly copied from PyTorch's __getattr__ overwrite:
|
131 |
+
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
|
132 |
+
"""
|
133 |
+
|
134 |
+
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
|
135 |
+
is_attribute = name in self.__dict__
|
136 |
+
|
137 |
+
if is_in_config and not is_attribute:
|
138 |
+
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
|
139 |
+
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
|
140 |
+
return self._internal_dict[name]
|
141 |
+
|
142 |
+
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
|
143 |
+
|
144 |
+
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
145 |
+
"""
|
146 |
+
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
|
147 |
+
[`~ConfigMixin.from_config`] class method.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str` or `os.PathLike`):
|
151 |
+
Directory where the configuration JSON file is saved (will be created if it does not exist).
|
152 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
153 |
+
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
|
154 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
155 |
+
namespace).
|
156 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
157 |
+
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
158 |
+
"""
|
159 |
+
if os.path.isfile(save_directory):
|
160 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
161 |
+
|
162 |
+
os.makedirs(save_directory, exist_ok=True)
|
163 |
+
|
164 |
+
# If we save using the predefined names, we can load using `from_config`
|
165 |
+
output_config_file = os.path.join(save_directory, self.config_name)
|
166 |
+
|
167 |
+
self.to_json_file(output_config_file)
|
168 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
169 |
+
|
170 |
+
if push_to_hub:
|
171 |
+
commit_message = kwargs.pop("commit_message", None)
|
172 |
+
private = kwargs.pop("private", False)
|
173 |
+
create_pr = kwargs.pop("create_pr", False)
|
174 |
+
token = kwargs.pop("token", None)
|
175 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
176 |
+
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
|
177 |
+
|
178 |
+
self._upload_folder(
|
179 |
+
save_directory,
|
180 |
+
repo_id,
|
181 |
+
token=token,
|
182 |
+
commit_message=commit_message,
|
183 |
+
create_pr=create_pr,
|
184 |
+
)
|
185 |
+
|
186 |
+
@classmethod
|
187 |
+
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
|
188 |
+
r"""
|
189 |
+
Instantiate a Python class from a config dictionary.
|
190 |
+
|
191 |
+
Parameters:
|
192 |
+
config (`Dict[str, Any]`):
|
193 |
+
A config dictionary from which the Python class is instantiated. Make sure to only load configuration
|
194 |
+
files of compatible classes.
|
195 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
196 |
+
Whether kwargs that are not consumed by the Python class should be returned or not.
|
197 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
198 |
+
Can be used to update the configuration object (after it is loaded) and initiate the Python class.
|
199 |
+
`**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
|
200 |
+
overwrite the same named arguments in `config`.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
[`ModelMixin`] or [`SchedulerMixin`]:
|
204 |
+
A model or scheduler object instantiated from a config dictionary.
|
205 |
+
|
206 |
+
Examples:
|
207 |
+
|
208 |
+
```python
|
209 |
+
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
|
210 |
+
|
211 |
+
>>> # Download scheduler from huggingface.co and cache.
|
212 |
+
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
|
213 |
+
|
214 |
+
>>> # Instantiate DDIM scheduler class with same config as DDPM
|
215 |
+
>>> scheduler = DDIMScheduler.from_config(scheduler.config)
|
216 |
+
|
217 |
+
>>> # Instantiate PNDM scheduler class with same config as DDPM
|
218 |
+
>>> scheduler = PNDMScheduler.from_config(scheduler.config)
|
219 |
+
```
|
220 |
+
"""
|
221 |
+
# <===== TO BE REMOVED WITH DEPRECATION
|
222 |
+
# TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
|
223 |
+
if "pretrained_model_name_or_path" in kwargs:
|
224 |
+
config = kwargs.pop("pretrained_model_name_or_path")
|
225 |
+
|
226 |
+
if config is None:
|
227 |
+
raise ValueError("Please make sure to provide a config as the first positional argument.")
|
228 |
+
# ======>
|
229 |
+
|
230 |
+
if not isinstance(config, dict):
|
231 |
+
deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
|
232 |
+
if "Scheduler" in cls.__name__:
|
233 |
+
deprecation_message += (
|
234 |
+
f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
|
235 |
+
" Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
|
236 |
+
" be removed in v1.0.0."
|
237 |
+
)
|
238 |
+
elif "Model" in cls.__name__:
|
239 |
+
deprecation_message += (
|
240 |
+
f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
|
241 |
+
f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
|
242 |
+
" instead. This functionality will be removed in v1.0.0."
|
243 |
+
)
|
244 |
+
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
|
245 |
+
config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
|
246 |
+
|
247 |
+
init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
|
248 |
+
|
249 |
+
# Allow dtype to be specified on initialization
|
250 |
+
if "dtype" in unused_kwargs:
|
251 |
+
init_dict["dtype"] = unused_kwargs.pop("dtype")
|
252 |
+
|
253 |
+
# add possible deprecated kwargs
|
254 |
+
for deprecated_kwarg in cls._deprecated_kwargs:
|
255 |
+
if deprecated_kwarg in unused_kwargs:
|
256 |
+
init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
|
257 |
+
|
258 |
+
# Return model and optionally state and/or unused_kwargs
|
259 |
+
model = cls(**init_dict)
|
260 |
+
|
261 |
+
# make sure to also save config parameters that might be used for compatible classes
|
262 |
+
# update _class_name
|
263 |
+
if "_class_name" in hidden_dict:
|
264 |
+
hidden_dict["_class_name"] = cls.__name__
|
265 |
+
|
266 |
+
model.register_to_config(**hidden_dict)
|
267 |
+
|
268 |
+
# add hidden kwargs of compatible classes to unused_kwargs
|
269 |
+
unused_kwargs = {**unused_kwargs, **hidden_dict}
|
270 |
+
|
271 |
+
if return_unused_kwargs:
|
272 |
+
return (model, unused_kwargs)
|
273 |
+
else:
|
274 |
+
return model
|
275 |
+
|
276 |
+
@classmethod
|
277 |
+
def get_config_dict(cls, *args, **kwargs):
|
278 |
+
deprecation_message = (
|
279 |
+
f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
|
280 |
+
" removed in version v1.0.0"
|
281 |
+
)
|
282 |
+
deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
|
283 |
+
return cls.load_config(*args, **kwargs)
|
284 |
+
|
285 |
+
@classmethod
|
286 |
+
@validate_hf_hub_args
|
287 |
+
def load_config(
|
288 |
+
cls,
|
289 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
290 |
+
return_unused_kwargs=False,
|
291 |
+
return_commit_hash=False,
|
292 |
+
**kwargs,
|
293 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
294 |
+
r"""
|
295 |
+
Load a model or scheduler configuration.
|
296 |
+
|
297 |
+
Parameters:
|
298 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
299 |
+
Can be either:
|
300 |
+
|
301 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
302 |
+
the Hub.
|
303 |
+
- A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
|
304 |
+
[`~ConfigMixin.save_config`].
|
305 |
+
|
306 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
307 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
308 |
+
is not used.
|
309 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
310 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
311 |
+
cached versions if they exist.
|
312 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
313 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
314 |
+
incompletely downloaded files are deleted.
|
315 |
+
proxies (`Dict[str, str]`, *optional*):
|
316 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
317 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
318 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
319 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
320 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
321 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
322 |
+
won't be downloaded from the Hub.
|
323 |
+
token (`str` or *bool*, *optional*):
|
324 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
325 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
326 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
327 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
328 |
+
allowed by Git.
|
329 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
330 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
331 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False):
|
332 |
+
Whether unused keyword arguments of the config are returned.
|
333 |
+
return_commit_hash (`bool`, *optional*, defaults to `False):
|
334 |
+
Whether the `commit_hash` of the loaded configuration are returned.
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
`dict`:
|
338 |
+
A dictionary of all the parameters stored in a JSON configuration file.
|
339 |
+
|
340 |
+
"""
|
341 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
342 |
+
force_download = kwargs.pop("force_download", False)
|
343 |
+
resume_download = kwargs.pop("resume_download", False)
|
344 |
+
proxies = kwargs.pop("proxies", None)
|
345 |
+
token = kwargs.pop("token", None)
|
346 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
347 |
+
revision = kwargs.pop("revision", None)
|
348 |
+
_ = kwargs.pop("mirror", None)
|
349 |
+
subfolder = kwargs.pop("subfolder", None)
|
350 |
+
user_agent = kwargs.pop("user_agent", {})
|
351 |
+
|
352 |
+
user_agent = {**user_agent, "file_type": "config"}
|
353 |
+
user_agent = http_user_agent(user_agent)
|
354 |
+
|
355 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
356 |
+
|
357 |
+
if cls.config_name is None:
|
358 |
+
raise ValueError(
|
359 |
+
"`self.config_name` is not defined. Note that one should not load a config from "
|
360 |
+
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
|
361 |
+
)
|
362 |
+
|
363 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
364 |
+
config_file = pretrained_model_name_or_path
|
365 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
366 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
|
367 |
+
# Load from a PyTorch checkpoint
|
368 |
+
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
|
369 |
+
elif subfolder is not None and os.path.isfile(
|
370 |
+
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
371 |
+
):
|
372 |
+
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
373 |
+
else:
|
374 |
+
raise EnvironmentError(
|
375 |
+
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
try:
|
379 |
+
# Load from URL or cache if already cached
|
380 |
+
config_file = hf_hub_download(
|
381 |
+
pretrained_model_name_or_path,
|
382 |
+
filename=cls.config_name,
|
383 |
+
cache_dir=cache_dir,
|
384 |
+
force_download=force_download,
|
385 |
+
proxies=proxies,
|
386 |
+
resume_download=resume_download,
|
387 |
+
local_files_only=local_files_only,
|
388 |
+
token=token,
|
389 |
+
user_agent=user_agent,
|
390 |
+
subfolder=subfolder,
|
391 |
+
revision=revision,
|
392 |
+
)
|
393 |
+
except RepositoryNotFoundError:
|
394 |
+
raise EnvironmentError(
|
395 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
|
396 |
+
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
|
397 |
+
" token having permission to this repo with `token` or log in with `huggingface-cli login`."
|
398 |
+
)
|
399 |
+
except RevisionNotFoundError:
|
400 |
+
raise EnvironmentError(
|
401 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
|
402 |
+
" this model name. Check the model page at"
|
403 |
+
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
404 |
+
)
|
405 |
+
except EntryNotFoundError:
|
406 |
+
raise EnvironmentError(
|
407 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
|
408 |
+
)
|
409 |
+
except HTTPError as err:
|
410 |
+
raise EnvironmentError(
|
411 |
+
"There was a specific connection error when trying to load"
|
412 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
413 |
+
)
|
414 |
+
except ValueError:
|
415 |
+
raise EnvironmentError(
|
416 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
417 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
418 |
+
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
|
419 |
+
" run the library in offline mode at"
|
420 |
+
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
421 |
+
)
|
422 |
+
except EnvironmentError:
|
423 |
+
raise EnvironmentError(
|
424 |
+
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
425 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
426 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
427 |
+
f"containing a {cls.config_name} file"
|
428 |
+
)
|
429 |
+
|
430 |
+
try:
|
431 |
+
# Load config dict
|
432 |
+
config_dict = cls._dict_from_json_file(config_file)
|
433 |
+
|
434 |
+
commit_hash = extract_commit_hash(config_file)
|
435 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
436 |
+
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
|
437 |
+
|
438 |
+
if not (return_unused_kwargs or return_commit_hash):
|
439 |
+
return config_dict
|
440 |
+
|
441 |
+
outputs = (config_dict,)
|
442 |
+
|
443 |
+
if return_unused_kwargs:
|
444 |
+
outputs += (kwargs,)
|
445 |
+
|
446 |
+
if return_commit_hash:
|
447 |
+
outputs += (commit_hash,)
|
448 |
+
|
449 |
+
return outputs
|
450 |
+
|
451 |
+
@staticmethod
|
452 |
+
def _get_init_keys(cls):
|
453 |
+
return set(dict(inspect.signature(cls.__init__).parameters).keys())
|
454 |
+
|
455 |
+
@classmethod
|
456 |
+
def extract_init_dict(cls, config_dict, **kwargs):
|
457 |
+
# Skip keys that were not present in the original config, so default __init__ values were used
|
458 |
+
used_defaults = config_dict.get("_use_default_values", [])
|
459 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}
|
460 |
+
|
461 |
+
# 0. Copy origin config dict
|
462 |
+
original_dict = dict(config_dict.items())
|
463 |
+
|
464 |
+
# 1. Retrieve expected config attributes from __init__ signature
|
465 |
+
expected_keys = cls._get_init_keys(cls)
|
466 |
+
expected_keys.remove("self")
|
467 |
+
# remove general kwargs if present in dict
|
468 |
+
if "kwargs" in expected_keys:
|
469 |
+
expected_keys.remove("kwargs")
|
470 |
+
# remove flax internal keys
|
471 |
+
if hasattr(cls, "_flax_internal_args"):
|
472 |
+
for arg in cls._flax_internal_args:
|
473 |
+
expected_keys.remove(arg)
|
474 |
+
|
475 |
+
# 2. Remove attributes that cannot be expected from expected config attributes
|
476 |
+
# remove keys to be ignored
|
477 |
+
if len(cls.ignore_for_config) > 0:
|
478 |
+
expected_keys = expected_keys - set(cls.ignore_for_config)
|
479 |
+
|
480 |
+
# load diffusers library to import compatible and original scheduler
|
481 |
+
diffusers_library = importlib.import_module(__name__.split(".")[0])
|
482 |
+
|
483 |
+
if cls.has_compatibles:
|
484 |
+
compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
|
485 |
+
else:
|
486 |
+
compatible_classes = []
|
487 |
+
|
488 |
+
expected_keys_comp_cls = set()
|
489 |
+
for c in compatible_classes:
|
490 |
+
expected_keys_c = cls._get_init_keys(c)
|
491 |
+
expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
|
492 |
+
expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
|
493 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
|
494 |
+
|
495 |
+
# remove attributes from orig class that cannot be expected
|
496 |
+
orig_cls_name = config_dict.pop("_class_name", cls.__name__)
|
497 |
+
if (
|
498 |
+
isinstance(orig_cls_name, str)
|
499 |
+
and orig_cls_name != cls.__name__
|
500 |
+
and hasattr(diffusers_library, orig_cls_name)
|
501 |
+
):
|
502 |
+
orig_cls = getattr(diffusers_library, orig_cls_name)
|
503 |
+
unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
|
504 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
|
505 |
+
elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
|
506 |
+
raise ValueError(
|
507 |
+
"Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
|
508 |
+
)
|
509 |
+
|
510 |
+
# remove private attributes
|
511 |
+
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
|
512 |
+
|
513 |
+
# 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
|
514 |
+
init_dict = {}
|
515 |
+
for key in expected_keys:
|
516 |
+
# if config param is passed to kwarg and is present in config dict
|
517 |
+
# it should overwrite existing config dict key
|
518 |
+
if key in kwargs and key in config_dict:
|
519 |
+
config_dict[key] = kwargs.pop(key)
|
520 |
+
|
521 |
+
if key in kwargs:
|
522 |
+
# overwrite key
|
523 |
+
init_dict[key] = kwargs.pop(key)
|
524 |
+
elif key in config_dict:
|
525 |
+
# use value from config dict
|
526 |
+
init_dict[key] = config_dict.pop(key)
|
527 |
+
|
528 |
+
# 4. Give nice warning if unexpected values have been passed
|
529 |
+
if len(config_dict) > 0:
|
530 |
+
logger.warning(
|
531 |
+
f"The config attributes {config_dict} were passed to {cls.__name__}, "
|
532 |
+
"but are not expected and will be ignored. Please verify your "
|
533 |
+
f"{cls.config_name} configuration file."
|
534 |
+
)
|
535 |
+
|
536 |
+
# 5. Give nice info if config attributes are initialized to default because they have not been passed
|
537 |
+
passed_keys = set(init_dict.keys())
|
538 |
+
if len(expected_keys - passed_keys) > 0:
|
539 |
+
logger.info(
|
540 |
+
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
|
541 |
+
)
|
542 |
+
|
543 |
+
# 6. Define unused keyword arguments
|
544 |
+
unused_kwargs = {**config_dict, **kwargs}
|
545 |
+
|
546 |
+
# 7. Define "hidden" config parameters that were saved for compatible classes
|
547 |
+
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
|
548 |
+
|
549 |
+
return init_dict, unused_kwargs, hidden_config_dict
|
550 |
+
|
551 |
+
@classmethod
|
552 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
553 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
554 |
+
text = reader.read()
|
555 |
+
return json.loads(text)
|
556 |
+
|
557 |
+
def __repr__(self):
|
558 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
559 |
+
|
560 |
+
@property
|
561 |
+
def config(self) -> Dict[str, Any]:
|
562 |
+
"""
|
563 |
+
Returns the config of the class as a frozen dictionary
|
564 |
+
|
565 |
+
Returns:
|
566 |
+
`Dict[str, Any]`: Config of the class.
|
567 |
+
"""
|
568 |
+
return self._internal_dict
|
569 |
+
|
570 |
+
def to_json_string(self) -> str:
|
571 |
+
"""
|
572 |
+
Serializes the configuration instance to a JSON string.
|
573 |
+
|
574 |
+
Returns:
|
575 |
+
`str`:
|
576 |
+
String containing all the attributes that make up the configuration instance in JSON format.
|
577 |
+
"""
|
578 |
+
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
|
579 |
+
config_dict["_class_name"] = self.__class__.__name__
|
580 |
+
config_dict["_diffusers_version"] = __version__
|
581 |
+
|
582 |
+
def to_json_saveable(value):
|
583 |
+
if isinstance(value, np.ndarray):
|
584 |
+
value = value.tolist()
|
585 |
+
elif isinstance(value, PosixPath):
|
586 |
+
value = str(value)
|
587 |
+
return value
|
588 |
+
|
589 |
+
config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
|
590 |
+
# Don't save "_ignore_files" or "_use_default_values"
|
591 |
+
config_dict.pop("_ignore_files", None)
|
592 |
+
config_dict.pop("_use_default_values", None)
|
593 |
+
|
594 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
595 |
+
|
596 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
597 |
+
"""
|
598 |
+
Save the configuration instance's parameters to a JSON file.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
json_file_path (`str` or `os.PathLike`):
|
602 |
+
Path to the JSON file to save a configuration instance's parameters.
