Upload 12 files
Browse files- ann_model.h5 +3 -0
- app.py +241 -0
- crime_label_encoder.pkl +3 -0
- crime_pca.pkl +3 -0
- crime_scaler.pkl +3 -0
- fraud_scaler.pkl +3 -0
- label_encoder.pkl +3 -0
- minmax_scaler.pkl +3 -0
- random_forest_model.pkl +3 -0
- requirements.txt +9 -0
- testing.ipynb +256 -0
- xgboost_model.pkl +3 -0
ann_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17320b7e764e7bff91445c843b061726d4798676a1cebc96aeb3540e9cb7a0dd
|
3 |
+
size 187840
|
app.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel, validator
|
3 |
+
import pickle
|
4 |
+
import joblib
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Input validation using Pydantic
|
12 |
+
class HealthPredictionRequest(BaseModel):
|
13 |
+
Gender: str
|
14 |
+
Age: int
|
15 |
+
SBP: int
|
16 |
+
HBP: int
|
17 |
+
heart_rate: int
|
18 |
+
Glucose: int
|
19 |
+
SpO2: int
|
20 |
+
Temprature: float
|
21 |
+
|
22 |
+
@validator("Gender")
|
23 |
+
def validate_gender(cls, value):
|
24 |
+
if value not in ["M", "F"]:
|
25 |
+
raise ValueError("Gender must be 'M' or 'F'.")
|
26 |
+
return value
|
27 |
+
|
28 |
+
@validator("Age", "SBP", "HBP", "heart_rate", "Glucose", "SpO2")
|
29 |
+
def validate_positive_integers(cls, value):
|
30 |
+
if value <= 0:
|
31 |
+
raise ValueError("Values must be positive integers.")
|
32 |
+
return value
|
33 |
+
|
34 |
+
@validator("Temprature")
|
35 |
+
def validate_temperature(cls, value):
|
36 |
+
if value < 95.0 or value > 105.0: # Example temperature range
|
37 |
+
raise ValueError("Temperature must be between 95.0 and 105.0.")
|
38 |
+
return value
|
39 |
+
|
40 |
+
# Function to make predictions
|
41 |
+
def get_prediction(Gender, Age, SBP, HBP, heart_rate, Glucose, SpO2, Temprature):
|
42 |
+
# Load the scaler
|
43 |
+
with open('minmax_scaler.pkl', 'rb') as file:
|
44 |
+
scaler = pickle.load(file)
|
45 |
+
|
46 |
+
# Load the model
|
47 |
+
model_path = 'random_forest_model.pkl'
|
48 |
+
with open(model_path, 'rb') as file:
|
49 |
+
model = joblib.load(file)
|
50 |
+
|
51 |
+
# Load the label encoder for Gender
|
52 |
+
with open('label_encoder.pkl', 'rb') as file:
|
53 |
+
label_encoder = pickle.load(file)
|
54 |
+
|
55 |
+
# Convert Gender to numeric
|
56 |
+
Gender_encoded = label_encoder.transform([Gender])[0]
|
57 |
+
|
58 |
+
# Create input DataFrame
|
59 |
+
input_data = pd.DataFrame(
|
60 |
+
[[Gender_encoded, Age, SBP, HBP, heart_rate, Glucose, SpO2, Temprature]],
|
61 |
+
columns=['Gender', 'Age', 'SBP ', 'HBP ', 'heart_rate ', 'Glucose ', 'SpO2', 'Temprature ']
|
62 |
+
)
|
63 |
+
# Scale the input data
|
64 |
+
input_data_scaled = scaler.transform(input_data)
|
65 |
+
|
66 |
+
# Make prediction
|
67 |
+
prediction = model.predict(input_data_scaled)
|
68 |
+
|
69 |
+
# Map prediction to label
|
70 |
+
label_map = {
|
71 |
+
0: 'healthy',
|
72 |
+
1: 'high BP',
|
73 |
+
2: 'low BP',
|
74 |
+
3: 'high sugar',
|
75 |
+
4: 'low sugar',
|
76 |
+
5: 'low oxygen',
|
77 |
+
