muhammadhasnain100's picture
Upload 12 files
27dbc11 verified
raw
history blame
6.62 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, validator
import pickle
import joblib
import numpy as np
import tensorflow as tf
import pandas as pd
app = FastAPI()
# Input validation using Pydantic
class HealthPredictionRequest(BaseModel):
Gender: str
Age: int
SBP: int
HBP: int
heart_rate: int
Glucose: int
SpO2: int
Temprature: float
@validator("Gender")
def validate_gender(cls, value):
if value not in ["M", "F"]:
raise ValueError("Gender must be 'M' or 'F'.")
return value
@validator("Age", "SBP", "HBP", "heart_rate", "Glucose", "SpO2")
def validate_positive_integers(cls, value):
if value <= 0:
raise ValueError("Values must be positive integers.")
return value
@validator("Temprature")
def validate_temperature(cls, value):
if value < 95.0 or value > 105.0: # Example temperature range
raise ValueError("Temperature must be between 95.0 and 105.0.")
return value
# Function to make predictions
def get_prediction(Gender, Age, SBP, HBP, heart_rate, Glucose, SpO2, Temprature):
# Load the scaler
with open('minmax_scaler.pkl', 'rb') as file:
scaler = pickle.load(file)
# Load the model
model_path = 'random_forest_model.pkl'
with open(model_path, 'rb') as file:
model = joblib.load(file)
# Load the label encoder for Gender
with open('label_encoder.pkl', 'rb') as file:
label_encoder = pickle.load(file)
# Convert Gender to numeric
Gender_encoded = label_encoder.transform([Gender])[0]
# Create input DataFrame
input_data = pd.DataFrame(
[[Gender_encoded, Age, SBP, HBP, heart_rate, Glucose, SpO2, Temprature]],
columns=['Gender', 'Age', 'SBP ', 'HBP ', 'heart_rate ', 'Glucose ', 'SpO2', 'Temprature ']
)
# Scale the input data
input_data_scaled = scaler.transform(input_data)
# Make prediction
prediction = model.predict(input_data_scaled)
# Map prediction to label
label_map = {
0: 'healthy',
1: 'high BP',
2: 'low BP',
3: 'high sugar',
4: 'low sugar',
5: 'low oxygen',
6: 'high temperature',
7: 'heartbeat is high',
8: 'risk'
}
return label_map[prediction[0]]
# Define the input data structure using Pydantic
class FraudInput(BaseModel):
V1: float
V2: float
V3: float
V4: float
V5: float
V6: float
V7: float
V8: float
V9: float
V10: float
V11: float
V12: float
V13: float
V14: float
V15: float
V16: float
V17: float
V18: float
V19: float
V20: float
V21: float
V22: float
V23: float
V24: float
V25: float
V26: float
V27: float
V28: float
Amount: float
# Inference method for fraud detection
def fraud_inference(features, scaler_path="fraud_scaler.pkl", model_path="ann_model.h5"):
# Load scaler and model
with open(scaler_path, "rb") as f:
scaler = pickle.load(f)
ann_model_loaded = tf.keras.models.load_model(model_path)
# Scale features
scaled_features = scaler.transform(features)
# Perform inference
predictions = ann_model_loaded.predict(scaled_features)
predicted_label = np.argmax(predictions, axis=-1)
if predicted_label[0] == 0:
return 'Not Fraud'
else:
return 'Fraud'
class CrimeData(BaseModel):
Case: str
Block: str
IUCR: int
Primary_Type: str
Description: str
Location_Description: str
FBI_Code: int
Updated_On: str
Location: str
def crime_inference(Case, Block, IUCR, Primary_Type, Description, Location_Description, FBI_Code, Updated_On, Location):
# Load the scaler
with open('crime_scaler.pkl', 'rb') as file:
scaler = joblib.load(file)
# Load the model
model_path = 'xgboost_model.pkl'
with open(model_path, 'rb') as file:
model = joblib.load(file)
# Load the PCA
with open('crime_pca.pkl', 'rb') as file:
pca = joblib.load(file)
with open('crime_label_encoder.pkl', 'rb') as file:
label_encoder = joblib.load(file)
# Create input DataFrame
input_data = pd.DataFrame(
[[Case, Block, IUCR, Primary_Type, Description, Location_Description, FBI_Code, Updated_On, Location]],
columns=['Case Number', 'Block', 'IUCR', 'Primary Type', 'Description', 'Location Description', 'FBI Code',
'Updated On', 'Location']
)
categorical_cols = ['Case Number', 'Block', 'IUCR', 'Primary Type', 'Description',
'Location Description', 'FBI Code', 'Updated On', 'Location']
# Label encoding for categorical columns
for col in categorical_cols:
input_data[col] = label_encoder.fit_transform(input_data[col])
# Scale the input data
input_data_scaled = scaler.transform(input_data)
# Apply PCA transformation
pca_features = pca.transform(input_data_scaled)
print(pca_features.shape)
# Make prediction
prediction = model.predict(pca_features)
# Map prediction to label
label_map = {0: 'not arrest', 1: 'arrest'}
return label_map[prediction[0]]
# API endpoint
@app.post("/health_predict")
def predict(request: HealthPredictionRequest):
try:
# Call the prediction function
result = get_prediction(
Gender=request.Gender,
Age=request.Age,
SBP=request.SBP,
HBP=request.HBP,
heart_rate=request.heart_rate,
Glucose=request.Glucose,
SpO2=request.SpO2,
Temprature=request.Temprature
)
return {"prediction": result}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
# Define an endpoint for prediction
@app.post("/fraud_predict")
async def predict(input_data: FraudInput):
# Convert input data to DataFrame
data_dict = input_data.dict()
data = pd.DataFrame([data_dict])
# Call the fraud detection inference method
label = fraud_inference(data)
return {"prediction": label}
@app.post("/predict_crime")
async def predict_crime(data: CrimeData):
result = crime_inference(
Case=data.Case,
Block=data.Block,
IUCR=data.IUCR,
Primary_Type=data.Primary_Type,
Description=data.Description,
Location_Description=data.Location_Description,
FBI_Code=data.FBI_Code,
Updated_On=data.Updated_On,
Location=data.Location
)
return {"prediction": result}