|
603 |
+
"""
|
604 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
605 |
+
writer.write(self.to_json_string())
|
606 |
+
|
607 |
+
|
608 |
+
def register_to_config(init):
|
609 |
+
r"""
|
610 |
+
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
611 |
+
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
612 |
+
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
613 |
+
|
614 |
+
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
615 |
+
"""
|
616 |
+
|
617 |
+
@functools.wraps(init)
|
618 |
+
def inner_init(self, *args, **kwargs):
|
619 |
+
# Ignore private kwargs in the init.
|
620 |
+
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
621 |
+
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
|
622 |
+
if not isinstance(self, ConfigMixin):
|
623 |
+
raise RuntimeError(
|
624 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
625 |
+
"not inherit from `ConfigMixin`."
|
626 |
+
)
|
627 |
+
|
628 |
+
ignore = getattr(self, "ignore_for_config", [])
|
629 |
+
# Get positional arguments aligned with kwargs
|
630 |
+
new_kwargs = {}
|
631 |
+
signature = inspect.signature(init)
|
632 |
+
parameters = {
|
633 |
+
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
|
634 |
+
}
|
635 |
+
for arg, name in zip(args, parameters.keys()):
|
636 |
+
new_kwargs[name] = arg
|
637 |
+
|
638 |
+
# Then add all kwargs
|
639 |
+
new_kwargs.update(
|
640 |
+
{
|
641 |
+
k: init_kwargs.get(k, default)
|
642 |
+
for k, default in parameters.items()
|
643 |
+
if k not in ignore and k not in new_kwargs
|
644 |
+
}
|
645 |
+
)
|
646 |
+
|
647 |
+
# Take note of the parameters that were not present in the loaded config
|
648 |
+
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
|
649 |
+
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
|
650 |
+
|
651 |
+
new_kwargs = {**config_init_kwargs, **new_kwargs}
|
652 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
653 |
+
init(self, *args, **init_kwargs)
|
654 |
+
|
655 |
+
return inner_init
|
656 |
+
|
657 |
+
|
658 |
+
def flax_register_to_config(cls):
|
659 |
+
original_init = cls.__init__
|
660 |
+
|
661 |
+
@functools.wraps(original_init)
|
662 |
+
def init(self, *args, **kwargs):
|
663 |
+
if not isinstance(self, ConfigMixin):
|
664 |
+
raise RuntimeError(
|
665 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
666 |
+
"not inherit from `ConfigMixin`."
|
667 |
+
)
|
668 |
+
|
669 |
+
# Ignore private kwargs in the init. Retrieve all passed attributes
|
670 |
+
init_kwargs = dict(kwargs.items())
|
671 |
+
|
672 |
+
# Retrieve default values
|
673 |
+
fields = dataclasses.fields(self)
|
674 |
+
default_kwargs = {}
|
675 |
+
for field in fields:
|
676 |
+
# ignore flax specific attributes
|
677 |
+
if field.name in self._flax_internal_args:
|
678 |
+
continue
|
679 |
+
if type(field.default) == dataclasses._MISSING_TYPE:
|
680 |
+
default_kwargs[field.name] = None
|
681 |
+
else:
|
682 |
+
default_kwargs[field.name] = getattr(self, field.name)
|
683 |
+
|
684 |
+
# Make sure init_kwargs override default kwargs
|
685 |
+
new_kwargs = {**default_kwargs, **init_kwargs}
|
686 |
+
# dtype should be part of `init_kwargs`, but not `new_kwargs`
|
687 |
+
if "dtype" in new_kwargs:
|
688 |
+
new_kwargs.pop("dtype")
|
689 |
+
|
690 |
+
# Get positional arguments aligned with kwargs
|
691 |
+
for i, arg in enumerate(args):
|
692 |
+
name = fields[i].name
|
693 |
+
new_kwargs[name] = arg
|
694 |
+
|
695 |
+
# Take note of the parameters that were not present in the loaded config
|
696 |
+
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
|
697 |
+
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
|
698 |
+
|
699 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
700 |
+
original_init(self, *args, **kwargs)
|
701 |
+
|
702 |
+
cls.__init__ = init
|
703 |
+
return cls
|
model/diffusers_c/dependency_versions_check.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .dependency_versions_table import deps
|
16 |
+
from .utils.versions import require_version, require_version_core
|
17 |
+
|
18 |
+
|
19 |
+
# define which module versions we always want to check at run time
|
20 |
+
# (usually the ones defined in `install_requires` in setup.py)
|
21 |
+
#
|
22 |
+
# order specific notes:
|
23 |
+
# - tqdm must be checked before tokenizers
|
24 |
+
|
25 |
+
pkgs_to_check_at_runtime = "python requests filelock numpy".split()
|
26 |
+
for pkg in pkgs_to_check_at_runtime:
|
27 |
+
if pkg in deps:
|
28 |
+
require_version_core(deps[pkg])
|
29 |
+
else:
|
30 |
+
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
|
31 |
+
|
32 |
+
|
33 |
+
def dep_version_check(pkg, hint=None):
|
34 |
+
require_version(deps[pkg], hint)
|
model/diffusers_c/dependency_versions_table.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
2 |
+
# 1. modify the `_deps` dict in setup.py
|
3 |
+
# 2. run `make deps_table_update`
|
4 |
+
deps = {
|
5 |
+
"Pillow": "Pillow",
|
6 |
+
"accelerate": "accelerate>=0.11.0",
|
7 |
+
"compel": "compel==0.1.8",
|
8 |
+
"datasets": "datasets",
|
9 |
+
"filelock": "filelock",
|
10 |
+
"flax": "flax>=0.4.1",
|
11 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
12 |
+
"huggingface-hub": "huggingface-hub",
|
13 |
+
"requests-mock": "requests-mock==1.10.0",
|
14 |
+
"importlib_metadata": "importlib_metadata",
|
15 |
+
"invisible-watermark": "invisible-watermark>=0.2.0",
|
16 |
+
"isort": "isort>=5.5.4",
|
17 |
+
"jax": "jax>=0.4.1",
|
18 |
+
"jaxlib": "jaxlib>=0.4.1",
|
19 |
+
"Jinja2": "Jinja2",
|
20 |
+
"k-diffusion": "k-diffusion>=0.0.12",
|
21 |
+
"torchsde": "torchsde",
|
22 |
+
"note_seq": "note_seq",
|
23 |
+
"librosa": "librosa",
|
24 |
+
"numpy": "numpy",
|
25 |
+
"parameterized": "parameterized",
|
26 |
+
"peft": "peft>=0.6.0",
|
27 |
+
"protobuf": "protobuf>=3.20.3,<4",
|
28 |
+
"pytest": "pytest",
|
29 |
+
"pytest-timeout": "pytest-timeout",
|
30 |
+
"pytest-xdist": "pytest-xdist",
|
31 |
+
"python": "python>=3.8.0",
|
32 |
+
"ruff": "ruff==0.1.5",
|
33 |
+
"safetensors": "safetensors>=0.3.1",
|
34 |
+
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
|
35 |
+
"GitPython": "GitPython<3.1.19",
|
36 |
+
"scipy": "scipy",
|
37 |
+
"onnx": "onnx",
|
38 |
+
"regex": "regex!=2019.12.17",
|
39 |
+
"requests": "requests",
|
40 |
+
"tensorboard": "tensorboard",
|
41 |
+
"torch": "torch>=1.4",
|
42 |
+
"torchvision": "torchvision",
|
43 |
+
"transformers": "transformers>=4.25.1",
|
44 |
+
"urllib3": "urllib3<=2.0.0",
|
45 |
+
}
|
model/diffusers_c/experimental/README.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🧨 Diffusers Experimental
|
2 |
+
|
3 |
+
We are adding experimental code to support novel applications and usages of the Diffusers library.
|
4 |
+
Currently, the following experiments are supported:
|
5 |
+
* Reinforcement learning via an implementation of the [Diffuser](https://arxiv.org/abs/2205.09991) model.
|
model/diffusers_c/experimental/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .rl import ValueGuidedRLPipeline
|
model/diffusers_c/experimental/rl/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .value_guided_sampling import ValueGuidedRLPipeline
|
model/diffusers_c/experimental/rl/value_guided_sampling.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import tqdm
|
18 |
+
|
19 |
+
from ...models.unets.unet_1d import UNet1DModel
|
20 |
+
from ...pipelines import DiffusionPipeline
|
21 |
+
from ...utils.dummy_pt_objects import DDPMScheduler
|
22 |
+
from ...utils.torch_utils import randn_tensor
|
23 |
+
|
24 |
+
|
25 |
+
class ValueGuidedRLPipeline(DiffusionPipeline):
|
26 |
+
r"""
|
27 |
+
Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states.
|
28 |
+
|
29 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
30 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
value_function ([`UNet1DModel`]):
|
34 |
+
A specialized UNet for fine-tuning trajectories base on reward.
|
35 |
+
unet ([`UNet1DModel`]):
|
36 |
+
UNet architecture to denoise the encoded trajectories.
|
37 |
+
scheduler ([`SchedulerMixin`]):
|
38 |
+
A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
|
39 |
+
application is [`DDPMScheduler`].
|
40 |
+
env ():
|
41 |
+
An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
value_function: UNet1DModel,
|
47 |
+
unet: UNet1DModel,
|
48 |
+
scheduler: DDPMScheduler,
|
49 |
+
env,
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
self.register_modules(value_function=value_function, unet=unet, scheduler=scheduler, env=env)
|
54 |
+
|
55 |
+
self.data = env.get_dataset()
|
56 |
+
self.means = {}
|
57 |
+
for key in self.data.keys():
|
58 |
+
try:
|
59 |
+
self.means[key] = self.data[key].mean()
|
60 |
+
except: # noqa: E722
|
61 |
+
pass
|
62 |
+
self.stds = {}
|
63 |
+
for key in self.data.keys():
|
64 |
+
try:
|
65 |
+
self.stds[key] = self.data[key].std()
|
66 |
+
except: # noqa: E722
|
67 |
+
pass
|
68 |
+
self.state_dim = env.observation_space.shape[0]
|
69 |
+
self.action_dim = env.action_space.shape[0]
|
70 |
+
|
71 |
+
def normalize(self, x_in, key):
|
72 |
+
return (x_in - self.means[key]) / self.stds[key]
|
73 |
+
|
74 |
+
def de_normalize(self, x_in, key):
|
75 |
+
return x_in * self.stds[key] + self.means[key]
|
76 |
+
|
77 |
+
def to_torch(self, x_in):
|
78 |
+
if isinstance(x_in, dict):
|
79 |
+
return {k: self.to_torch(v) for k, v in x_in.items()}
|
80 |
+
elif torch.is_tensor(x_in):
|
81 |
+
return x_in.to(self.unet.device)
|
82 |
+
return torch.tensor(x_in, device=self.unet.device)
|
83 |
+
|
84 |
+
def reset_x0(self, x_in, cond, act_dim):
|
85 |
+
for key, val in cond.items():
|
86 |
+
x_in[:, key, act_dim:] = val.clone()
|
87 |
+
return x_in
|
88 |
+
|
89 |
+
def run_diffusion(self, x, conditions, n_guide_steps, scale):
|
90 |
+
batch_size = x.shape[0]
|
91 |
+
y = None
|
92 |
+
for i in tqdm.tqdm(self.scheduler.timesteps):
|
93 |
+
# create batch of timesteps to pass into model
|
94 |
+
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
|
95 |
+
for _ in range(n_guide_steps):
|
96 |
+
with torch.enable_grad():
|
97 |
+
x.requires_grad_()
|
98 |
+
|
99 |
+
# permute to match dimension for pre-trained models
|
100 |
+
y = self.value_function(x.permute(0, 2, 1), timesteps).sample
|
101 |
+
grad = torch.autograd.grad([y.sum()], [x])[0]
|
102 |
+
|
103 |
+
posterior_variance = self.scheduler._get_variance(i)
|
104 |
+
model_std = torch.exp(0.5 * posterior_variance)
|
105 |
+
grad = model_std * grad
|
106 |
+
|
107 |
+
grad[timesteps < 2] = 0
|
108 |
+
x = x.detach()
|
109 |
+
x = x + scale * grad
|
110 |
+
x = self.reset_x0(x, conditions, self.action_dim)
|
111 |
+
|
112 |
+
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
|
113 |
+
|
114 |
+
# TODO: verify deprecation of this kwarg
|
115 |
+
x = self.scheduler.step(prev_x, i, x)["prev_sample"]
|
116 |
+
|
117 |
+
# apply conditions to the trajectory (set the initial state)
|
118 |
+
x = self.reset_x0(x, conditions, self.action_dim)
|
119 |
+
x = self.to_torch(x)
|
120 |
+
return x, y
|
121 |
+
|
122 |
+
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
|
123 |
+
# normalize the observations and create batch dimension
|
124 |
+
obs = self.normalize(obs, "observations")
|
125 |
+
obs = obs[None].repeat(batch_size, axis=0)
|
126 |
+
|
127 |
+
conditions = {0: self.to_torch(obs)}
|
128 |
+
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
|
129 |
+
|
130 |
+
# generate initial noise and apply our conditions (to make the trajectories start at current state)
|
131 |
+
x1 = randn_tensor(shape, device=self.unet.device)
|
132 |
+
x = self.reset_x0(x1, conditions, self.action_dim)
|
133 |
+
x = self.to_torch(x)
|
134 |
+
|
135 |
+
# run the diffusion process
|
136 |
+
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
|
137 |
+
|
138 |
+
# sort output trajectories by value
|
139 |
+
sorted_idx = y.argsort(0, descending=True).squeeze()
|
140 |
+
sorted_values = x[sorted_idx]
|
141 |
+
actions = sorted_values[:, :, : self.action_dim]
|
142 |
+
actions = actions.detach().cpu().numpy()
|
143 |
+
denorm_actions = self.de_normalize(actions, key="actions")
|
144 |
+
|
145 |
+
# select the action with the highest value
|
146 |
+
if y is not None:
|
147 |
+
selected_index = 0
|
148 |
+
else:
|
149 |
+
# if we didn't run value guiding, select a random action
|
150 |
+
selected_index = np.random.randint(0, batch_size)
|
151 |
+
|
152 |
+
denorm_actions = denorm_actions[selected_index, 0]
|
153 |
+
return denorm_actions
|
model/diffusers_c/image_processor.py
ADDED
@@ -0,0 +1,990 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
import warnings
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from PIL import Image, ImageFilter, ImageOps
|
24 |
+
|
25 |
+
from .configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
27 |
+
|
28 |
+
|
29 |
+
PipelineImageInput = Union[
|
30 |
+
PIL.Image.Image,
|
31 |
+
np.ndarray,
|
32 |
+
torch.FloatTensor,
|
33 |
+
List[PIL.Image.Image],
|
34 |
+
List[np.ndarray],
|
35 |
+
List[torch.FloatTensor],
|
36 |
+
]
|
37 |
+
|
38 |
+
PipelineDepthInput = PipelineImageInput
|
39 |
+
|
40 |
+
|
41 |
+
class VaeImageProcessor(ConfigMixin):
|
42 |
+
"""
|
43 |
+
Image processor for VAE.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
47 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
48 |
+
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
49 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
50 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
51 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
52 |
+
Resampling filter to use when resizing the image.
|
53 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether to normalize the image to [-1,1].
|
55 |
+
do_binarize (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether to binarize the image to 0/1.
|
57 |
+
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
58 |
+
Whether to convert the images to RGB format.
|
59 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
60 |
+
Whether to convert the images to grayscale format.
|
61 |
+
"""
|
62 |
+
|
63 |
+
config_name = CONFIG_NAME
|
64 |
+
|
65 |
+
@register_to_config
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
do_resize: bool = True,
|
69 |
+
vae_scale_factor: int = 8,
|
70 |
+
resample: str = "lanczos",
|
71 |
+
do_normalize: bool = True,
|
72 |
+
do_binarize: bool = False,
|
73 |
+
do_convert_rgb: bool = False,
|
74 |
+
do_convert_grayscale: bool = False,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
if do_convert_rgb and do_convert_grayscale:
|
78 |
+
raise ValueError(
|
79 |
+
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
|
80 |
+
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
|
81 |
+
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
|
82 |
+
)
|
83 |
+
self.config.do_convert_rgb = False
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
87 |
+
"""
|
88 |
+
Convert a numpy image or a batch of images to a PIL image.
|
89 |
+
"""
|
90 |
+
if images.ndim == 3:
|
91 |
+
images = images[None, ...]
|
92 |
+
images = (images * 255).round().astype("uint8")
|
93 |
+
if images.shape[-1] == 1:
|
94 |
+
# special case for grayscale (single channel) images
|
95 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
96 |
+
else:
|
97 |
+
pil_images = [Image.fromarray(image) for image in images]
|
98 |
+
|
99 |
+
return pil_images
|
100 |
+
|
101 |
+
@staticmethod
|
102 |
+
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
103 |
+
"""
|
104 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
105 |
+
"""
|
106 |
+
if not isinstance(images, list):
|
107 |
+
images = [images]
|
108 |
+
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
|
109 |
+
images = np.stack(images, axis=0)
|
110 |
+
|
111 |
+
return images
|
112 |
+
|
113 |
+
@staticmethod
|
114 |
+
def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
|
115 |
+
"""
|
116 |
+
Convert a NumPy image to a PyTorch tensor.
|
117 |
+
"""
|
118 |
+
if images.ndim == 3:
|
119 |
+
images = images[..., None]
|
120 |
+
|
121 |
+
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
122 |
+
return images
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
|
126 |
+
"""
|
127 |
+
Convert a PyTorch tensor to a NumPy image.
|
128 |
+
"""
|
129 |
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
130 |
+
return images
|
131 |
+
|
132 |
+
@staticmethod
|
133 |
+
def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
134 |
+
"""
|
135 |
+
Normalize an image array to [-1,1].
|
136 |
+
"""
|
137 |
+
return 2.0 * images - 1.0
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
141 |
+
"""
|
142 |
+
Denormalize an image array to [0,1].
|
143 |
+
"""
|
144 |
+
return (images / 2 + 0.5).clamp(0, 1)
|
145 |
+
|
146 |
+
@staticmethod
|
147 |
+
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
|
148 |
+
"""
|
149 |
+
Converts a PIL image to RGB format.
|
150 |
+
"""
|
151 |
+
image = image.convert("RGB")
|
152 |
+
|
153 |
+
return image
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
|
157 |
+
"""
|
158 |
+
Converts a PIL image to grayscale format.