6: 'high temperature',
|
78 |
+
7: 'heartbeat is high',
|
79 |
+
8: 'risk'
|
80 |
+
}
|
81 |
+
|
82 |
+
return label_map[prediction[0]]
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# Define the input data structure using Pydantic
|
87 |
+
class FraudInput(BaseModel):
|
88 |
+
V1: float
|
89 |
+
V2: float
|
90 |
+
V3: float
|
91 |
+
V4: float
|
92 |
+
V5: float
|
93 |
+
V6: float
|
94 |
+
V7: float
|
95 |
+
V8: float
|
96 |
+
V9: float
|
97 |
+
V10: float
|
98 |
+
V11: float
|
99 |
+
V12: float
|
100 |
+
V13: float
|
101 |
+
V14: float
|
102 |
+
V15: float
|
103 |
+
V16: float
|
104 |
+
V17: float
|
105 |
+
V18: float
|
106 |
+
V19: float
|
107 |
+
V20: float
|
108 |
+
V21: float
|
109 |
+
V22: float
|
110 |
+
V23: float
|
111 |
+
V24: float
|
112 |
+
V25: float
|
113 |
+
V26: float
|
114 |
+
V27: float
|
115 |
+
V28: float
|
116 |
+
Amount: float
|
117 |
+
|
118 |
+
|
119 |
+
# Inference method for fraud detection
|
120 |
+
def fraud_inference(features, scaler_path="fraud_scaler.pkl", model_path="ann_model.h5"):
|
121 |
+
# Load scaler and model
|
122 |
+
with open(scaler_path, "rb") as f:
|
123 |
+
scaler = pickle.load(f)
|
124 |
+
|
125 |
+
ann_model_loaded = tf.keras.models.load_model(model_path)
|
126 |
+
|
127 |
+
# Scale features
|
128 |
+
scaled_features = scaler.transform(features)
|
129 |
+
|
130 |
+
# Perform inference
|
131 |
+
predictions = ann_model_loaded.predict(scaled_features)
|
132 |
+
predicted_label = np.argmax(predictions, axis=-1)
|
133 |
+
|
134 |
+
if predicted_label[0] == 0:
|
135 |
+
return 'Not Fraud'
|
136 |
+
else:
|
137 |
+
return 'Fraud'
|
138 |
+
|
139 |
+
class CrimeData(BaseModel):
|
140 |
+
Case: str
|
141 |
+
Block: str
|
142 |
+
IUCR: int
|
143 |
+
Primary_Type: str
|
144 |
+
Description: str
|
145 |
+
Location_Description: str
|
146 |
+
FBI_Code: int
|
147 |
+
Updated_On: str
|
148 |
+
Location: str
|
149 |
+
|
150 |
+
def crime_inference(Case, Block, IUCR, Primary_Type, Description, Location_Description, FBI_Code, Updated_On, Location):
|
151 |
+
# Load the scaler
|
152 |
+
with open('crime_scaler.pkl', 'rb') as file:
|
153 |
+
scaler = joblib.load(file)
|
154 |
+
|
155 |
+
# Load the model
|
156 |
+
model_path = 'xgboost_model.pkl'
|
157 |
+
with open(model_path, 'rb') as file:
|
158 |
+
model = joblib.load(file)
|
159 |
+
|
160 |
+
# Load the PCA
|
161 |
+
with open('crime_pca.pkl', 'rb') as file:
|
162 |
+
pca = joblib.load(file)
|
163 |
+
|
164 |
+
with open('crime_label_encoder.pkl', 'rb') as file:
|
165 |
+
label_encoder = joblib.load(file)
|
166 |
+
|
167 |
+
# Create input DataFrame
|
168 |
+
input_data = pd.DataFrame(
|
169 |
+
[[Case, Block, IUCR, Primary_Type, Description, Location_Description, FBI_Code, Updated_On, Location]],
|
170 |
+
columns=['Case Number', 'Block', 'IUCR', 'Primary Type', 'Description', 'Location Description', 'FBI Code',
|
171 |
+
'Updated On', 'Location']
|
172 |
+
)
|
173 |
+
