import torch import torch.nn as nn from ...models.attention_processor import Attention from ...models.lora import LoRACompatibleConv, LoRACompatibleLinear from ...utils import USE_PEFT_BACKEND class WuerstchenLayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): x = x.permute(0, 2, 3, 1) x = super().forward(x) return x.permute(0, 3, 1, 2) class TimestepBlock(nn.Module): def __init__(self, c, c_timestep): super().__init__() linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear self.mapper = linear_cls(c_timestep, c * 2) def forward(self, x, t): a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1) return x * (1 + a) + b class ResBlock(nn.Module): def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): super().__init__() conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear self.depthwise = conv_cls(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( linear_cls(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), linear_cls(c * 4, c) ) def forward(self, x, x_skip=None): x_res = x if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1) x = self.channelwise(x).permute(0, 3, 1, 2) return x + x_res # from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 class GlobalResponseNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * stand_div_norm) + self.beta + x class AttnBlock(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear self.self_attn = self_attn self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) self.kv_mapper = nn.Sequential(nn.SiLU(), linear_cls(c_cond, c)) def forward(self, x, kv): kv = self.kv_mapper(kv) norm_x = self.norm(x) if self.self_attn: batch_size, channel, _, _ = x.shape kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) x = x + self.attention(norm_x, encoder_hidden_states=kv) return x