|
159 |
+
"""
|
160 |
+
image = image.convert("L")
|
161 |
+
|
162 |
+
return image
|
163 |
+
|
164 |
+
@staticmethod
|
165 |
+
def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
|
166 |
+
"""
|
167 |
+
Applies Gaussian blur to an image.
|
168 |
+
"""
|
169 |
+
image = image.filter(ImageFilter.GaussianBlur(blur_factor))
|
170 |
+
|
171 |
+
return image
|
172 |
+
|
173 |
+
@staticmethod
|
174 |
+
def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
|
175 |
+
"""
|
176 |
+
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image;
|
177 |
+
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
mask_image (PIL.Image.Image): Mask image.
|
181 |
+
width (int): Width of the image to be processed.
|
182 |
+
height (int): Height of the image to be processed.
|
183 |
+
pad (int, optional): Padding to be added to the crop region. Defaults to 0.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio.
|
187 |
+
"""
|
188 |
+
|
189 |
+
mask_image = mask_image.convert("L")
|
190 |
+
mask = np.array(mask_image)
|
191 |
+
|
192 |
+
# 1. find a rectangular region that contains all masked ares in an image
|
193 |
+
h, w = mask.shape
|
194 |
+
crop_left = 0
|
195 |
+
for i in range(w):
|
196 |
+
if not (mask[:, i] == 0).all():
|
197 |
+
break
|
198 |
+
crop_left += 1
|
199 |
+
|
200 |
+
crop_right = 0
|
201 |
+
for i in reversed(range(w)):
|
202 |
+
if not (mask[:, i] == 0).all():
|
203 |
+
break
|
204 |
+
crop_right += 1
|
205 |
+
|
206 |
+
crop_top = 0
|
207 |
+
for i in range(h):
|
208 |
+
if not (mask[i] == 0).all():
|
209 |
+
break
|
210 |
+
crop_top += 1
|
211 |
+
|
212 |
+
crop_bottom = 0
|
213 |
+
for i in reversed(range(h)):
|
214 |
+
if not (mask[i] == 0).all():
|
215 |
+
break
|
216 |
+
crop_bottom += 1
|
217 |
+
|
218 |
+
# 2. add padding to the crop region
|
219 |
+
x1, y1, x2, y2 = (
|
220 |
+
int(max(crop_left - pad, 0)),
|
221 |
+
int(max(crop_top - pad, 0)),
|
222 |
+
int(min(w - crop_right + pad, w)),
|
223 |
+
int(min(h - crop_bottom + pad, h)),
|
224 |
+
)
|
225 |
+
|
226 |
+
# 3. expands crop region to match the aspect ratio of the image to be processed
|
227 |
+
ratio_crop_region = (x2 - x1) / (y2 - y1)
|
228 |
+
ratio_processing = width / height
|
229 |
+
|
230 |
+
if ratio_crop_region > ratio_processing:
|
231 |
+
desired_height = (x2 - x1) / ratio_processing
|
232 |
+
desired_height_diff = int(desired_height - (y2 - y1))
|
233 |
+
y1 -= desired_height_diff // 2
|
234 |
+
y2 += desired_height_diff - desired_height_diff // 2
|
235 |
+
if y2 >= mask_image.height:
|
236 |
+
diff = y2 - mask_image.height
|
237 |
+
y2 -= diff
|
238 |
+
y1 -= diff
|
239 |
+
if y1 < 0:
|
240 |
+
y2 -= y1
|
241 |
+
y1 -= y1
|
242 |
+
if y2 >= mask_image.height:
|
243 |
+
y2 = mask_image.height
|
244 |
+
else:
|
245 |
+
desired_width = (y2 - y1) * ratio_processing
|
246 |
+
desired_width_diff = int(desired_width - (x2 - x1))
|
247 |
+
x1 -= desired_width_diff // 2
|
248 |
+
x2 += desired_width_diff - desired_width_diff // 2
|
249 |
+
if x2 >= mask_image.width:
|
250 |
+
diff = x2 - mask_image.width
|
251 |
+
x2 -= diff
|
252 |
+
x1 -= diff
|
253 |
+
if x1 < 0:
|
254 |
+
x2 -= x1
|
255 |
+
x1 -= x1
|
256 |
+
if x2 >= mask_image.width:
|
257 |
+
x2 = mask_image.width
|
258 |
+
|
259 |
+
return x1, y1, x2, y2
|
260 |
+
|
261 |
+
def _resize_and_fill(
|
262 |
+
self,
|
263 |
+
image: PIL.Image.Image,
|
264 |
+
width: int,
|
265 |
+
height: int,
|
266 |
+
) -> PIL.Image.Image:
|
267 |
+
"""
|
268 |
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
image: The image to resize.
|
272 |
+
width: The width to resize the image to.
|
273 |
+
height: The height to resize the image to.
|
274 |
+
"""
|
275 |
+
|
276 |
+
ratio = width / height
|
277 |
+
src_ratio = image.width / image.height
|
278 |
+
|
279 |
+
src_w = width if ratio < src_ratio else image.width * height // image.height
|
280 |
+
src_h = height if ratio >= src_ratio else image.height * width // image.width
|
281 |
+
|
282 |
+
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
283 |
+
res = Image.new("RGB", (width, height))
|
284 |
+
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
285 |
+
|
286 |
+
if ratio < src_ratio:
|
287 |
+
fill_height = height // 2 - src_h // 2
|
288 |
+
if fill_height > 0:
|
289 |
+
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
290 |
+
res.paste(
|
291 |
+
resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
|
292 |
+
box=(0, fill_height + src_h),
|
293 |
+
)
|
294 |
+
elif ratio > src_ratio:
|
295 |
+
fill_width = width // 2 - src_w // 2
|
296 |
+
if fill_width > 0:
|
297 |
+
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
298 |
+
res.paste(
|
299 |
+
resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
|
300 |
+
box=(fill_width + src_w, 0),
|
301 |
+
)
|
302 |
+
|
303 |
+
return res
|
304 |
+
|
305 |
+
def _resize_and_crop(
|
306 |
+
self,
|
307 |
+
image: PIL.Image.Image,
|
308 |
+
width: int,
|
309 |
+
height: int,
|
310 |
+
) -> PIL.Image.Image:
|
311 |
+
"""
|
312 |
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
|
313 |
+
|
314 |
+
Args:
|
315 |
+
image: The image to resize.
|
316 |
+
width: The width to resize the image to.
|
317 |
+
height: The height to resize the image to.
|
318 |
+
"""
|
319 |
+
ratio = width / height
|
320 |
+
src_ratio = image.width / image.height
|
321 |
+
|
322 |
+
src_w = width if ratio > src_ratio else image.width * height // image.height
|
323 |
+
src_h = height if ratio <= src_ratio else image.height * width // image.width
|
324 |
+
|
325 |
+
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
326 |
+
res = Image.new("RGB", (width, height))
|
327 |
+
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
328 |
+
return res
|
329 |
+
|
330 |
+
def resize(
|
331 |
+
self,
|
332 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
333 |
+
height: int,
|
334 |
+
width: int,
|
335 |
+
resize_mode: str = "default", # "default", "fill", "crop"
|
336 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
337 |
+
"""
|
338 |
+
Resize image.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
342 |
+
The image input, can be a PIL image, numpy array or pytorch tensor.
|
343 |
+
height (`int`):
|
344 |
+
The height to resize to.
|
345 |
+
width (`int`):
|
346 |
+
The width to resize to.
|
347 |
+
resize_mode (`str`, *optional*, defaults to `default`):
|
348 |
+
The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
349 |
+
within the specified width and height, and it may not maintaining the original aspect ratio.
|
350 |
+
If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
351 |
+
within the dimensions, filling empty with data from image.
|
352 |
+
If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
353 |
+
within the dimensions, cropping the excess.
|
354 |
+
Note that resize_mode `fill` and `crop` are only supported for PIL image input.
|
355 |
+
|
356 |
+
Returns:
|
357 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
358 |
+
The resized image.
|
359 |
+
"""
|
360 |
+
if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
|
361 |
+
raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
|
362 |
+
if isinstance(image, PIL.Image.Image):
|
363 |
+
if resize_mode == "default":
|
364 |
+
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
|
365 |
+
elif resize_mode == "fill":
|
366 |
+
image = self._resize_and_fill(image, width, height)
|
367 |
+
elif resize_mode == "crop":
|
368 |
+
image = self._resize_and_crop(image, width, height)
|
369 |
+
else:
|
370 |
+
raise ValueError(f"resize_mode {resize_mode} is not supported")
|
371 |
+
|
372 |
+
elif isinstance(image, torch.Tensor):
|
373 |
+
image = torch.nn.functional.interpolate(
|
374 |
+
image,
|
375 |
+
size=(height, width),
|
376 |
+
)
|
377 |
+
elif isinstance(image, np.ndarray):
|
378 |
+
image = self.numpy_to_pt(image)
|
379 |
+
image = torch.nn.functional.interpolate(
|
380 |
+
image,
|
381 |
+
size=(height, width),
|
382 |
+
)
|
383 |
+
image = self.pt_to_numpy(image)
|
384 |
+
return image
|
385 |
+
|
386 |
+
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
387 |
+
"""
|
388 |
+
Create a mask.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
image (`PIL.Image.Image`):
|
392 |
+
The image input, should be a PIL image.
|
393 |
+
|
394 |
+
Returns:
|
395 |
+
`PIL.Image.Image`:
|
396 |
+
The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
|
397 |
+
"""
|
398 |
+
image[image < 0.5] = 0
|
399 |
+
image[image >= 0.5] = 1
|
400 |
+
|
401 |
+
return image
|
402 |
+
|
403 |
+
def get_default_height_width(
|
404 |
+
self,
|
405 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
406 |
+
height: Optional[int] = None,
|
407 |
+
width: Optional[int] = None,
|
408 |
+
) -> Tuple[int, int]:
|
409 |
+
"""
|
410 |
+
This function return the height and width that are downscaled to the next integer multiple of
|
411 |
+
`vae_scale_factor`.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
415 |
+
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
|
416 |
+
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
|
417 |
+
have shape `[batch, channel, height, width]`.
|
418 |
+
height (`int`, *optional*, defaults to `None`):
|
419 |
+
The height in preprocessed image. If `None`, will use the height of `image` input.
|
420 |
+
width (`int`, *optional*`, defaults to `None`):
|
421 |
+
The width in preprocessed. If `None`, will use the width of the `image` input.
|
422 |
+
"""
|
423 |
+
|
424 |
+
if height is None:
|
425 |
+
if isinstance(image, PIL.Image.Image):
|
426 |
+
height = image.height
|
427 |
+
elif isinstance(image, torch.Tensor):
|
428 |
+
height = image.shape[2]
|
429 |
+
else:
|
430 |
+
height = image.shape[1]
|
431 |
+
|
432 |
+
if width is None:
|
433 |
+
if isinstance(image, PIL.Image.Image):
|
434 |
+
width = image.width
|
435 |
+
elif isinstance(image, torch.Tensor):
|
436 |
+
width = image.shape[3]
|
437 |
+
else:
|
438 |
+
width = image.shape[2]
|
439 |
+
|
440 |
+
width, height = (
|
441 |
+
x - x % self.config.vae_scale_factor for x in (width, height)
|
442 |
+
) # resize to integer multiple of vae_scale_factor
|
443 |
+
|
444 |
+
return height, width
|
445 |
+
|
446 |
+
def preprocess(
|
447 |
+
self,
|
448 |
+
image: PipelineImageInput,
|
449 |
+
height: Optional[int] = None,
|
450 |
+
width: Optional[int] = None,
|
451 |
+
resize_mode: str = "default", # "default", "fill", "crop"
|
452 |
+
crops_coords: Optional[Tuple[int, int, int, int]] = None,
|
453 |
+
) -> torch.Tensor:
|
454 |
+
"""
|
455 |
+
Preprocess the image input.
|
456 |
+
|
457 |
+
Args:
|
458 |
+
image (`pipeline_image_input`):
|
459 |
+
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats.
|
460 |
+
height (`int`, *optional*, defaults to `None`):
|
461 |
+
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height.
|
462 |
+
width (`int`, *optional*`, defaults to `None`):
|
463 |
+
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
|
464 |
+
resize_mode (`str`, *optional*, defaults to `default`):
|
465 |
+
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
466 |
+
within the specified width and height, and it may not maintaining the original aspect ratio.
|
467 |
+
If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
468 |
+
within the dimensions, filling empty with data from image.
|
469 |
+
If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
|
470 |
+
within the dimensions, cropping the excess.
|
471 |
+
Note that resize_mode `fill` and `crop` are only supported for PIL image input.
|
472 |
+
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
|
473 |
+
The crop coordinates for each image in the batch. If `None`, will not crop the image.
|
474 |
+
"""
|
475 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
476 |
+
|
477 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
478 |
+
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
|
479 |
+
if isinstance(image, torch.Tensor):
|
480 |
+
# if image is a pytorch tensor could have 2 possible shapes:
|
481 |
+
# 1. batch x height x width: we should insert the channel dimension at position 1
|
482 |
+
# 2. channel x height x width: we should insert batch dimension at position 0,
|
483 |
+
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
|
484 |
+
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
|
485 |
+
image = image.unsqueeze(1)
|
486 |
+
else:
|
487 |
+
# if it is a numpy array, it could have 2 possible shapes:
|
488 |
+
# 1. batch x height x width: insert channel dimension on last position
|
489 |
+
# 2. height x width x channel: insert batch dimension on first position
|
490 |
+
if image.shape[-1] == 1:
|
491 |
+
image = np.expand_dims(image, axis=0)
|
492 |
+
else:
|
493 |
+
image = np.expand_dims(image, axis=-1)
|
494 |
+
|
495 |
+
if isinstance(image, supported_formats):
|
496 |
+
image = [image]
|
497 |
+
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
|
498 |
+
raise ValueError(
|
499 |
+
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
|
500 |
+
)
|
501 |
+
|
502 |
+
if isinstance(image[0], PIL.Image.Image):
|
503 |
+
if crops_coords is not None:
|
504 |
+
image = [i.crop(crops_coords) for i in image]
|
505 |
+
if self.config.do_resize:
|
506 |
+
height, width = self.get_default_height_width(image[0], height, width)
|
507 |
+
image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
|
508 |
+
if self.config.do_convert_rgb:
|
509 |
+
image = [self.convert_to_rgb(i) for i in image]
|
510 |
+
elif self.config.do_convert_grayscale:
|
511 |
+
image = [self.convert_to_grayscale(i) for i in image]
|
512 |
+
image = self.pil_to_numpy(image) # to np
|
513 |
+
image = self.numpy_to_pt(image) # to pt
|
514 |
+
|
515 |
+
elif isinstance(image[0], np.ndarray):
|
516 |
+
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
|
517 |
+
|
518 |
+
image = self.numpy_to_pt(image)
|
519 |
+
|
520 |
+
height, width = self.get_default_height_width(image, height, width)
|
521 |
+
if self.config.do_resize:
|
522 |
+
image = self.resize(image, height, width)
|
523 |
+
|
524 |
+
elif isinstance(image[0], torch.Tensor):
|
525 |
+
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
|
526 |
+
|
527 |
+
if self.config.do_convert_grayscale and image.ndim == 3:
|
528 |
+
image = image.unsqueeze(1)
|
529 |
+
|
530 |
+
channel = image.shape[1]
|
531 |
+
# don't need any preprocess if the image is latents
|
532 |
+
if channel == 4:
|
533 |
+
return image
|
534 |
+
|
535 |
+
height, width = self.get_default_height_width(image, height, width)
|
536 |
+
if self.config.do_resize:
|
537 |
+
image = self.resize(image, height, width)
|
538 |
+
|
539 |
+
# expected range [0,1], normalize to [-1,1]
|
540 |
+
do_normalize = self.config.do_normalize
|
541 |
+
if do_normalize and image.min() < 0:
|
542 |
+
warnings.warn(
|
543 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
544 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
|
545 |
+
FutureWarning,
|
546 |
+
)
|
547 |
+
do_normalize = False
|
548 |
+
|
549 |
+
if do_normalize:
|
550 |
+
image = self.normalize(image)
|
551 |
+
|
552 |
+
if self.config.do_binarize:
|
553 |
+
image = self.binarize(image)
|
554 |
+
|
555 |
+
return image
|
556 |
+
|
557 |
+
def postprocess(
|
558 |
+
self,
|
559 |
+
image: torch.FloatTensor,
|
560 |
+
output_type: str = "pil",
|
561 |
+
do_denormalize: Optional[List[bool]] = None,
|
562 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
|
563 |
+
"""
|
564 |
+
Postprocess the image output from tensor to `output_type`.
|
565 |
+
|
566 |
+
Args:
|
567 |
+
image (`torch.FloatTensor`):
|
568 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
569 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
570 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
571 |
+
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
572 |
+
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
573 |
+
`VaeImageProcessor` config.
|
574 |
+
|
575 |
+
Returns:
|
576 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
|
577 |
+
The postprocessed image.