categorical_cols = ['Case Number', 'Block', 'IUCR', 'Primary Type', 'Description',
|
174 |
+
'Location Description', 'FBI Code', 'Updated On', 'Location']
|
175 |
+
|
176 |
+
# Label encoding for categorical columns
|
177 |
+
for col in categorical_cols:
|
178 |
+
input_data[col] = label_encoder.fit_transform(input_data[col])
|
179 |
+
|
180 |
+
# Scale the input data
|
181 |
+
input_data_scaled = scaler.transform(input_data)
|
182 |
+
|
183 |
+
# Apply PCA transformation
|
184 |
+
pca_features = pca.transform(input_data_scaled)
|
185 |
+
print(pca_features.shape)
|
186 |
+
|
187 |
+
|
188 |
+
# Make prediction
|
189 |
+
prediction = model.predict(pca_features)
|
190 |
+
|
191 |
+
# Map prediction to label
|
192 |
+
label_map = {0: 'not arrest', 1: 'arrest'}
|
193 |
+
|
194 |
+
return label_map[prediction[0]]
|
195 |
+
|
196 |
+
# API endpoint
|
197 |
+
@app.post("/health_predict")
|
198 |
+
def predict(request: HealthPredictionRequest):
|
199 |
+
try:
|
200 |
+
# Call the prediction function
|
201 |
+
result = get_prediction(
|
202 |
+
Gender=request.Gender,
|
203 |
+
Age=request.Age,
|
204 |
+
SBP=request.SBP,
|
205 |
+
HBP=request.HBP,
|
206 |
+
heart_rate=request.heart_rate,
|
207 |
+
Glucose=request.Glucose,
|
208 |
+
SpO2=request.SpO2,
|
209 |
+
Temprature=request.Temprature
|
210 |
+
)
|
211 |
+
return {"prediction": result}
|
212 |
+
except Exception as e:
|
213 |
+
raise HTTPException(status_code=400, detail=str(e))
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# Define an endpoint for prediction
|
218 |
+
@app.post("/fraud_predict")
|
219 |
+
async def predict(input_data: FraudInput):
|
220 |
+
# Convert input data to DataFrame
|
221 |
+
data_dict = input_data.dict()
|
222 |
+
data = pd.DataFrame([data_dict])
|
223 |
+
|
224 |
+
# Call the fraud detection inference method
|
225 |
+
label = fraud_inference(data)
|
226 |
+
return {"prediction": label}
|
227 |
+
|
228 |
+
@app.post("/predict_crime")
|
229 |
+
async def predict_crime(data: CrimeData):
|
230 |
+
result = crime_inference(
|
231 |
+
Case=data.Case,
|
232 |
+
Block=data.Block,
|
233 |
+
IUCR=data.IUCR,
|
234 |
+
Primary_Type=data.Primary_Type,
|
235 |
+
Description=data.Description,
|
236 |
+
Location_Description=data.Location_Description,
|
237 |
+
FBI_Code=data.FBI_Code,
|
238 |
+
Updated_On=data.Updated_On,
|
239 |
+
Location=data.Location
|
240 |
+
)
|
241 |
+
return {"prediction": result}
|
crime_label_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0325378e0425ef32b16d7b7d306b70ce25a75125883719a0a4b58746f01ed11a
|
3 |
+
size 4589444
|
crime_pca.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a4430a321d230159d330d03a6566a48f1386fd7dbe48deccb67175497d7d25b
|
3 |
+
size 1847
|
crime_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ad0d7c1af4743e5d64d473b74f5f95844e9ac8ad963bc53ecbe98133157573
|
3 |
+
size 1263
|
fraud_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47e924aad2b34aa8493dc96fe951862c8ba4d85fc90feadcdb6ce3226c2be43d
|