|
578 |
+
"""
|
579 |
+
if not isinstance(image, torch.Tensor):
|
580 |
+
raise ValueError(
|
581 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
582 |
+
)
|
583 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
584 |
+
deprecation_message = (
|
585 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
586 |
+
"`pil`, `np`, `pt`, `latent`"
|
587 |
+
)
|
588 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
589 |
+
output_type = "np"
|
590 |
+
|
591 |
+
if output_type == "latent":
|
592 |
+
return image
|
593 |
+
|
594 |
+
if do_denormalize is None:
|
595 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
596 |
+
|
597 |
+
image = torch.stack(
|
598 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
599 |
+
)
|
600 |
+
|
601 |
+
if output_type == "pt":
|
602 |
+
return image
|
603 |
+
|
604 |
+
image = self.pt_to_numpy(image)
|
605 |
+
|
606 |
+
if output_type == "np":
|
607 |
+
return image
|
608 |
+
|
609 |
+
if output_type == "pil":
|
610 |
+
return self.numpy_to_pil(image)
|
611 |
+
|
612 |
+
def apply_overlay(
|
613 |
+
self,
|
614 |
+
mask: PIL.Image.Image,
|
615 |
+
init_image: PIL.Image.Image,
|
616 |
+
image: PIL.Image.Image,
|
617 |
+
crop_coords: Optional[Tuple[int, int, int, int]] = None,
|
618 |
+
) -> PIL.Image.Image:
|
619 |
+
"""
|
620 |
+
overlay the inpaint output to the original image
|
621 |
+
"""
|
622 |
+
|
623 |
+
width, height = image.width, image.height
|
624 |
+
|
625 |
+
init_image = self.resize(init_image, width=width, height=height)
|
626 |
+
mask = self.resize(mask, width=width, height=height)
|
627 |
+
|
628 |
+
init_image_masked = PIL.Image.new("RGBa", (width, height))
|
629 |
+
init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
|
630 |
+
init_image_masked = init_image_masked.convert("RGBA")
|
631 |
+
|
632 |
+
if crop_coords is not None:
|
633 |
+
x, y, x2, y2 = crop_coords
|
634 |
+
w = x2 - x
|
635 |
+
h = y2 - y
|
636 |
+
base_image = PIL.Image.new("RGBA", (width, height))
|
637 |
+
image = self.resize(image, height=h, width=w, resize_mode="crop")
|
638 |
+
base_image.paste(image, (x, y))
|
639 |
+
image = base_image.convert("RGB")
|
640 |
+
|
641 |
+
image = image.convert("RGBA")
|
642 |
+
image.alpha_composite(init_image_masked)
|
643 |
+
image = image.convert("RGB")
|
644 |
+
|
645 |
+
return image
|
646 |
+
|
647 |
+
|
648 |
+
class VaeImageProcessorLDM3D(VaeImageProcessor):
|
649 |
+
"""
|
650 |
+
Image processor for VAE LDM3D.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
654 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
655 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
656 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
657 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
658 |
+
Resampling filter to use when resizing the image.
|
659 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
660 |
+
Whether to normalize the image to [-1,1].
|
661 |
+
"""
|
662 |
+
|
663 |
+
config_name = CONFIG_NAME
|
664 |
+
|
665 |
+
@register_to_config
|
666 |
+
def __init__(
|
667 |
+
self,
|
668 |
+
do_resize: bool = True,
|
669 |
+
vae_scale_factor: int = 8,
|
670 |
+
resample: str = "lanczos",
|
671 |
+
do_normalize: bool = True,
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
|
675 |
+
@staticmethod
|
676 |
+
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
677 |
+
"""
|
678 |
+
Convert a NumPy image or a batch of images to a PIL image.
|
679 |
+
"""
|
680 |
+
if images.ndim == 3:
|
681 |
+
images = images[None, ...]
|
682 |
+
images = (images * 255).round().astype("uint8")
|
683 |
+
if images.shape[-1] == 1:
|
684 |
+
# special case for grayscale (single channel) images
|
685 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
686 |
+
else:
|
687 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
|
688 |
+
|
689 |
+
return pil_images
|
690 |
+
|
691 |
+
@staticmethod
|
692 |
+
def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
693 |
+
"""
|
694 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
695 |
+
"""
|
696 |
+
if not isinstance(images, list):
|
697 |
+
images = [images]
|
698 |
+
|
699 |
+
images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
|
700 |
+
images = np.stack(images, axis=0)
|
701 |
+
return images
|
702 |
+
|
703 |
+
@staticmethod
|
704 |
+
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
705 |
+
"""
|
706 |
+
Args:
|
707 |
+
image: RGB-like depth image
|
708 |
+
|
709 |
+
Returns: depth map
|
710 |
+
|
711 |
+
"""
|
712 |
+
return image[:, :, 1] * 2**8 + image[:, :, 2]
|
713 |
+
|
714 |
+
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
|
715 |
+
"""
|
716 |
+
Convert a NumPy depth image or a batch of images to a PIL image.
|
717 |
+
"""
|
718 |
+
if images.ndim == 3:
|
719 |
+
images = images[None, ...]
|
720 |
+
images_depth = images[:, :, :, 3:]
|
721 |
+
if images.shape[-1] == 6:
|
722 |
+
images_depth = (images_depth * 255).round().astype("uint8")
|
723 |
+
pil_images = [
|
724 |
+
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
|
725 |
+
]
|
726 |
+
elif images.shape[-1] == 4:
|
727 |
+
images_depth = (images_depth * 65535.0).astype(np.uint16)
|
728 |
+
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
|
729 |
+
else:
|
730 |
+
raise Exception("Not supported")
|
731 |
+
|
732 |
+
return pil_images
|
733 |
+
|
734 |
+
def postprocess(
|
735 |
+
self,
|
736 |
+
image: torch.FloatTensor,
|
737 |
+
output_type: str = "pil",
|
738 |
+
do_denormalize: Optional[List[bool]] = None,
|
739 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
|
740 |
+
"""
|
741 |
+
Postprocess the image output from tensor to `output_type`.
|
742 |
+
|
743 |
+
Args:
|
744 |
+
image (`torch.FloatTensor`):
|
745 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
746 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
747 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
748 |
+
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
749 |
+
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
750 |
+
`VaeImageProcessor` config.
|
751 |
+
|
752 |
+
Returns:
|
753 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
|
754 |
+
The postprocessed image.
|
755 |
+
"""
|
756 |
+
if not isinstance(image, torch.Tensor):
|
757 |
+
raise ValueError(
|
758 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
759 |
+
)
|
760 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
761 |
+
deprecation_message = (
|
762 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
763 |
+
"`pil`, `np`, `pt`, `latent`"
|
764 |
+
)
|
765 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
766 |
+
output_type = "np"
|
767 |
+
|
768 |
+
if do_denormalize is None:
|
769 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
770 |
+
|
771 |
+
image = torch.stack(
|
772 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
773 |
+
)
|
774 |
+
|
775 |
+
image = self.pt_to_numpy(image)
|
776 |
+
|
777 |
+
if output_type == "np":
|
778 |
+
if image.shape[-1] == 6:
|
779 |
+
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
|
780 |
+
else:
|
781 |
+
image_depth = image[:, :, :, 3:]
|
782 |
+
return image[:, :, :, :3], image_depth
|
783 |
+
|
784 |
+
if output_type == "pil":
|
785 |
+
return self.numpy_to_pil(image), self.numpy_to_depth(image)
|
786 |
+
else:
|
787 |
+
raise Exception(f"This type {output_type} is not supported")
|
788 |
+
|
789 |
+
def preprocess(
|
790 |
+
self,
|
791 |
+
rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
792 |
+
depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
793 |
+
height: Optional[int] = None,
|
794 |
+
width: Optional[int] = None,
|
795 |
+
target_res: Optional[int] = None,
|
796 |
+
) -> torch.Tensor:
|
797 |
+
"""
|
798 |
+
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
|
799 |
+
"""
|
800 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
801 |
+
|
802 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
803 |
+
if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
|
804 |
+
raise Exception("This is not yet supported")
|
805 |
+
|
806 |
+
if isinstance(rgb, supported_formats):
|
807 |
+
rgb = [rgb]
|
808 |
+
depth = [depth]
|
809 |
+
elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
|
810 |
+
raise ValueError(
|
811 |
+
f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
|
812 |
+
)
|
813 |
+
|
814 |
+
if isinstance(rgb[0], PIL.Image.Image):
|
815 |
+
if self.config.do_convert_rgb:
|
816 |
+
raise Exception("This is not yet supported")
|
817 |
+
# rgb = [self.convert_to_rgb(i) for i in rgb]
|
818 |
+
# depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth
|
819 |
+
if self.config.do_resize or target_res:
|
820 |
+
height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
|
821 |
+
rgb = [self.resize(i, height, width) for i in rgb]
|
822 |
+
depth = [self.resize(i, height, width) for i in depth]
|
823 |
+
rgb = self.pil_to_numpy(rgb) # to np
|
824 |
+
rgb = self.numpy_to_pt(rgb) # to pt
|
825 |
+
|
826 |
+
depth = self.depth_pil_to_numpy(depth) # to np
|
827 |
+
depth = self.numpy_to_pt(depth) # to pt
|
828 |
+
|
829 |
+
elif isinstance(rgb[0], np.ndarray):
|
830 |
+
rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
|
831 |
+
rgb = self.numpy_to_pt(rgb)
|
832 |
+
height, width = self.get_default_height_width(rgb, height, width)
|
833 |
+
if self.config.do_resize:
|
834 |
+
rgb = self.resize(rgb, height, width)
|
835 |
+
|
836 |
+
depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
|
837 |
+
depth = self.numpy_to_pt(depth)
|
838 |
+
height, width = self.get_default_height_width(depth, height, width)
|
839 |
+
if self.config.do_resize:
|
840 |
+
depth = self.resize(depth, height, width)
|
841 |
+
|
842 |
+
elif isinstance(rgb[0], torch.Tensor):
|
843 |
+
raise Exception("This is not yet supported")
|
844 |
+
# rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)
|
845 |
+
|
846 |
+
# if self.config.do_convert_grayscale and rgb.ndim == 3:
|
847 |
+
# rgb = rgb.unsqueeze(1)
|
848 |
+
|
849 |
+
# channel = rgb.shape[1]
|
850 |
+
|
851 |
+
# height, width = self.get_default_height_width(rgb, height, width)
|
852 |
+
# if self.config.do_resize:
|
853 |
+
# rgb = self.resize(rgb, height, width)
|
854 |
+
|
855 |
+
# depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)
|
856 |
+
|
857 |
+
# if self.config.do_convert_grayscale and depth.ndim == 3:
|
858 |
+
# depth = depth.unsqueeze(1)
|
859 |
+
|
860 |
+
# channel = depth.shape[1]
|
861 |
+
# # don't need any preprocess if the image is latents
|
862 |
+
# if depth == 4:
|
863 |
+
# return rgb, depth
|
864 |
+
|
865 |
+
# height, width = self.get_default_height_width(depth, height, width)
|
866 |
+
# if self.config.do_resize:
|
867 |
+
# depth = self.resize(depth, height, width)
|
868 |
+
# expected range [0,1], normalize to [-1,1]
|
869 |
+
do_normalize = self.config.do_normalize
|
870 |
+
if rgb.min() < 0 and do_normalize:
|
871 |
+
warnings.warn(
|
872 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
873 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
|
874 |
+
FutureWarning,
|
875 |
+
)
|
876 |
+
do_normalize = False
|
877 |
+
|
878 |
+
if do_normalize:
|
879 |
+
rgb = self.normalize(rgb)
|
880 |
+
depth = self.normalize(depth)
|
881 |
+
|
882 |
+
if self.config.do_binarize:
|
883 |
+
rgb = self.binarize(rgb)
|
884 |
+
depth = self.binarize(depth)
|
885 |
+
|
886 |
+
return rgb, depth
|
887 |
+
|
888 |
+
|
889 |
+
class IPAdapterMaskProcessor(VaeImageProcessor):
|
890 |
+
"""
|
891 |
+
Image processor for IP Adapter image masks.
|
892 |
+
|
893 |
+
Args:
|
894 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
895 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
896 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
897 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
898 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
899 |
+
Resampling filter to use when resizing the image.
|
900 |
+
do_normalize (`bool`, *optional*, defaults to `False`):
|
901 |
+
Whether to normalize the image to [-1,1].
|
902 |
+
do_binarize (`bool`, *optional*, defaults to `True`):
|
903 |
+
Whether to binarize the image to 0/1.
|
904 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
|
905 |
+
Whether to convert the images to grayscale format.
|
906 |
+
|
907 |
+
"""
|
908 |
+
|
909 |
+
config_name = CONFIG_NAME
|
910 |
+
|
911 |
+
@register_to_config
|
912 |
+
def __init__(
|
913 |
+
self,
|
914 |
+
do_resize: bool = True,
|
915 |
+
vae_scale_factor: int = 8,
|
916 |
+
resample: str = "lanczos",
|
917 |
+
do_normalize: bool = False,
|
918 |
+
do_binarize: bool = True,
|
919 |
+
do_convert_grayscale: bool = True,
|
920 |
+
):
|
921 |
+
super().__init__(
|
922 |
+
do_resize=do_resize,
|
923 |
+
vae_scale_factor=vae_scale_factor,
|
924 |
+
resample=resample,
|
925 |
+
do_normalize=do_normalize,
|
926 |
+
do_binarize=do_binarize,
|
927 |
+
do_convert_grayscale=do_convert_grayscale,
|
928 |
+
)
|
929 |
+
|
930 |
+
@staticmethod
|
931 |
+
def downsample(mask: torch.FloatTensor, batch_size: int, num_queries: int, value_embed_dim: int):
|
932 |
+
"""
|
933 |
+
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention.
|
934 |
+
If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
|
935 |
+
|
936 |
+
Args:
|
937 |
+
mask (`torch.FloatTensor`):
|
938 |
+
The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
|
939 |
+
batch_size (`int`):
|
940 |
+
The batch size.
|
941 |
+
num_queries (`int`):
|
942 |
+
The number of queries.
|
943 |
+
value_embed_dim (`int`):
|
944 |
+
The dimensionality of the value embeddings.
|
945 |
+
|
946 |
+
Returns:
|
947 |
+
`torch.FloatTensor`:
|
948 |
+
The downsampled mask tensor.
|
949 |
+
|
950 |
+
"""
|
951 |
+
o_h = mask.shape[1]
|
952 |
+
o_w = mask.shape[2]
|
953 |
+
ratio = o_w / o_h
|
954 |
+
mask_h = int(math.sqrt(num_queries / ratio))
|
955 |
+
mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
|
956 |
+
mask_w = num_queries // mask_h
|
957 |
+
|
958 |
+
mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)
|
959 |
+
|
960 |
+
# Repeat batch_size times
|
961 |
+
if mask_downsample.shape[0] < batch_size:
|
962 |
+
mask_downsample = mask_downsample.repeat(batch_size, 1, 1)
|
963 |
+
|
964 |
+
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)
|
965 |
+
|
966 |
+
downsampled_area = mask_h * mask_w
|
967 |
+
# If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
|
968 |
+
# Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
|
969 |
+
if downsampled_area < num_queries:
|
970 |
+
warnings.warn(
|
971 |
+
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
|
972 |
+
"Please update your masks or adjust the output size for optimal performance.",
|
973 |
+
UserWarning,
|
974 |
+
)
|
975 |
+
mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
|
976 |
+
# Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
|
977 |
+
if downsampled_area > num_queries:
|
978 |
+
warnings.warn(
|
979 |
+
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
|
980 |
+
"Please update your masks or adjust the output size for optimal performance.",
|
981 |
+
UserWarning,
|
982 |
+
)
|
983 |
+
mask_downsample = mask_downsample[:, :num_queries]
|
984 |
+
|
985 |
+
# Repeat last dimension to match SDPA output shape
|
986 |
+
mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
|
987 |
+
1, 1, value_embed_dim
|
988 |
+
)
|
989 |
+
|
990 |
+
return mask_downsample
|
model/diffusers_c/loaders/__init__.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TYPE_CHECKING
|
2 |
+
|
3 |
+
from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
|
4 |
+
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
|
5 |
+
|
6 |
+
|
7 |
+
def text_encoder_lora_state_dict(text_encoder):
|
8 |
+
deprecate(
|
9 |
+
"text_encoder_load_state_dict in `models`",
|
10 |
+
"0.27.0",
|
11 |
+
"`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
|
12 |
+
)
|
13 |
+
state_dict = {}
|
14 |
+
|
15 |
+
for name, module in text_encoder_attn_modules(text_encoder):
|
16 |
+
for k, v in module.q_proj.lora_linear_layer.state_dict().items():
|
17 |
+
state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v
|
18 |
+
|
19 |
+
for k, v in module.k_proj.lora_linear_layer.state_dict().items():
|
20 |
+
state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v
|
21 |
+
|
22 |
+
for k, v in module.v_proj.lora_linear_layer.state_dict().items():
|
23 |
+
state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v
|
24 |
+
|
25 |
+
for k, v in module.out_proj.lora_linear_layer.state_dict().items():
|
26 |
+
state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v
|
27 |
+
|
28 |
+
return state_dict
|
29 |
+
|
30 |
+
|
31 |
+
if is_transformers_available():
|
32 |
+
|
33 |
+
def text_encoder_attn_modules(text_encoder):
|
34 |
+
deprecate(
|
35 |
+
"text_encoder_attn_modules in `models`",
|
36 |
+
"0.27.0",
|
37 |
+
"`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
|
38 |
+
)
|
39 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection
|
40 |
+
|
41 |
+
attn_modules = []
|
42 |
+
|
43 |
+
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
|
44 |
+
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
|
45 |
+
name = f"text_model.encoder.layers.{i}.self_attn"
|
46 |
+
mod = layer.self_attn
|
47 |
+
attn_modules.append((name, mod))
|
48 |
+
else:
|
49 |
+
raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
|
50 |
+
|
51 |
+
return attn_modules
|
52 |
+
|
53 |
+
|
54 |
+
_import_structure = {}
|
55 |
+
|
56 |
+
if is_torch_available():
|
57 |
+
_import_structure["autoencoder"] = ["FromOriginalVAEMixin"]
|
58 |
+
|
59 |
+
_import_structure["controlnet"] = ["FromOriginalControlNetMixin"]
|
60 |
+
_import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
|
61 |
+
_import_structure["utils"] = ["AttnProcsLayers"]
|
62 |
+
if is_transformers_available():
|
63 |
+
_import_structure["single_file"] = ["FromSingleFileMixin"]
|
64 |
+
_import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin"]
|
65 |
+
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
|
66 |
+
_import_structure["ip_adapter"] = ["IPAdapterMixin"]
|
67 |
+
|
68 |
+
_import_structure["peft"] = ["PeftAdapterMixin"]
|
69 |
+
|
70 |
+
|
71 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
72 |
+
if is_torch_available():
|
73 |
+
from .autoencoder import FromOriginalVAEMixin
|
74 |
+
from .controlnet import FromOriginalControlNetMixin
|
75 |
+
from .unet import UNet2DConditionLoadersMixin
|
76 |
+
from .utils import AttnProcsLayers
|
77 |
+
|
78 |
+
if is_transformers_available():
|
79 |
+
from .ip_adapter import IPAdapterMixin
|
80 |
+
from .lora import LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin
|
81 |
+
from .single_file import FromSingleFileMixin
|
82 |
+
from .textual_inversion import TextualInversionLoaderMixin
|
83 |
+
|
84 |
+
from .peft import PeftAdapterMixin
|
85 |
+
else:
|
86 |
+
import sys
|
87 |
+
|
88 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
model/diffusers_c/loaders/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.82 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (2.84 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/autoencoder.cpython-310.pyc
ADDED
Binary file (6.4 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/autoencoder.cpython-39.pyc
ADDED
Binary file (6.42 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/controlnet.cpython-39.pyc
ADDED
Binary file (5.83 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/ip_adapter.cpython-39.pyc
ADDED
Binary file (9.86 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/lora.cpython-39.pyc
ADDED
Binary file (44.1 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/lora_conversion_utils.cpython-39.pyc
ADDED
Binary file (7.2 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/peft.cpython-310.pyc
ADDED
Binary file (6.08 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/peft.cpython-39.pyc
ADDED
Binary file (6.18 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/single_file.cpython-39.pyc
ADDED
Binary file (9.77 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/single_file_utils.cpython-310.pyc
ADDED
Binary file (36.4 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/single_file_utils.cpython-39.pyc
ADDED
Binary file (37.5 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/textual_inversion.cpython-39.pyc
ADDED
Binary file (19.3 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/unet.cpython-310.pyc
ADDED
Binary file (27.6 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/unet.cpython-39.pyc
ADDED
Binary file (27.6 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (2.08 kB). View file
|
|
model/diffusers_c/loaders/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (2.09 kB). View file
|
|
model/diffusers_c/loaders/autoencoder.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
16 |
+
|
17 |
+
from .single_file_utils import (
|
18 |
+
create_diffusers_vae_model_from_ldm,
|
19 |
+
fetch_ldm_config_and_checkpoint,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
class FromOriginalVAEMixin:
|
24 |
+
"""
|
25 |
+
Load pretrained AutoencoderKL weights saved in the `.ckpt` or `.safetensors` format into a [`AutoencoderKL`].
|
26 |
+
"""
|
27 |
+
|
28 |
+
@classmethod
|
29 |
+
@validate_hf_hub_args
|
30 |
+
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
31 |
+
r"""
|
32 |
+
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
33 |
+
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
37 |
+
Can be either:
|
38 |
+
- A link to the `.ckpt` file (for example
|
39 |
+
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
40 |
+
- A path to a *file* containing all pipeline weights.
|
41 |
+
config_file (`str`, *optional*):
|
42 |
+
Filepath to the configuration YAML file associated with the model. If not provided it will default to:
|
43 |
+
https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
|
44 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
45 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
46 |
+
dtype is automatically derived from the model's weights.
|
47 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
48 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
49 |
+
cached versions if they exist.
|
50 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
51 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
52 |
+
is not used.
|
53 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
54 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
55 |
+
incompletely downloaded files are deleted.
|
56 |
+
proxies (`Dict[str, str]`, *optional*):
|
57 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
58 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
59 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to only load local model weights and configuration files or not. If set to True, the model
|
61 |
+
won't be downloaded from the Hub.
|
62 |
+
token (`str` or *bool*, *optional*):
|
63 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
64 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
65 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
66 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
67 |
+
allowed by Git.
|
68 |
+
image_size (`int`, *optional*, defaults to 512):
|
69 |
+
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
70 |
+
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
71 |
+
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
72 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
73 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
74 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
75 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
|
76 |
+
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
|
77 |
+
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
78 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
79 |
+
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
80 |
+
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
81 |
+
method. See example below for more information.
|
82 |
+
|
83 |
+
<Tip warning={true}>
|
84 |
+
|
85 |
+
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
|
86 |
+
a VAE from SDXL or a Stable Diffusion v2 model or higher.
|
87 |
+
|
88 |
+
</Tip>
|
89 |
+
|
90 |
+
Examples:
|
91 |
+
|
92 |
+
```py
|
93 |
+
from diffusers import AutoencoderKL
|
94 |
+
|
95 |
+
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
|
96 |
+
model = AutoencoderKL.from_single_file(url)
|
97 |
+
```
|
98 |
+
"""
|
99 |
+
|
100 |
+
original_config_file = kwargs.pop("original_config_file", None)
|
101 |
+
config_file = kwargs.pop("config_file", None)
|
102 |
+
resume_download = kwargs.pop("resume_download", False)
|
103 |
+
force_download = kwargs.pop("force_download", False)
|
104 |
+
proxies = kwargs.pop("proxies", None)
|
105 |
+
token = kwargs.pop("token", None)
|
106 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
107 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
108 |
+
revision = kwargs.pop("revision", None)
|
109 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
110 |
+
|
111 |
+
class_name = cls.__name__
|
112 |
+
|
113 |
+
if (config_file is not None) and (original_config_file is not None):
|
114 |
+
raise ValueError(
|
115 |
+
"You cannot pass both `config_file` and `original_config_file` to `from_single_file`. Please use only one of these arguments."
|
116 |
+
)
|
117 |
+
|
118 |
+
original_config_file = original_config_file or config_file
|
119 |
+
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
|
120 |
+
pretrained_model_link_or_path=pretrained_model_link_or_path,
|
121 |
+
class_name=class_name,
|
122 |
+
original_config_file=original_config_file,
|
123 |
+
resume_download=resume_download,
|
124 |
+
force_download=force_download,
|
125 |
+
proxies=proxies,
|
126 |
+
token=token,
|
127 |
+
revision=revision,
|
128 |
+
local_files_only=local_files_only,
|
129 |
+
cache_dir=cache_dir,
|
130 |
+
)
|
131 |
+
|
132 |
+
image_size = kwargs.pop("image_size", None)
|
133 |
+
scaling_factor = kwargs.pop("scaling_factor", None)
|
134 |
+
component = create_diffusers_vae_model_from_ldm(
|
135 |
+
class_name,
|
136 |
+
original_config,
|
137 |
+
checkpoint,
|
138 |
+
image_size=image_size,
|
139 |
+
scaling_factor=scaling_factor,
|
140 |
+
torch_dtype=torch_dtype,
|
141 |
+
)
|
142 |
+
vae = component["vae"]
|
143 |
+
if torch_dtype is not None:
|
144 |
+
vae = vae.to(torch_dtype)
|
145 |
+
|
146 |
+
return vae
|
model/diffusers_c/loaders/controlnet.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
16 |
+
|
17 |
+
from .single_file_utils import (
|
18 |
+
create_diffusers_controlnet_model_from_ldm,
|
19 |
+
fetch_ldm_config_and_checkpoint,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
class FromOriginalControlNetMixin:
|
24 |
+
"""
|
25 |
+
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
|
26 |
+
"""
|
27 |
+
|
28 |
+
@classmethod
|
29 |
+
@validate_hf_hub_args
|
30 |
+
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
31 |
+
r"""
|
32 |
+
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
33 |
+
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
37 |
+
Can be either:
|
38 |
+
- A link to the `.ckpt` file (for example
|
39 |
+
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
40 |
+
- A path to a *file* containing all pipeline weights.
|
41 |
+
config_file (`str`, *optional*):
|
42 |
+
Filepath to the configuration YAML file associated with the model. If not provided it will default to:
|
43 |
+
https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml
|
44 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
45 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
46 |
+
dtype is automatically derived from the model's weights.
|
47 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
48 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
49 |
+
cached versions if they exist.
|
50 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
51 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
52 |
+
is not used.
|
53 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
54 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
55 |
+
incompletely downloaded files are deleted.
|
56 |
+
proxies (`Dict[str, str]`, *optional*):
|
57 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
58 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
59 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to only load local model weights and configuration files or not. If set to True, the model
|
61 |
+
won't be downloaded from the Hub.
|
62 |
+
token (`str` or *bool*, *optional*):
|
63 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
64 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
65 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
66 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
67 |
+
allowed by Git.
|
68 |
+
image_size (`int`, *optional*, defaults to 512):
|
69 |
+
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
70 |
+
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
71 |
+
upcast_attention (`bool`, *optional*, defaults to `None`):
|
72 |
+
Whether the attention computation should always be upcasted.
|
73 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
74 |
+
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
75 |
+
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
76 |
+
method. See example below for more information.
|
77 |
+
|
78 |
+
Examples:
|
79 |
+
|
80 |
+
```py
|
81 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
82 |
+
|
83 |
+
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
|
84 |
+
model = ControlNetModel.from_single_file(url)
|
85 |
+
|
86 |
+
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
|
87 |
+
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
|
88 |
+
```
|
89 |
+
"""
|
90 |
+
original_config_file = kwargs.pop("original_config_file", None)
|
91 |
+
config_file = kwargs.pop("config_file", None)
|
92 |
+
resume_download = kwargs.pop("resume_download", False)
|
93 |
+
force_download = kwargs.pop("force_download", False)
|
94 |
+
proxies = kwargs.pop("proxies", None)
|
95 |
+
token = kwargs.pop("token", None)
|
96 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
97 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
98 |
+
revision = kwargs.pop("revision", None)
|
99 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
100 |
+
|
101 |
+
class_name = cls.__name__
|
102 |
+
if (config_file is not None) and (original_config_file is not None):
|
103 |
+
raise ValueError(
|
104 |
+
"You cannot pass both `config_file` and `original_config_file` to `from_single_file`. Please use only one of these arguments."
|
105 |
+
)
|
106 |
+
|
107 |
+
original_config_file = config_file or original_config_file
|
108 |
+
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
|
109 |
+
pretrained_model_link_or_path=pretrained_model_link_or_path,
|
110 |
+
class_name=class_name,
|
111 |
+
original_config_file=original_config_file,
|
112 |
+
resume_download=resume_download,
|
113 |
+
force_download=force_download,
|
114 |
+
proxies=proxies,
|
115 |
+
token=token,
|
116 |
+
revision=revision,
|
117 |
+
local_files_only=local_files_only,
|
118 |
+
cache_dir=cache_dir,
|
119 |
+
)
|
120 |
+
|
121 |
+
upcast_attention = kwargs.pop("upcast_attention", False)
|
122 |
+
image_size = kwargs.pop("image_size", None)
|
123 |
+
|
124 |
+
component = create_diffusers_controlnet_model_from_ldm(
|
125 |
+
class_name,
|
126 |
+
original_config,
|
127 |
+
checkpoint,
|
128 |
+
upcast_attention=upcast_attention,
|
129 |
+
image_size=image_size,
|
130 |
+
torch_dtype=torch_dtype,
|
131 |
+
)
|
132 |
+
controlnet = component["controlnet"]
|
133 |
+
if torch_dtype is not None:
|
134 |
+
controlnet = controlnet.to(torch_dtype)
|
135 |
+
|
136 |
+
return controlnet
|
model/diffusers_c/loaders/ip_adapter.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
20 |
+
from safetensors import safe_open
|
21 |
+
|
22 |
+
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
23 |
+
from ..utils import (
|
24 |
+
_get_model_file,
|
25 |
+
is_accelerate_available,
|
26 |
+
is_torch_version,
|
27 |
+
is_transformers_available,
|
28 |
+
logging,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
if is_transformers_available():
|
33 |
+
from transformers import (
|
34 |
+
CLIPImageProcessor,
|
35 |
+
CLIPVisionModelWithProjection,
|
36 |
+
)
|
37 |
+
|
38 |
+
from ..models.attention_processor import (
|
39 |
+
IPAdapterAttnProcessor,
|
40 |
+
IPAdapterAttnProcessor2_0,
|
41 |
+
)
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__)
|
44 |
+
|
45 |
+
|
46 |
+
class IPAdapterMixin:
|
47 |
+
"""Mixin for handling IP Adapters."""
|
48 |
+
|
49 |
+
@validate_hf_hub_args
|
50 |
+
def load_ip_adapter(
|
51 |
+
self,
|
52 |
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
53 |
+
subfolder: Union[str, List[str]],
|
54 |
+
weight_name: Union[str, List[str]],
|
55 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
56 |
+
**kwargs,
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Parameters:
|
60 |
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
61 |
+
Can be either:
|
62 |
+
|
63 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
64 |
+
the Hub.
|
65 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
66 |
+
with [`ModelMixin.save_pretrained`].
|
67 |
+
- A [torch state
|
68 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
69 |
+
subfolder (`str` or `List[str]`):
|
70 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
71 |
+
If a list is passed, it should have the same length as `weight_name`.
|
72 |
+
weight_name (`str` or `List[str]`):
|
73 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
74 |
+
`weight_name`.
|
75 |
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
76 |
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
77 |
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside `subfolder`,
|
78 |
+
you only need to pass the name of the folder that contains image encoder weights, e.g. `image_encoder_folder="image_encoder"`.
|
79 |
+
If the image encoder is located in a folder other than `subfolder`, you should pass the path to the folder that contains image encoder weights,
|
80 |
+
for example, `image_encoder_folder="different_subfolder/image_encoder"`.
|
81 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
82 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
83 |
+
is not used.
|
84 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
86 |
+
cached versions if they exist.
|
87 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
88 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
89 |
+
incompletely downloaded files are deleted.
|
90 |
+
proxies (`Dict[str, str]`, *optional*):
|
91 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
92 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
93 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
95 |
+
won't be downloaded from the Hub.
|
96 |
+
token (`str` or *bool*, *optional*):
|
97 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
98 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
99 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
100 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
101 |
+
allowed by Git.
|
102 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
103 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
104 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
105 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
106 |
+
argument to `True` will raise an error.
|
107 |
+
"""
|
108 |
+
|
109 |
+
# handle the list inputs for multiple IP Adapters
|
110 |
+
if not isinstance(weight_name, list):
|
111 |
+
weight_name = [weight_name]
|
112 |
+
|
113 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
114 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
115 |
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
116 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
117 |
+
|
118 |
+
if not isinstance(subfolder, list):
|
119 |
+
subfolder = [subfolder]
|
120 |
+
if len(subfolder) == 1:
|
121 |
+
subfolder = subfolder * len(weight_name)
|
122 |
+
|
123 |
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
124 |
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
125 |
+
|
126 |
+
if len(weight_name) != len(subfolder):
|
127 |
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
128 |
+
|
129 |
+
# Load the main state dict first.
|
130 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
131 |
+
force_download = kwargs.pop("force_download", False)
|
132 |
+
resume_download = kwargs.pop("resume_download", False)
|
133 |
+
proxies = kwargs.pop("proxies", None)
|
134 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
135 |
+
token = kwargs.pop("token", None)
|
136 |
+
revision = kwargs.pop("revision", None)
|
137 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
138 |
+
|
139 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
140 |
+
low_cpu_mem_usage = False
|
141 |
+
logger.warning(
|
142 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
143 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
144 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
145 |
+
" install accelerate\n```\n."
|
146 |
+
)
|
147 |
+
|
148 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
149 |
+
raise NotImplementedError(
|
150 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
151 |
+
" `low_cpu_mem_usage=False`."
|
152 |
+
)
|
153 |
+
|
154 |
+
user_agent = {
|
155 |
+
"file_type": "attn_procs_weights",
|
156 |
+
"framework": "pytorch",
|
157 |
+
}
|
158 |
+
state_dicts = []
|
159 |
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
160 |
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
161 |
+
):
|
162 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
163 |
+
model_file = _get_model_file(
|
164 |
+
pretrained_model_name_or_path_or_dict,
|
165 |
+
weights_name=weight_name,
|
166 |
+
cache_dir=cache_dir,
|
167 |
+
force_download=force_download,
|
168 |
+
resume_download=resume_download,
|
169 |
+
proxies=proxies,
|
170 |
+
local_files_only=local_files_only,
|
171 |
+
token=token,
|
172 |
+
revision=revision,
|
173 |
+
subfolder=subfolder,
|
174 |
+
user_agent=user_agent,
|
175 |
+
)
|
176 |
+
if weight_name.endswith(".safetensors"):
|
177 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
178 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
179 |
+
for key in f.keys():
|
180 |
+
if key.startswith("image_proj."):
|
181 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
182 |
+
elif key.startswith("ip_adapter."):
|
183 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
184 |
+
else:
|
185 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
186 |
+
else:
|
187 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
188 |
+
|
189 |
+
keys = list(state_dict.keys())
|
190 |
+
if keys != ["image_proj", "ip_adapter"]:
|
191 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
192 |
+
|
193 |
+
state_dicts.append(state_dict)
|
194 |
+
|
195 |
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
196 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
197 |
+
if image_encoder_folder is not None:
|
198 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
199 |
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
200 |
+
if image_encoder_folder.count("/") == 0:
|
201 |
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
202 |
+
else:
|
203 |
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
204 |
+
|
205 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
206 |
+
pretrained_model_name_or_path_or_dict,
|
207 |
+
subfolder=image_encoder_subfolder,
|
208 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
209 |
+
).to(self.device, dtype=self.dtype)
|
210 |
+
self.register_modules(image_encoder=image_encoder)
|
211 |
+
else:
|
212 |
+
raise ValueError(
|
213 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
214 |
+
)
|
215 |
+
else:
|
216 |
+
logger.warning(
|
217 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
218 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
219 |
+
)
|
220 |
+
|
221 |
+
# create feature extractor if it has not been registered to the pipeline yet
|
222 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
223 |
+
feature_extractor = CLIPImageProcessor()
|
224 |
+
self.register_modules(feature_extractor=feature_extractor)
|
225 |
+
|
226 |
+
# load ip-adapter into unet
|
227 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
228 |
+
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
229 |
+
|
230 |
+
def set_ip_adapter_scale(self, scale):
|
231 |
+
"""
|
232 |
+
Sets the conditioning scale between text and image.
|
233 |
+
|
234 |
+
Example:
|
235 |
+
|
236 |
+
```py
|
237 |
+
pipeline.set_ip_adapter_scale(0.5)
|
238 |
+
```
|
239 |
+
"""
|
240 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
241 |
+
for attn_processor in unet.attn_processors.values():
|
242 |
+
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
|
243 |
+
if not isinstance(scale, list):
|
244 |
+
scale = [scale] * len(attn_processor.scale)
|
245 |
+
if len(attn_processor.scale) != len(scale):
|
246 |
+
raise ValueError(
|
247 |
+
f"`scale` should be a list of same length as the number if ip-adapters "
|
248 |
+
f"Expected {len(attn_processor.scale)} but got {len(scale)}."
|
249 |
+
)
|
250 |
+
attn_processor.scale = scale
|
251 |
+
|
252 |
+
def unload_ip_adapter(self):
|
253 |
+
"""
|
254 |
+
Unloads the IP Adapter weights
|
255 |
+
|
256 |
+
Examples:
|
257 |
+
|
258 |
+
```python
|
259 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
260 |
+
>>> pipeline.unload_ip_adapter()
|
261 |
+
>>> ...