3 |
+
size 1400
|
label_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1455978add98562390b696dbf4d05a3a2b842a29322ceb47661d8322aae84fd1
|
3 |
+
size 250
|
minmax_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e73f82bfcb893cb2d56f4d7a216c491e22d6345d3345e6dfd76c7f04a6eeeb73
|
3 |
+
size 964
|
random_forest_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:246b6a4bb2629f21499f68bfd7f75b83073cf9ba80d75d0451658c7c3383f556
|
3 |
+
size 9296289
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pillow==10.4.0
|
2 |
+
fastapi==0.112.0
|
3 |
+
uvicorn==0.30.5
|
4 |
+
pydantic==2.8.2
|
5 |
+
scikit-learn==1.6.0
|
6 |
+
tensorflow==2.16.1
|
7 |
+
pandas==2.2.0
|
8 |
+
numpy==1.26.4
|
9 |
+
joblib==1.3.2
|
testing.ipynb
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
+
"id": "initial_id",
|
7 |
+
"metadata": {
|
8 |
+
"collapsed": true,
|
9 |
+
"ExecuteTime": {
|
10 |
+
"end_time": "2025-01-11T19:07:39.073318726Z",
|
11 |
+
"start_time": "2025-01-11T19:07:38.201074211Z"
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Prediction Result: {'prediction': 'healthy'}\n"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
],
|
23 |
+
"source": [
|
24 |
+
"import requests\n",
|
25 |
+
"\n",
|
26 |
+
"# Define the URL of the FastAPI endpoint\n",
|
27 |
+
"url = \"http://127.0.0.1:8000/health_predict\" # Replace with the actual endpoint if hosted remotely\n",
|
28 |
+
"\n",
|
29 |
+
"# Define the input payload\n",
|
30 |
+
"payload = {\n",
|
31 |
+
" \"Gender\": \"M\",\n",
|
32 |
+
" \"Age\": 67,\n",
|
33 |
+
" \"SBP\": 145,\n",
|
34 |
+
" \"HBP\": 84,\n",
|
35 |
+
" \"heart_rate\": 116,\n",
|
36 |
+
" \"Glucose\": 128,\n",
|
37 |
+
" \"SpO2\": 98,\n",
|
38 |
+
" \"Temprature\": 97.8\n",
|
39 |
+
"}\n",
|
40 |
+
"\n",
|
41 |
+
"# Make the POST request\n",
|
42 |
+
"response = requests.post(url, json=payload)\n",
|
43 |
+
"\n",
|
44 |
+
"# Print the response\n",
|
45 |
+
"if response.status_code == 200:\n",
|
46 |
+
" print(\"Prediction Result:\", response.json())\n",
|
47 |
+
"else:\n",
|
48 |
+
" print(f\"Error: {response.status_code}, Message: {response.text}\")\n"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 9,
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"name": "stdout",
|
57 |
+
"output_type": "stream",
|
58 |
+
"text": [
|
59 |
+
"Prediction: Not Fraud\n"
|
60 |
+
]
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"source": [
|
64 |
+
"import requests\n",
|
65 |
+
"\n",
|
66 |
+
"# URL of the FastAPI endpoint\n",
|
67 |
+
"url = \"http://127.0.0.1:8000/fraud_predict\"\n",
|
68 |
+
"\n",
|
69 |
+
"# Sample data to send in the POST request (make sure the data format matches the model)\n",
|
70 |
+
"input_data = {\n",
|
71 |
+
" \"V1\": 0.1,\n",
|
72 |
+
" \"V2\": 0.4,\n",
|
73 |
+
" \"V3\": 0.7,\n",
|
74 |
+
" \"V4\": 1.0,\n",
|
75 |
+
" \"V5\": 1.3,\n",
|
76 |
+
" \"V6\": 0.1,\n",
|
77 |
+
" \"V7\": 0.4,\n",
|
78 |
+
" \"V8\": 0.7,\n",
|
79 |
+
" \"V9\": 1.0,\n",