|
262 |
+
```
|
263 |
+
"""
|
264 |
+
# remove CLIP image encoder
|
265 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
266 |
+
self.image_encoder = None
|
267 |
+
self.register_to_config(image_encoder=[None, None])
|
268 |
+
|
269 |
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
270 |
+
# the feature_extractor later
|
271 |
+
if not hasattr(self, "safety_checker"):
|
272 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
273 |
+
self.feature_extractor = None
|
274 |
+
self.register_to_config(feature_extractor=[None, None])
|
275 |
+
|
276 |
+
# remove hidden encoder
|
277 |
+
self.unet.encoder_hid_proj = None
|
278 |
+
self.config.encoder_hid_dim_type = None
|
279 |
+
|
280 |
+
# restore original Unet attention processors layers
|
281 |
+
self.unet.set_default_attn_processor()
|
model/diffusers_c/loaders/lora.py
ADDED
@@ -0,0 +1,1349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import inspect
|
15 |
+
import os
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import safetensors
|
20 |
+
import torch
|
21 |
+
from huggingface_hub import model_info
|
22 |
+
from huggingface_hub.constants import HF_HUB_OFFLINE
|
23 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
24 |
+
from packaging import version
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from .. import __version__
|
28 |
+
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
|
29 |
+
from ..utils import (
|
30 |
+
USE_PEFT_BACKEND,
|
31 |
+
_get_model_file,
|
32 |
+
convert_state_dict_to_diffusers,
|
33 |
+
convert_state_dict_to_peft,
|
34 |
+
convert_unet_state_dict_to_peft,
|
35 |
+
delete_adapter_layers,
|
36 |
+
get_adapter_name,
|
37 |
+
get_peft_kwargs,
|
38 |
+
is_accelerate_available,
|
39 |
+
is_transformers_available,
|
40 |
+
logging,
|
41 |
+
recurse_remove_peft_layers,
|
42 |
+
scale_lora_layers,
|
43 |
+
set_adapter_layers,
|
44 |
+
set_weights_and_activate_adapters,
|
45 |
+
)
|
46 |
+
from .lora_conversion_utils import _convert_kohya_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
|
47 |
+
|
48 |
+
|
49 |
+
if is_transformers_available():
|
50 |
+
from transformers import PreTrainedModel
|
51 |
+
|
52 |
+
from ..models.lora import text_encoder_attn_modules, text_encoder_mlp_modules
|
53 |
+
|
54 |
+
if is_accelerate_available():
|
55 |
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
TEXT_ENCODER_NAME = "text_encoder"
|
60 |
+
UNET_NAME = "unet"
|
61 |
+
TRANSFORMER_NAME = "transformer"
|
62 |
+
|
63 |
+
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
64 |
+
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
65 |
+
|
66 |
+
LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future."
|
67 |
+
|
68 |
+
|
69 |
+
class LoraLoaderMixin:
|
70 |
+
r"""
|
71 |
+
Load LoRA layers into [`UNet2DConditionModel`] and
|
72 |
+
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
|
73 |
+
"""
|
74 |
+
|
75 |
+
text_encoder_name = TEXT_ENCODER_NAME
|
76 |
+
unet_name = UNET_NAME
|
77 |
+
transformer_name = TRANSFORMER_NAME
|
78 |
+
num_fused_loras = 0
|
79 |
+
|
80 |
+
def load_lora_weights(
|
81 |
+
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
|
82 |
+
):
|
83 |
+
"""
|
84 |
+
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
|
85 |
+
`self.text_encoder`.
|
86 |
+
|
87 |
+
All kwargs are forwarded to `self.lora_state_dict`.
|
88 |
+
|
89 |
+
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
|
90 |
+
|
91 |
+
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
|
92 |
+
`self.unet`.
|
93 |
+
|
94 |
+
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
|
95 |
+
into `self.text_encoder`.
|
96 |
+
|
97 |
+
Parameters:
|
98 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
99 |
+
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
|
100 |
+
kwargs (`dict`, *optional*):
|
101 |
+
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
|
102 |
+
adapter_name (`str`, *optional*):
|
103 |
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
104 |
+
`default_{i}` where i is the total number of adapters being loaded.
|
105 |
+
"""
|
106 |
+
if not USE_PEFT_BACKEND:
|
107 |
+
raise ValueError("PEFT backend is required for this method.")
|
108 |
+
|
109 |
+
# if a dict is passed, copy it instead of modifying it inplace
|
110 |
+
if isinstance(pretrained_model_name_or_path_or_dict, dict):
|
111 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
|
112 |
+
|
113 |
+
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
|
114 |
+
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
|
115 |
+
|
116 |
+
is_correct_format = all("lora" in key for key in state_dict.keys())
|
117 |
+
if not is_correct_format:
|
118 |
+
raise ValueError("Invalid LoRA checkpoint.")
|
119 |
+
|
120 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
121 |
+
|
122 |
+
self.load_lora_into_unet(
|
123 |
+
state_dict,
|
124 |
+
network_alphas=network_alphas,
|
125 |
+
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
|
126 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
127 |
+
adapter_name=adapter_name,
|
128 |
+
_pipeline=self,
|
129 |
+
)
|
130 |
+
self.load_lora_into_text_encoder(
|
131 |
+
state_dict,
|
132 |
+
network_alphas=network_alphas,
|
133 |
+
text_encoder=getattr(self, self.text_encoder_name)
|
134 |
+
if not hasattr(self, "text_encoder")
|
135 |
+
else self.text_encoder,
|
136 |
+
lora_scale=self.lora_scale,
|
137 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
138 |
+
adapter_name=adapter_name,
|
139 |
+
_pipeline=self,
|
140 |
+
)
|
141 |
+
|
142 |
+
@classmethod
|
143 |
+
@validate_hf_hub_args
|
144 |
+
def lora_state_dict(
|
145 |
+
cls,
|
146 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
147 |
+
**kwargs,
|
148 |
+
):
|
149 |
+
r"""
|
150 |
+
Return state dict for lora weights and the network alphas.
|
151 |
+
|
152 |
+
<Tip warning={true}>
|
153 |
+
|
154 |
+
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
|
155 |
+
|
156 |
+
This function is experimental and might change in the future.
|
157 |
+
|
158 |
+
</Tip>
|
159 |
+
|
160 |
+
Parameters:
|
161 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
162 |
+
Can be either:
|
163 |
+
|
164 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
165 |
+
the Hub.
|
166 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
167 |
+
with [`ModelMixin.save_pretrained`].
|
168 |
+
- A [torch state
|
169 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
170 |
+
|
171 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
172 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
173 |
+
is not used.
|
174 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
175 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
176 |
+
cached versions if they exist.
|
177 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
178 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
179 |
+
incompletely downloaded files are deleted.
|
180 |
+
proxies (`Dict[str, str]`, *optional*):
|
181 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
182 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
183 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
184 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
185 |
+
won't be downloaded from the Hub.
|
186 |
+
token (`str` or *bool*, *optional*):
|
187 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
188 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
189 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
190 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
191 |
+
allowed by Git.
|
192 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
193 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
194 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
195 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
196 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
197 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
198 |
+
argument to `True` will raise an error.
|
199 |
+
mirror (`str`, *optional*):
|
200 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
201 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
202 |
+
information.
|
203 |
+
|
204 |
+
"""
|
205 |
+
# Load the main state dict first which has the LoRA layers for either of
|
206 |
+
# UNet and text encoder or both.
|
207 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
208 |
+
force_download = kwargs.pop("force_download", False)
|
209 |
+
resume_download = kwargs.pop("resume_download", False)
|
210 |
+
proxies = kwargs.pop("proxies", None)
|
211 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
212 |
+
token = kwargs.pop("token", None)
|
213 |
+
revision = kwargs.pop("revision", None)
|
214 |
+
subfolder = kwargs.pop("subfolder", None)
|
215 |
+
weight_name = kwargs.pop("weight_name", None)
|
216 |
+
unet_config = kwargs.pop("unet_config", None)
|
217 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
218 |
+
|
219 |
+
allow_pickle = False
|
220 |
+
if use_safetensors is None:
|
221 |
+
use_safetensors = True
|
222 |
+
allow_pickle = True
|
223 |
+
|
224 |
+
user_agent = {
|
225 |
+
"file_type": "attn_procs_weights",
|
226 |
+
"framework": "pytorch",
|
227 |
+
}
|
228 |
+
|
229 |
+
model_file = None
|
230 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
231 |
+
# Let's first try to load .safetensors weights
|
232 |
+
if (use_safetensors and weight_name is None) or (
|
233 |
+
weight_name is not None and weight_name.endswith(".safetensors")
|
234 |
+
):
|
235 |
+
try:
|
236 |
+
# Here we're relaxing the loading check to enable more Inference API
|
237 |
+
# friendliness where sometimes, it's not at all possible to automatically
|
238 |
+
# determine `weight_name`.
|
239 |
+
if weight_name is None:
|
240 |
+
weight_name = cls._best_guess_weight_name(
|
241 |
+
pretrained_model_name_or_path_or_dict,
|
242 |
+
file_extension=".safetensors",
|
243 |
+
local_files_only=local_files_only,
|
244 |
+
)
|
245 |
+
model_file = _get_model_file(
|
246 |
+
pretrained_model_name_or_path_or_dict,
|
247 |
+
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
248 |
+
cache_dir=cache_dir,
|
249 |
+
force_download=force_download,
|
250 |
+
resume_download=resume_download,
|
251 |
+
proxies=proxies,
|
252 |
+
local_files_only=local_files_only,
|
253 |
+
token=token,
|
254 |
+
revision=revision,
|
255 |
+
subfolder=subfolder,
|
256 |
+
user_agent=user_agent,
|
257 |
+
)
|
258 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
259 |
+
except (IOError, safetensors.SafetensorError) as e:
|
260 |
+
if not allow_pickle:
|
261 |
+
raise e
|
262 |
+
# try loading non-safetensors weights
|
263 |
+
model_file = None
|
264 |
+
pass
|
265 |
+
|
266 |
+
if model_file is None:
|
267 |
+
if weight_name is None:
|
268 |
+
weight_name = cls._best_guess_weight_name(
|
269 |
+
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
|
270 |
+
)
|
271 |
+
model_file = _get_model_file(
|
272 |
+
pretrained_model_name_or_path_or_dict,
|
273 |
+
weights_name=weight_name or LORA_WEIGHT_NAME,
|
274 |
+
cache_dir=cache_dir,
|
275 |
+
force_download=force_download,
|
276 |
+
resume_download=resume_download,
|
277 |
+
proxies=proxies,
|
278 |
+
local_files_only=local_files_only,
|
279 |
+
token=token,
|
280 |
+
revision=revision,
|
281 |
+
subfolder=subfolder,
|
282 |
+
user_agent=user_agent,
|
283 |
+
)
|
284 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
285 |
+
else:
|
286 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
287 |
+
|
288 |
+
network_alphas = None
|
289 |
+
# TODO: replace it with a method from `state_dict_utils`
|
290 |
+
if all(
|
291 |
+
(
|
292 |
+
k.startswith("lora_te_")
|
293 |
+
or k.startswith("lora_unet_")
|
294 |
+
or k.startswith("lora_te1_")
|
295 |
+
or k.startswith("lora_te2_")
|
296 |
+
)
|
297 |
+
for k in state_dict.keys()
|
298 |
+
):
|
299 |
+
# Map SDXL blocks correctly.
|
300 |
+
if unet_config is not None:
|
301 |
+
# use unet config to remap block numbers
|
302 |
+
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
|
303 |
+
state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
|
304 |
+
|
305 |
+
return state_dict, network_alphas
|
306 |
+
|
307 |
+
@classmethod
|
308 |
+
def _best_guess_weight_name(
|
309 |
+
cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
|
310 |
+
):
|
311 |
+
if local_files_only or HF_HUB_OFFLINE:
|
312 |
+
raise ValueError("When using the offline mode, you must specify a `weight_name`.")
|
313 |
+
|
314 |
+
targeted_files = []
|
315 |
+
|
316 |
+
if os.path.isfile(pretrained_model_name_or_path_or_dict):
|
317 |
+
return
|
318 |
+
elif os.path.isdir(pretrained_model_name_or_path_or_dict):
|
319 |
+
targeted_files = [
|
320 |
+
f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
|
321 |
+
]
|
322 |
+
else:
|
323 |
+
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
|
324 |
+
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
|
325 |
+
if len(targeted_files) == 0:
|
326 |
+
return
|
327 |
+
|
328 |
+
# "scheduler" does not correspond to a LoRA checkpoint.
|
329 |
+
# "optimizer" does not correspond to a LoRA checkpoint
|
330 |
+
# only top-level checkpoints are considered and not the other ones, hence "checkpoint".
|
331 |
+
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
|
332 |
+
targeted_files = list(
|
333 |
+
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
|
334 |
+
)
|
335 |
+
|
336 |
+
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
|
337 |
+
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
|
338 |
+
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
|
339 |
+
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
|
340 |
+
|
341 |
+
if len(targeted_files) > 1:
|
342 |
+
raise ValueError(
|
343 |
+
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
|
344 |
+
)
|
345 |
+
weight_name = targeted_files[0]
|
346 |
+
return weight_name
|
347 |
+
|
348 |
+
@classmethod
|
349 |
+
def _optionally_disable_offloading(cls, _pipeline):
|
350 |
+
"""
|
351 |
+
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
352 |
+
|
353 |
+
Args:
|
354 |
+
_pipeline (`DiffusionPipeline`):
|
355 |
+
The pipeline to disable offloading for.
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
tuple:
|
359 |
+
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
360 |
+
"""
|
361 |
+
is_model_cpu_offload = False
|
362 |
+
is_sequential_cpu_offload = False
|
363 |
+
|
364 |
+
if _pipeline is not None:
|
365 |
+
for _, component in _pipeline.components.items():
|
366 |
+
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
367 |
+
if not is_model_cpu_offload:
|
368 |
+
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
|
369 |
+
if not is_sequential_cpu_offload:
|
370 |
+
is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook)
|
371 |
+
|
372 |
+
logger.info(
|
373 |
+
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
374 |
+
)
|
375 |
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
376 |
+
|
377 |
+
return (is_model_cpu_offload, is_sequential_cpu_offload)
|
378 |
+
|
379 |
+
@classmethod
|
380 |
+
def load_lora_into_unet(
|
381 |
+
cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
|
382 |
+
):
|
383 |
+
"""
|
384 |
+
This will load the LoRA layers specified in `state_dict` into `unet`.
|
385 |
+
|
386 |
+
Parameters:
|
387 |
+
state_dict (`dict`):
|
388 |
+
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
|
389 |
+
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
|
390 |
+
encoder lora layers.
|
391 |
+
network_alphas (`Dict[str, float]`):
|
392 |
+
See `LoRALinearLayer` for more details.
|
393 |
+
unet (`UNet2DConditionModel`):
|
394 |
+
The UNet model to load the LoRA layers into.
|
395 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
396 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
397 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
398 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
399 |
+
argument to `True` will raise an error.
|
400 |
+
adapter_name (`str`, *optional*):
|
401 |
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
402 |
+
`default_{i}` where i is the total number of adapters being loaded.
|
403 |
+
"""
|
404 |
+
if not USE_PEFT_BACKEND:
|
405 |
+
raise ValueError("PEFT backend is required for this method.")
|
406 |
+
|
407 |
+
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
408 |
+
|
409 |
+
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
|
410 |
+
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
|
411 |
+
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
|
412 |
+
# their prefixes.
|
413 |
+
keys = list(state_dict.keys())
|
414 |
+
|
415 |
+
if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
|
416 |
+
# Load the layers corresponding to UNet.
|
417 |
+
logger.info(f"Loading {cls.unet_name}.")
|
418 |
+
|
419 |
+
unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
|
420 |
+
state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
|
421 |
+
|
422 |
+
if network_alphas is not None:
|
423 |
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
|
424 |
+
network_alphas = {
|
425 |
+
k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
426 |
+
}
|
427 |
+
|
428 |
+
else:
|
429 |
+
# Otherwise, we're dealing with the old format. This means the `state_dict` should only
|
430 |
+
# contain the module names of the `unet` as its keys WITHOUT any prefix.
|
431 |
+
if not USE_PEFT_BACKEND:
|
432 |
+
warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
|
433 |
+
logger.warn(warn_message)
|
434 |
+
|
435 |
+
if len(state_dict.keys()) > 0:
|
436 |
+
if adapter_name in getattr(unet, "peft_config", {}):
|
437 |
+
raise ValueError(
|
438 |
+
f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
|
439 |
+
)
|
440 |
+
|
441 |
+
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
442 |
+
|
443 |
+
if network_alphas is not None:
|
444 |
+
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
|
445 |
+
# `convert_unet_state_dict_to_peft` method.
|
446 |
+
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
|
447 |
+
|
448 |
+
rank = {}
|
449 |
+
for key, val in state_dict.items():
|
450 |
+
if "lora_B" in key:
|
451 |
+
rank[key] = val.shape[1]
|
452 |
+
|
453 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
|
454 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
455 |
+
|
456 |
+
# adapter_name
|
457 |
+
if adapter_name is None:
|
458 |
+
adapter_name = get_adapter_name(unet)
|
459 |
+
|
460 |
+
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
461 |
+
# otherwise loading LoRA weights will lead to an error
|
462 |
+
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
463 |
+
|
464 |
+
inject_adapter_in_model(lora_config, unet, adapter_name=adapter_name)
|
465 |
+
incompatible_keys = set_peft_model_state_dict(unet, state_dict, adapter_name)
|
466 |
+
|
467 |
+
if incompatible_keys is not None:
|
468 |
+
# check only for unexpected keys
|
469 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
470 |
+
if unexpected_keys:
|
471 |
+
logger.warning(
|
472 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
473 |
+
f" {unexpected_keys}. "
|
474 |
+
)
|
475 |
+
|
476 |
+
# Offload back.
|
477 |
+
if is_model_cpu_offload:
|
478 |
+
_pipeline.enable_model_cpu_offload()
|
479 |
+
elif is_sequential_cpu_offload:
|
480 |
+
_pipeline.enable_sequential_cpu_offload()
|
481 |
+
# Unsafe code />
|
482 |
+
|
483 |
+
unet.load_attn_procs(
|
484 |
+
state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
|
485 |
+
)
|
486 |
+
|
487 |
+
@classmethod
|
488 |
+
def load_lora_into_text_encoder(
|
489 |
+
cls,
|
490 |
+
state_dict,
|
491 |
+
network_alphas,
|
492 |
+
text_encoder,
|
493 |
+
prefix=None,
|
494 |
+
lora_scale=1.0,
|
495 |
+
low_cpu_mem_usage=None,
|
496 |
+
adapter_name=None,
|
497 |
+
_pipeline=None,
|
498 |
+
):
|
499 |
+
"""
|
500 |
+
This will load the LoRA layers specified in `state_dict` into `text_encoder`
|
501 |
+
|
502 |
+
Parameters:
|
503 |
+
state_dict (`dict`):
|
504 |
+
A standard state dict containing the lora layer parameters. The key should be prefixed with an
|
505 |
+
additional `text_encoder` to distinguish between unet lora layers.
|
506 |
+
network_alphas (`Dict[str, float]`):
|
507 |
+
See `LoRALinearLayer` for more details.
|
508 |
+
text_encoder (`CLIPTextModel`):
|
509 |
+
The text encoder model to load the LoRA layers into.
|
510 |
+
prefix (`str`):
|
511 |
+
Expected prefix of the `text_encoder` in the `state_dict`.
|
512 |
+
lora_scale (`float`):
|
513 |
+
How much to scale the output of the lora linear layer before it is added with the output of the regular
|
514 |
+
lora layer.
|
515 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
516 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
517 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
518 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
519 |
+
argument to `True` will raise an error.
|
520 |
+
adapter_name (`str`, *optional*):
|
521 |
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
522 |
+
`default_{i}` where i is the total number of adapters being loaded.
|
523 |
+
"""
|
524 |
+
if not USE_PEFT_BACKEND:
|
525 |
+
raise ValueError("PEFT backend is required for this method.")
|
526 |
+
|
527 |
+
from peft import LoraConfig
|
528 |
+
|
529 |
+
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
|
530 |
+
|
531 |
+
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
|
532 |
+
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
|
533 |
+
# their prefixes.
|
534 |
+
keys = list(state_dict.keys())
|
535 |
+
prefix = cls.text_encoder_name if prefix is None else prefix
|
536 |
+
|
537 |
+
# Safe prefix to check with.
|
538 |
+
if any(cls.text_encoder_name in key for key in keys):
|
539 |
+
# Load the layers corresponding to text encoder and make necessary adjustments.
|
540 |
+
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
|
541 |
+
text_encoder_lora_state_dict = {
|
542 |
+
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
|
543 |
+
}
|
544 |
+
|
545 |
+
if len(text_encoder_lora_state_dict) > 0:
|
546 |
+
logger.info(f"Loading {prefix}.")
|
547 |
+
rank = {}
|
548 |
+
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
|
549 |
+
|
550 |
+
# convert state dict
|
551 |
+
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
|
552 |
+
|
553 |
+
for name, _ in text_encoder_attn_modules(text_encoder):
|
554 |
+
rank_key = f"{name}.out_proj.lora_B.weight"
|
555 |
+
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
|
556 |
+
|
557 |
+
patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
|
558 |
+
if patch_mlp:
|
559 |
+
for name, _ in text_encoder_mlp_modules(text_encoder):
|
560 |
+
rank_key_fc1 = f"{name}.fc1.lora_B.weight"
|
561 |
+
rank_key_fc2 = f"{name}.fc2.lora_B.weight"
|
562 |
+
|
563 |
+
rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
|
564 |
+
rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
|
565 |
+
|
566 |
+
if network_alphas is not None:
|
567 |
+
alpha_keys = [
|
568 |
+
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
|
569 |
+
]
|
570 |
+
network_alphas = {
|
571 |
+
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
572 |
+
}
|
573 |
+
|
574 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False)
|
575 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
576 |
+
|
577 |
+
# adapter_name
|
578 |
+
if adapter_name is None:
|
579 |
+
adapter_name = get_adapter_name(text_encoder)
|
580 |
+
|
581 |
+
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
582 |
+
|
583 |
+
# inject LoRA layers and load the state dict
|
584 |
+
# in transformers we automatically check whether the adapter name is already in use or not
|
585 |
+
text_encoder.load_adapter(
|
586 |
+
adapter_name=adapter_name,
|
587 |
+
adapter_state_dict=text_encoder_lora_state_dict,
|
588 |
+
peft_config=lora_config,
|
589 |
+
)
|
590 |
+
|
591 |
+
# scale LoRA layers with `lora_scale`
|
592 |
+
scale_lora_layers(text_encoder, weight=lora_scale)
|
593 |
+
|
594 |
+
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
|
595 |
+
|
596 |
+
# Offload back.
|
597 |
+
if is_model_cpu_offload:
|
598 |
+
_pipeline.enable_model_cpu_offload()
|
599 |
+
elif is_sequential_cpu_offload:
|
600 |
+
_pipeline.enable_sequential_cpu_offload()
|
601 |
+
# Unsafe code />
|
602 |
+
|
603 |
+
@classmethod
|
604 |
+
def load_lora_into_transformer(
|
605 |
+
cls, state_dict, network_alphas, transformer, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
|
606 |
+
):
|
607 |
+
"""
|
608 |
+
This will load the LoRA layers specified in `state_dict` into `transformer`.
|
609 |
+
|
610 |
+
Parameters:
|
611 |
+
state_dict (`dict`):
|
612 |
+
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
|
613 |
+
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
|
614 |
+
encoder lora layers.
|
615 |
+
network_alphas (`Dict[str, float]`):
|
616 |
+
See `LoRALinearLayer` for more details.
|
617 |
+
unet (`UNet2DConditionModel`):
|
618 |
+
The UNet model to load the LoRA layers into.
|
619 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
620 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
621 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
622 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
623 |
+
argument to `True` will raise an error.
|
624 |
+
adapter_name (`str`, *optional*):
|
625 |
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
626 |
+
`default_{i}` where i is the total number of adapters being loaded.
|
627 |
+
"""
|
628 |
+
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
629 |
+
|
630 |
+
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
|
631 |
+
|
632 |
+
keys = list(state_dict.keys())
|
633 |
+
|
634 |
+
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
635 |
+
state_dict = {
|
636 |
+
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
637 |
+
}
|
638 |
+
|
639 |
+
if network_alphas is not None:
|
640 |
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)]
|
641 |
+
network_alphas = {
|
642 |
+
k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
643 |
+
}
|
644 |
+
|
645 |
+
if len(state_dict.keys()) > 0:
|
646 |
+
if adapter_name in getattr(transformer, "peft_config", {}):
|
647 |
+
raise ValueError(
|
648 |
+
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
649 |
+
)
|
650 |
+
|
651 |
+
rank = {}
|
652 |
+
for key, val in state_dict.items():
|
653 |
+
if "lora_B" in key:
|
654 |
+
rank[key] = val.shape[1]
|
655 |
+
|
656 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict)
|
657 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
658 |
+
|
659 |
+
# adapter_name
|
660 |
+
if adapter_name is None:
|
661 |
+
adapter_name = get_adapter_name(transformer)
|
662 |
+
|
663 |
+
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
664 |
+
# otherwise loading LoRA weights will lead to an error
|
665 |
+
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
666 |
+
|
667 |
+
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
|
668 |
+
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
|
669 |
+
|
670 |
+
if incompatible_keys is not None:
|
671 |
+
# check only for unexpected keys
|
672 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
673 |
+
if unexpected_keys:
|
674 |
+
logger.warning(
|
675 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
676 |
+
f" {unexpected_keys}. "
|
677 |
+
)
|
678 |
+
|
679 |
+
# Offload back.
|
680 |
+
if is_model_cpu_offload:
|
681 |
+
_pipeline.enable_model_cpu_offload()
|
682 |
+
elif is_sequential_cpu_offload:
|
683 |
+
_pipeline.enable_sequential_cpu_offload()
|
684 |
+
# Unsafe code />
|
685 |
+
|
686 |
+
@property
|
687 |
+
def lora_scale(self) -> float:
|
688 |
+
# property function that returns the lora scale which can be set at run time by the pipeline.
|
689 |
+
# if _lora_scale has not been set, return 1
|
690 |
+
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
|
691 |
+
|
692 |
+
def _remove_text_encoder_monkey_patch(self):
|
693 |
+
remove_method = recurse_remove_peft_layers
|
694 |
+
if hasattr(self, "text_encoder"):
|
695 |
+
remove_method(self.text_encoder)
|
696 |
+
# In case text encoder have no Lora attached
|
697 |
+
if getattr(self.text_encoder, "peft_config", None) is not None:
|
698 |
+
del self.text_encoder.peft_config
|
699 |
+
self.text_encoder._hf_peft_config_loaded = None
|
700 |
+
|
701 |
+
if hasattr(self, "text_encoder_2"):
|
702 |
+
remove_method(self.text_encoder_2)
|
703 |
+
if getattr(self.text_encoder_2, "peft_config", None) is not None:
|
704 |
+
del self.text_encoder_2.peft_config
|
705 |
+
self.text_encoder_2._hf_peft_config_loaded = None
|
706 |
+
|
707 |
+
@classmethod
|
708 |
+
def save_lora_weights(
|
709 |
+
cls,
|
710 |
+
save_directory: Union[str, os.PathLike],
|
711 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
712 |
+
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
|
713 |
+
transformer_lora_layers: Dict[str, torch.nn.Module] = None,
|
714 |
+
is_main_process: bool = True,
|
715 |
+
weight_name: str = None,
|
716 |
+
save_function: Callable = None,
|
717 |
+
safe_serialization: bool = True,
|
718 |
+
):
|
719 |
+
r"""
|
720 |
+
Save the LoRA parameters corresponding to the UNet and text encoder.
|
721 |
+
|
722 |
+
Arguments:
|
723 |
+
save_directory (`str` or `os.PathLike`):
|
724 |
+
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
725 |
+
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
726 |
+
State dict of the LoRA layers corresponding to the `unet`.
|
727 |
+
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
728 |
+
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
|
729 |
+
encoder LoRA state dict because it comes from 🤗 Transformers.
|
730 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
731 |
+
Whether the process calling this is the main process or not. Useful during distributed training and you
|
732 |
+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
733 |
+
process to avoid race conditions.
|
734 |
+
save_function (`Callable`):
|
735 |
+
The function to use to save the state dictionary. Useful during distributed training when you need to
|
736 |
+
replace `torch.save` with another method. Can be configured with the environment variable
|
737 |
+
`DIFFUSERS_SAVE_MODE`.
|
738 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
739 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
740 |
+
"""
|
741 |
+
state_dict = {}
|
742 |
+
|
743 |
+
def pack_weights(layers, prefix):
|
744 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
745 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
746 |
+
return layers_state_dict
|
747 |
+
|
748 |
+
if not (unet_lora_layers or text_encoder_lora_layers or transformer_lora_layers):
|
749 |
+
raise ValueError(
|
750 |
+
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `transformer_lora_layers`."
|
751 |
+
)
|
752 |
+
|
753 |
+
if unet_lora_layers:
|
754 |
+
state_dict.update(pack_weights(unet_lora_layers, cls.unet_name))
|
755 |
+
|
756 |
+
if text_encoder_lora_layers:
|
757 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
|
758 |
+
|
759 |
+
if transformer_lora_layers:
|
760 |
+
state_dict.update(pack_weights(transformer_lora_layers, "transformer"))
|
761 |
+
|
762 |
+
# Save the model
|
763 |
+
cls.write_lora_layers(
|
764 |
+
state_dict=state_dict,
|
765 |
+
save_directory=save_directory,
|
766 |
+
is_main_process=is_main_process,
|
767 |
+
weight_name=weight_name,
|
768 |
+
save_function=save_function,
|
769 |
+
safe_serialization=safe_serialization,
|
770 |
+
)
|
771 |
+
|
772 |
+
@staticmethod
|
773 |
+
def write_lora_layers(
|
774 |
+
state_dict: Dict[str, torch.Tensor],
|
775 |
+
save_directory: str,
|
776 |
+
is_main_process: bool,
|
777 |
+
weight_name: str,
|
778 |
+
save_function: Callable,
|
779 |
+
safe_serialization: bool,
|
780 |
+
):
|
781 |
+
if os.path.isfile(save_directory):
|
782 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
783 |
+
return
|
784 |
+
|
785 |
+
if save_function is None:
|
786 |
+
if safe_serialization:
|
787 |
+
|
788 |
+
def save_function(weights, filename):
|
789 |
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
790 |
+
|
791 |
+
else:
|
792 |
+
save_function = torch.save
|
793 |
+
|
794 |
+
os.makedirs(save_directory, exist_ok=True)
|
795 |
+
|
796 |
+
if weight_name is None:
|
797 |
+
if safe_serialization:
|
798 |
+
weight_name = LORA_WEIGHT_NAME_SAFE
|
799 |
+
else:
|
800 |
+
weight_name = LORA_WEIGHT_NAME
|
801 |
+
|
802 |
+
save_path = Path(save_directory, weight_name).as_posix()
|
803 |
+
save_function(state_dict, save_path)
|
804 |
+
logger.info(f"Model weights saved in {save_path}")
|
805 |
+
|
806 |
+
def unload_lora_weights(self):
|
807 |
+
"""
|
808 |
+
Unloads the LoRA parameters.
|
809 |
+
|
810 |
+
Examples:
|
811 |
+
|
812 |
+
```python
|
813 |
+
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
|
814 |
+
>>> pipeline.unload_lora_weights()
|
815 |
+
>>> ...
|
816 |
+
```
|
817 |
+
"""
|
818 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
819 |
+
|
820 |
+
if not USE_PEFT_BACKEND:
|
821 |
+
if version.parse(__version__) > version.parse("0.23"):
|
822 |
+
logger.warning(
|
823 |
+
"You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights,"
|
824 |
+
"you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT."
|
825 |
+
)
|
826 |
+
|
827 |
+
for _, module in unet.named_modules():
|
828 |
+
if hasattr(module, "set_lora_layer"):
|
829 |
+
module.set_lora_layer(None)
|
830 |
+
else:
|
831 |
+
recurse_remove_peft_layers(unet)
|
832 |
+
if hasattr(unet, "peft_config"):
|
833 |
+
del unet.peft_config
|
834 |
+
|
835 |
+
# Safe to call the following regardless of LoRA.
|
836 |
+
self._remove_text_encoder_monkey_patch()
|
837 |
+
|
838 |
+
def fuse_lora(
|
839 |
+
self,
|
840 |
+
fuse_unet: bool = True,
|
841 |
+
fuse_text_encoder: bool = True,
|
842 |
+
lora_scale: float = 1.0,
|
843 |
+
safe_fusing: bool = False,
|
844 |
+
adapter_names: Optional[List[str]] = None,
|
845 |
+
):
|
846 |
+
r"""
|
847 |
+
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
|
848 |
+
|
849 |
+
<Tip warning={true}>
|
850 |
+
|
851 |
+
This is an experimental API.
|
852 |
+
|
853 |
+
</Tip>
|
854 |
+
|
855 |
+
Args:
|
856 |
+
fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
|
857 |
+
fuse_text_encoder (`bool`, defaults to `True`):
|
858 |
+
Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
|
859 |
+
LoRA parameters then it won't have any effect.
|
860 |
+
lora_scale (`float`, defaults to 1.0):
|
861 |
+
Controls how much to influence the outputs with the LoRA parameters.
|
862 |
+
safe_fusing (`bool`, defaults to `False`):
|
863 |
+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
|
864 |
+
adapter_names (`List[str]`, *optional*):
|
865 |
+
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
|
866 |
+
|
867 |
+
Example:
|
868 |
+
|
869 |
+
```py
|
870 |
+
from diffusers import DiffusionPipeline
|
871 |
+
import torch
|
872 |
+
|
873 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
874 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
875 |
+
).to("cuda")
|
876 |
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
877 |
+
pipeline.fuse_lora(lora_scale=0.7)
|
878 |
+
```
|
879 |
+
"""
|
880 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
881 |
+
|
882 |
+
if fuse_unet or fuse_text_encoder:
|
883 |
+
self.num_fused_loras += 1
|
884 |
+
if self.num_fused_loras > 1:
|
885 |
+
logger.warn(
|
886 |
+
"The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
|
887 |
+
)
|
888 |
+
|
889 |
+
if fuse_unet:
|
890 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
891 |
+
unet.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names)
|
892 |
+
|
893 |
+
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
894 |
+
merge_kwargs = {"safe_merge": safe_fusing}
|
895 |
+
|
896 |
+
for module in text_encoder.modules():
|
897 |
+
if isinstance(module, BaseTunerLayer):
|
898 |
+
if lora_scale != 1.0:
|
899 |
+
module.scale_layer(lora_scale)
|
900 |
+
|
901 |
+
# For BC with previous PEFT versions, we need to check the signature
|
902 |
+
# of the `merge` method to see if it supports the `adapter_names` argument.
|
903 |
+
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
|
904 |
+
if "adapter_names" in supported_merge_kwargs:
|
905 |
+
merge_kwargs["adapter_names"] = adapter_names
|
906 |
+
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
|
907 |
+
raise ValueError(
|
908 |
+
"The `adapter_names` argument is not supported with your PEFT version. "
|
909 |
+
"Please upgrade to the latest version of PEFT. `pip install -U peft`"
|
910 |
+
)
|
911 |
+
|
912 |
+
module.merge(**merge_kwargs)
|
913 |
+
|
914 |
+
if fuse_text_encoder:
|
915 |
+
if hasattr(self, "text_encoder"):
|
916 |
+
fuse_text_encoder_lora(self.text_encoder, lora_scale, safe_fusing, adapter_names=adapter_names)
|
917 |
+
if hasattr(self, "text_encoder_2"):
|
918 |
+
fuse_text_encoder_lora(self.text_encoder_2, lora_scale, safe_fusing, adapter_names=adapter_names)
|
919 |
+
|
920 |
+
def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
|
921 |
+
r"""
|
922 |
+
Reverses the effect of
|
923 |
+
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).
|
924 |
+
|
925 |
+
<Tip warning={true}>
|
926 |
+
|
927 |
+
This is an experimental API.
|
928 |
+
|
929 |
+
</Tip>
|
930 |
+
|
931 |
+
Args:
|
932 |
+
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
|
933 |
+
unfuse_text_encoder (`bool`, defaults to `True`):
|
934 |
+
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
|
935 |
+
LoRA parameters then it won't have any effect.