|
80 |
+
" \"V10\": 1.3,\n",
|
81 |
+
" \"V11\": 0.1,\n",
|
82 |
+
" \"V12\": 0.4,\n",
|
83 |
+
" \"V13\": 0.7,\n",
|
84 |
+
" \"V14\": 1.0,\n",
|
85 |
+
" \"V15\": 1.3,\n",
|
86 |
+
" \"V16\": 0.1,\n",
|
87 |
+
" \"V17\": 0.4,\n",
|
88 |
+
" \"V18\": 0.7,\n",
|
89 |
+
" \"V19\": 1.0,\n",
|
90 |
+
" \"V20\": 1.3,\n",
|
91 |
+
" \"V21\": 0.1,\n",
|
92 |
+
" \"V22\": 0.4,\n",
|
93 |
+
" \"V23\": 0.7,\n",
|
94 |
+
" \"V24\": 1.0,\n",
|
95 |
+
" \"V25\": 1.3,\n",
|
96 |
+
" \"V26\": 0.1,\n",
|
97 |
+
" \"V27\": 0.4,\n",
|
98 |
+
" \"V28\": 0.7,\n",
|
99 |
+
" \"Amount\": 100\n",
|
100 |
+
"}\n",
|
101 |
+
"\n",
|
102 |
+
"# Send the POST request to the FastAPI server\n",
|
103 |
+
"response = requests.post(url, json=input_data)\n",
|
104 |
+
"\n",
|
105 |
+
"# Check if the request was successful and print the response\n",
|
106 |
+
"if response.status_code == 200:\n",
|
107 |
+
" result = response.json()\n",
|
108 |
+
" print(\"Prediction:\", result[\"prediction\"])\n",
|
109 |
+
"else:\n",
|
110 |
+
" print(\"Error:\", response.status_code, response.text)\n"
|
111 |
+
],
|
112 |
+
"metadata": {
|
113 |
+
"collapsed": false,
|
114 |
+
"ExecuteTime": {
|
115 |
+
"end_time": "2025-01-11T19:11:14.154786492Z",
|
116 |
+
"start_time": "2025-01-11T19:11:13.225551826Z"
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"id": "39edb6c6f953f8df"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 17,
|
124 |
+
"outputs": [
|
125 |
+
{
|
126 |
+
"name": "stdout",
|
127 |
+
"output_type": "stream",
|
128 |
+
"text": [
|
129 |
+
"Prediction Result: {'prediction': 'not arrest'}\n"
|
130 |
+
]
|
131 |
+
}
|
132 |
+
],
|
133 |
+
"source": [
|
134 |
+
"import requests\n",
|
135 |
+
"\n",
|
136 |
+
"# Sample data to send in the request\n",
|
137 |
+
"sample_data = {\n",
|
138 |
+
" \"Case\": \"JF113025\",\n",
|
139 |
+
" \"Block\": \"067XX S MORGAN ST\",\n",
|
140 |
+
" \"IUCR\": 2826,\n",
|
141 |
+
" \"Primary_Type\": \"OTHER OFFENSE\",\n",
|
142 |
+
" \"Description\": \"HARASSMENT BY ELECTRONIC MEANS\",\n",
|
143 |
+
" \"Location_Description\": \"RESIDENCE\",\n",
|
144 |
+
" \"FBI_Code\": 26,\n",
|
145 |
+
" \"Updated_On\": \"9/14/2023 15:41\",\n",
|
146 |
+
" \"Location\": \"(41.771782439, -87.649436929)\"\n",
|
147 |
+
"}\n",
|
148 |
+
"\n",
|
149 |
+
"# URL for FastAPI endpoint\n",
|
150 |
+
"url = \"http://127.0.0.1:8000/predict_crime\"\n",
|
151 |
+
"\n",
|
152 |
+
"# Send a POST request with the sample data as JSON\n",
|
153 |
+
"response = requests.post(url, json=sample_data)\n",
|
154 |
+
"\n",
|
155 |
+
"# Check if the request was successful\n",
|
156 |
+
"if response.status_code == 200:\n",
|
157 |
+
" print(f\"Prediction Result: {response.json()}\")\n",
|
158 |
+
"else:\n",
|
159 |
+
" print(f\"Error: {response.status_code}, {response.text}\")\n"
|
160 |
+
],
|
161 |
+
"metadata": {
|
162 |
+
"collapsed": false,
|
163 |
+
"ExecuteTime": {
|
164 |
+
"end_time": "2025-01-11T19:44:26.136356206Z",
|