|
936 |
+
"""
|
937 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
938 |
+
|
939 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
940 |
+
if unfuse_unet:
|
941 |
+
for module in unet.modules():
|
942 |
+
if isinstance(module, BaseTunerLayer):
|
943 |
+
module.unmerge()
|
944 |
+
|
945 |
+
def unfuse_text_encoder_lora(text_encoder):
|
946 |
+
for module in text_encoder.modules():
|
947 |
+
if isinstance(module, BaseTunerLayer):
|
948 |
+
module.unmerge()
|
949 |
+
|
950 |
+
if unfuse_text_encoder:
|
951 |
+
if hasattr(self, "text_encoder"):
|
952 |
+
unfuse_text_encoder_lora(self.text_encoder)
|
953 |
+
if hasattr(self, "text_encoder_2"):
|
954 |
+
unfuse_text_encoder_lora(self.text_encoder_2)
|
955 |
+
|
956 |
+
self.num_fused_loras -= 1
|
957 |
+
|
958 |
+
def set_adapters_for_text_encoder(
|
959 |
+
self,
|
960 |
+
adapter_names: Union[List[str], str],
|
961 |
+
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
|
962 |
+
text_encoder_weights: List[float] = None,
|
963 |
+
):
|
964 |
+
"""
|
965 |
+
Sets the adapter layers for the text encoder.
|
966 |
+
|
967 |
+
Args:
|
968 |
+
adapter_names (`List[str]` or `str`):
|
969 |
+
The names of the adapters to use.
|
970 |
+
text_encoder (`torch.nn.Module`, *optional*):
|
971 |
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
972 |
+
attribute.
|
973 |
+
text_encoder_weights (`List[float]`, *optional*):
|
974 |
+
The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
|
975 |
+
"""
|
976 |
+
if not USE_PEFT_BACKEND:
|
977 |
+
raise ValueError("PEFT backend is required for this method.")
|
978 |
+
|
979 |
+
def process_weights(adapter_names, weights):
|
980 |
+
if weights is None:
|
981 |
+
weights = [1.0] * len(adapter_names)
|
982 |
+
elif isinstance(weights, float):
|
983 |
+
weights = [weights]
|
984 |
+
|
985 |
+
if len(adapter_names) != len(weights):
|
986 |
+
raise ValueError(
|
987 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
|
988 |
+
)
|
989 |
+
return weights
|
990 |
+
|
991 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
992 |
+
text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
|
993 |
+
text_encoder = text_encoder or getattr(self, "text_encoder", None)
|
994 |
+
if text_encoder is None:
|
995 |
+
raise ValueError(
|
996 |
+
"The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
|
997 |
+
)
|
998 |
+
set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)
|
999 |
+
|
1000 |
+
def disable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
|
1001 |
+
"""
|
1002 |
+
Disables the LoRA layers for the text encoder.
|
1003 |
+
|
1004 |
+
Args:
|
1005 |
+
text_encoder (`torch.nn.Module`, *optional*):
|
1006 |
+
The text encoder module to disable the LoRA layers for. If `None`, it will try to get the
|
1007 |
+
`text_encoder` attribute.
|
1008 |
+
"""
|
1009 |
+
if not USE_PEFT_BACKEND:
|
1010 |
+
raise ValueError("PEFT backend is required for this method.")
|
1011 |
+
|
1012 |
+
text_encoder = text_encoder or getattr(self, "text_encoder", None)
|
1013 |
+
if text_encoder is None:
|
1014 |
+
raise ValueError("Text Encoder not found.")
|
1015 |
+
set_adapter_layers(text_encoder, enabled=False)
|
1016 |
+
|
1017 |
+
def enable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
|
1018 |
+
"""
|
1019 |
+
Enables the LoRA layers for the text encoder.
|
1020 |
+
|
1021 |
+
Args:
|
1022 |
+
text_encoder (`torch.nn.Module`, *optional*):
|
1023 |
+
The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
|
1024 |
+
attribute.
|
1025 |
+
"""
|
1026 |
+
if not USE_PEFT_BACKEND:
|
1027 |
+
raise ValueError("PEFT backend is required for this method.")
|
1028 |
+
text_encoder = text_encoder or getattr(self, "text_encoder", None)
|
1029 |
+
if text_encoder is None:
|
1030 |
+
raise ValueError("Text Encoder not found.")
|
1031 |
+
set_adapter_layers(self.text_encoder, enabled=True)
|
1032 |
+
|
1033 |
+
def set_adapters(
|
1034 |
+
self,
|
1035 |
+
adapter_names: Union[List[str], str],
|
1036 |
+
adapter_weights: Optional[List[float]] = None,
|
1037 |
+
):
|
1038 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1039 |
+
# Handle the UNET
|
1040 |
+
unet.set_adapters(adapter_names, adapter_weights)
|
1041 |
+
|
1042 |
+
# Handle the Text Encoder
|
1043 |
+
if hasattr(self, "text_encoder"):
|
1044 |
+
self.set_adapters_for_text_encoder(adapter_names, self.text_encoder, adapter_weights)
|
1045 |
+
if hasattr(self, "text_encoder_2"):
|
1046 |
+
self.set_adapters_for_text_encoder(adapter_names, self.text_encoder_2, adapter_weights)
|
1047 |
+
|
1048 |
+
def disable_lora(self):
|
1049 |
+
if not USE_PEFT_BACKEND:
|
1050 |
+
raise ValueError("PEFT backend is required for this method.")
|
1051 |
+
|
1052 |
+
# Disable unet adapters
|
1053 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1054 |
+
unet.disable_lora()
|
1055 |
+
|
1056 |
+
# Disable text encoder adapters
|
1057 |
+
if hasattr(self, "text_encoder"):
|
1058 |
+
self.disable_lora_for_text_encoder(self.text_encoder)
|
1059 |
+
if hasattr(self, "text_encoder_2"):
|
1060 |
+
self.disable_lora_for_text_encoder(self.text_encoder_2)
|
1061 |
+
|
1062 |
+
def enable_lora(self):
|
1063 |
+
if not USE_PEFT_BACKEND:
|
1064 |
+
raise ValueError("PEFT backend is required for this method.")
|
1065 |
+
|
1066 |
+
# Enable unet adapters
|
1067 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1068 |
+
unet.enable_lora()
|
1069 |
+
|
1070 |
+
# Enable text encoder adapters
|
1071 |
+
if hasattr(self, "text_encoder"):
|
1072 |
+
self.enable_lora_for_text_encoder(self.text_encoder)
|
1073 |
+
if hasattr(self, "text_encoder_2"):
|
1074 |
+
self.enable_lora_for_text_encoder(self.text_encoder_2)
|
1075 |
+
|
1076 |
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
1077 |
+
"""
|
1078 |
+
Args:
|
1079 |
+
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
|
1080 |
+
adapter_names (`Union[List[str], str]`):
|
1081 |
+
The names of the adapter to delete. Can be a single string or a list of strings
|
1082 |
+
"""
|
1083 |
+
if not USE_PEFT_BACKEND:
|
1084 |
+
raise ValueError("PEFT backend is required for this method.")
|
1085 |
+
|
1086 |
+
if isinstance(adapter_names, str):
|
1087 |
+
adapter_names = [adapter_names]
|
1088 |
+
|
1089 |
+
# Delete unet adapters
|
1090 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1091 |
+
unet.delete_adapters(adapter_names)
|
1092 |
+
|
1093 |
+
for adapter_name in adapter_names:
|
1094 |
+
# Delete text encoder adapters
|
1095 |
+
if hasattr(self, "text_encoder"):
|
1096 |
+
delete_adapter_layers(self.text_encoder, adapter_name)
|
1097 |
+
if hasattr(self, "text_encoder_2"):
|
1098 |
+
delete_adapter_layers(self.text_encoder_2, adapter_name)
|
1099 |
+
|
1100 |
+
def get_active_adapters(self) -> List[str]:
|
1101 |
+
"""
|
1102 |
+
Gets the list of the current active adapters.
|
1103 |
+
|
1104 |
+
Example:
|
1105 |
+
|
1106 |
+
```python
|
1107 |
+
from diffusers import DiffusionPipeline
|
1108 |
+
|
1109 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
1110 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
1111 |
+
).to("cuda")
|
1112 |
+
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
|
1113 |
+
pipeline.get_active_adapters()
|
1114 |
+
```
|
1115 |
+
"""
|
1116 |
+
if not USE_PEFT_BACKEND:
|
1117 |
+
raise ValueError(
|
1118 |
+
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
1122 |
+
|
1123 |
+
active_adapters = []
|
1124 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1125 |
+
for module in unet.modules():
|
1126 |
+
if isinstance(module, BaseTunerLayer):
|
1127 |
+
active_adapters = module.active_adapters
|
1128 |
+
break
|
1129 |
+
|
1130 |
+
return active_adapters
|
1131 |
+
|
1132 |
+
def get_list_adapters(self) -> Dict[str, List[str]]:
|
1133 |
+
"""
|
1134 |
+
Gets the current list of all available adapters in the pipeline.
|
1135 |
+
"""
|
1136 |
+
if not USE_PEFT_BACKEND:
|
1137 |
+
raise ValueError(
|
1138 |
+
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
set_adapters = {}
|
1142 |
+
|
1143 |
+
if hasattr(self, "text_encoder") and hasattr(self.text_encoder, "peft_config"):
|
1144 |
+
set_adapters["text_encoder"] = list(self.text_encoder.peft_config.keys())
|
1145 |
+
|
1146 |
+
if hasattr(self, "text_encoder_2") and hasattr(self.text_encoder_2, "peft_config"):
|
1147 |
+
set_adapters["text_encoder_2"] = list(self.text_encoder_2.peft_config.keys())
|
1148 |
+
|
1149 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1150 |
+
if hasattr(self, self.unet_name) and hasattr(unet, "peft_config"):
|
1151 |
+
set_adapters[self.unet_name] = list(self.unet.peft_config.keys())
|
1152 |
+
|
1153 |
+
return set_adapters
|
1154 |
+
|
1155 |
+
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
|
1156 |
+
"""
|
1157 |
+
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
|
1158 |
+
you want to load multiple adapters and free some GPU memory.
|
1159 |
+
|
1160 |
+
Args:
|
1161 |
+
adapter_names (`List[str]`):
|
1162 |
+
List of adapters to send device to.
|
1163 |
+
device (`Union[torch.device, str, int]`):
|
1164 |
+
Device to send the adapters to. Can be either a torch device, a str or an integer.
|
1165 |
+
"""
|
1166 |
+
if not USE_PEFT_BACKEND:
|
1167 |
+
raise ValueError("PEFT backend is required for this method.")
|
1168 |
+
|
1169 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
1170 |
+
|
1171 |
+
# Handle the UNET
|
1172 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
1173 |
+
for unet_module in unet.modules():
|
1174 |
+
if isinstance(unet_module, BaseTunerLayer):
|
1175 |
+
for adapter_name in adapter_names:
|
1176 |
+
unet_module.lora_A[adapter_name].to(device)
|
1177 |
+
unet_module.lora_B[adapter_name].to(device)
|
1178 |
+
|
1179 |
+
# Handle the text encoder
|
1180 |
+
modules_to_process = []
|
1181 |
+
if hasattr(self, "text_encoder"):
|
1182 |
+
modules_to_process.append(self.text_encoder)
|
1183 |
+
|
1184 |
+
if hasattr(self, "text_encoder_2"):
|
1185 |
+
modules_to_process.append(self.text_encoder_2)
|
1186 |
+
|
1187 |
+
for text_encoder in modules_to_process:
|
1188 |
+
# loop over submodules
|
1189 |
+
for text_encoder_module in text_encoder.modules():
|
1190 |
+
if isinstance(text_encoder_module, BaseTunerLayer):
|
1191 |
+
for adapter_name in adapter_names:
|
1192 |
+
text_encoder_module.lora_A[adapter_name].to(device)
|
1193 |
+
text_encoder_module.lora_B[adapter_name].to(device)
|
1194 |
+
|
1195 |
+
|
1196 |
+
class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
|
1197 |
+
"""This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""
|
1198 |
+
|
1199 |
+
# Override to properly handle the loading and unloading of the additional text encoder.
|
1200 |
+
def load_lora_weights(
|
1201 |
+
self,
|
1202 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
1203 |
+
adapter_name: Optional[str] = None,
|
1204 |
+
**kwargs,
|
1205 |
+
):
|
1206 |
+
"""
|
1207 |
+
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
|
1208 |
+
`self.text_encoder`.
|
1209 |
+
|
1210 |
+
All kwargs are forwarded to `self.lora_state_dict`.
|
1211 |
+
|
1212 |
+
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
|
1213 |
+
|
1214 |
+
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
|
1215 |
+
`self.unet`.
|
1216 |
+
|
1217 |
+
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
|
1218 |
+
into `self.text_encoder`.
|
1219 |
+
|
1220 |
+
Parameters:
|
1221 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
1222 |
+
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
|
1223 |
+
adapter_name (`str`, *optional*):
|
1224 |
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
1225 |
+
`default_{i}` where i is the total number of adapters being loaded.
|
1226 |
+
kwargs (`dict`, *optional*):
|
1227 |
+
See [`~loaders.LoraLoaderMixin.lora_state_dict`].
|
1228 |
+
"""
|
1229 |
+
if not USE_PEFT_BACKEND:
|
1230 |
+
raise ValueError("PEFT backend is required for this method.")
|
1231 |
+
|
1232 |
+
# We could have accessed the unet config from `lora_state_dict()` too. We pass
|
1233 |
+
# it here explicitly to be able to tell that it's coming from an SDXL
|
1234 |
+
# pipeline.
|
1235 |
+
|
1236 |
+
# if a dict is passed, copy it instead of modifying it inplace
|
1237 |
+
if isinstance(pretrained_model_name_or_path_or_dict, dict):
|
1238 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
|
1239 |
+
|
1240 |
+
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
|
1241 |
+
state_dict, network_alphas = self.lora_state_dict(
|
1242 |
+
pretrained_model_name_or_path_or_dict,
|
1243 |
+
unet_config=self.unet.config,
|
1244 |
+
**kwargs,
|
1245 |
+
)
|
1246 |
+
is_correct_format = all("lora" in key for key in state_dict.keys())
|
1247 |
+
if not is_correct_format:
|
1248 |
+
raise ValueError("Invalid LoRA checkpoint.")
|
1249 |
+
|
1250 |
+
self.load_lora_into_unet(
|
1251 |
+
state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self
|
1252 |
+
)
|
1253 |
+
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
1254 |
+
if len(text_encoder_state_dict) > 0:
|
1255 |
+
self.load_lora_into_text_encoder(
|
1256 |
+
text_encoder_state_dict,
|
1257 |
+
network_alphas=network_alphas,
|
1258 |
+
text_encoder=self.text_encoder,
|
1259 |
+
prefix="text_encoder",
|
1260 |
+
lora_scale=self.lora_scale,
|
1261 |
+
adapter_name=adapter_name,
|
1262 |
+
_pipeline=self,
|
1263 |
+
)
|
1264 |
+
|
1265 |
+
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
1266 |
+
if len(text_encoder_2_state_dict) > 0:
|
1267 |
+
self.load_lora_into_text_encoder(
|
1268 |
+
text_encoder_2_state_dict,
|
1269 |
+
network_alphas=network_alphas,
|
1270 |
+
text_encoder=self.text_encoder_2,
|
1271 |
+
prefix="text_encoder_2",
|
1272 |
+
lora_scale=self.lora_scale,
|
1273 |
+
adapter_name=adapter_name,
|
1274 |
+
_pipeline=self,
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
@classmethod
|
1278 |
+
def save_lora_weights(
|
1279 |
+
cls,
|
1280 |
+
save_directory: Union[str, os.PathLike],
|
1281 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1282 |
+
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1283 |
+
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1284 |
+
is_main_process: bool = True,
|
1285 |
+
weight_name: str = None,
|
1286 |
+
save_function: Callable = None,
|
1287 |
+
safe_serialization: bool = True,
|
1288 |
+
):
|
1289 |
+
r"""
|
1290 |
+
Save the LoRA parameters corresponding to the UNet and text encoder.
|
1291 |
+
|
1292 |
+
Arguments:
|
1293 |
+
save_directory (`str` or `os.PathLike`):
|
1294 |
+
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
1295 |
+
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
1296 |
+
State dict of the LoRA layers corresponding to the `unet`.
|
1297 |
+
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
1298 |
+
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
|
1299 |
+
encoder LoRA state dict because it comes from 🤗 Transformers.
|
1300 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
1301 |
+
Whether the process calling this is the main process or not. Useful during distributed training and you
|
1302 |
+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
1303 |
+
process to avoid race conditions.
|
1304 |
+
save_function (`Callable`):
|
1305 |
+
The function to use to save the state dictionary. Useful during distributed training when you need to
|
1306 |
+
replace `torch.save` with another method. Can be configured with the environment variable
|
1307 |
+
`DIFFUSERS_SAVE_MODE`.
|
1308 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
1309 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
1310 |
+
"""
|
1311 |
+
state_dict = {}
|
1312 |
+
|
1313 |
+
def pack_weights(layers, prefix):
|
1314 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
1315 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
1316 |
+
return layers_state_dict
|
1317 |
+
|
1318 |
+
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
|
1319 |
+
raise ValueError(
|
1320 |
+
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
if unet_lora_layers:
|
1324 |
+
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
1325 |
+
|
1326 |
+
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
1327 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
1328 |
+
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
1329 |
+
|
1330 |
+
cls.write_lora_layers(
|
1331 |
+
state_dict=state_dict,
|
1332 |
+
save_directory=save_directory,
|
1333 |
+
is_main_process=is_main_process,
|
1334 |
+
weight_name=weight_name,
|
1335 |
+
save_function=save_function,
|
1336 |
+
safe_serialization=safe_serialization,
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
def _remove_text_encoder_monkey_patch(self):
|
1340 |
+
recurse_remove_peft_layers(self.text_encoder)
|
1341 |
+
# TODO: @younesbelkada handle this in transformers side
|
1342 |
+
if getattr(self.text_encoder, "peft_config", None) is not None:
|
1343 |
+
del self.text_encoder.peft_config
|
1344 |
+
self.text_encoder._hf_peft_config_loaded = None
|
1345 |
+
|
1346 |
+
recurse_remove_peft_layers(self.text_encoder_2)
|
1347 |
+
if getattr(self.text_encoder_2, "peft_config", None) is not None:
|
1348 |
+
del self.text_encoder_2.peft_config
|
1349 |
+
self.text_encoder_2._hf_peft_config_loaded = None
|