165 |
+
"start_time": "2025-01-11T19:44:25.549072705Z"
|
166 |
+
}
|
167 |
+
},
|
168 |
+
"id": "be329568072d336c"
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 18,
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"name": "stderr",
|
176 |
+
"output_type": "stream",
|
177 |
+
"text": [
|
178 |
+
"2025-01-12 00:45:43.425294: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
179 |
+
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
180 |
+
"2025-01-12 00:45:44.479984: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"fastapi version: 0.115.4\n",
|
188 |
+
"pydantic version: 2.9.2\n",
|
189 |
+
"pickle version: 4.0\n",
|
190 |
+
"joblib version: 1.3.2\n",
|
191 |
+
"numpy version: 1.26.4\n",
|
192 |
+
"tensorflow version: 2.16.1\n",
|
193 |
+
"pandas version: 2.2.0\n"
|
194 |
+
]
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"source": [
|
198 |
+
"import fastapi\n",
|
199 |
+
"import pydantic\n",
|
200 |
+
"import pickle\n",
|
201 |
+
"import joblib\n",
|
202 |
+
"import numpy as np\n",
|
203 |
+
"import tensorflow as tf\n",
|
204 |
+
"import pandas as pd\n",
|
205 |
+
"\n",
|
206 |
+
"# Print the versions of each library\n",
|
207 |
+
"print(f\"fastapi version: {fastapi.__version__}\")\n",
|
208 |
+
"print(f\"pydantic version: {pydantic.__version__}\")\n",
|
209 |
+
"print(f\"pickle version: {pickle.format_version}\") # pickle doesn't have __version__, but you can check the format version\n",
|
210 |
+
"print(f\"joblib version: {joblib.__version__}\")\n",
|
211 |
+
"print(f\"numpy version: {np.__version__}\")\n",
|
212 |
+
"print(f\"tensorflow version: {tf.__version__}\")\n",
|
213 |
+
"print(f\"pandas version: {pd.__version__}\")\n"
|
214 |
+
],
|
215 |
+
"metadata": {
|
216 |
+
"collapsed": false,
|
217 |
+
"ExecuteTime": {
|
218 |
+
"end_time": "2025-01-11T19:45:45.753678471Z",
|
219 |
+
"start_time": "2025-01-11T19:45:42.265117643Z"
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"id": "c76b855ced5fe0a3"
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"outputs": [],
|
228 |
+
"source": [],
|
229 |
+
"metadata": {
|
230 |
+
"collapsed": false
|
231 |
+
},
|
232 |
+
"id": "fc1962a8e8381309"
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"metadata": {
|
236 |
+
"kernelspec": {
|
237 |
+
"display_name": "Python 3",
|
238 |
+
"language": "python",
|
239 |
+
"name": "python3"
|
240 |
+
},
|
241 |
+
"language_info": {
|
242 |
+
"codemirror_mode": {
|
243 |
+
"name": "ipython",
|
244 |
+
"version": 2
|
245 |
+
},
|
246 |
+
"file_extension": ".py",
|
247 |
+
"mimetype": "text/x-python",
|
248 |
+
"name": "python",
|
249 |
+
"nbconvert_exporter": "python",
|
250 |
+
"pygments_lexer": "ipython2",
|
251 |
+
"version": "2.7.6"
|
252 |
+
}
|
253 |
+
},
|
254 |
+
"nbformat": 4,
|
255 |
+
"nbformat_minor": 5
|
256 |
+
}
|
xgboost_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d73d404228707d31e38583b40da2e6641b401b155b71f576c44386122ec5ccd
|
3 |
+
size 460774
|