File size: 6,617 Bytes
27dbc11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, validator
import pickle
import joblib
import numpy as np
import tensorflow as tf
import pandas as pd

app = FastAPI()

# Input validation using Pydantic
class HealthPredictionRequest(BaseModel):
    Gender: str
    Age: int
    SBP: int
    HBP: int
    heart_rate: int
    Glucose: int
    SpO2: int
    Temprature: float

    @validator("Gender")
    def validate_gender(cls, value):
        if value not in ["M", "F"]:
            raise ValueError("Gender must be 'M' or 'F'.")
        return value

    @validator("Age", "SBP", "HBP", "heart_rate", "Glucose", "SpO2")
    def validate_positive_integers(cls, value):
        if value <= 0:
            raise ValueError("Values must be positive integers.")
        return value

    @validator("Temprature")
    def validate_temperature(cls, value):
        if value < 95.0 or value > 105.0:  # Example temperature range
            raise ValueError("Temperature must be between 95.0 and 105.0.")
        return value

# Function to make predictions
def get_prediction(Gender, Age, SBP, HBP, heart_rate, Glucose, SpO2, Temprature):
    # Load the scaler
    with open('minmax_scaler.pkl', 'rb') as file:
        scaler = pickle.load(file)

    # Load the model
    model_path = 'random_forest_model.pkl'
    with open(model_path, 'rb') as file:
        model = joblib.load(file)

    # Load the label encoder for Gender
    with open('label_encoder.pkl', 'rb') as file:
        label_encoder = pickle.load(file)

    # Convert Gender to numeric
    Gender_encoded = label_encoder.transform([Gender])[0]

    # Create input DataFrame
    input_data = pd.DataFrame(
        [[Gender_encoded, Age, SBP, HBP, heart_rate, Glucose, SpO2, Temprature]],
        columns=['Gender', 'Age', 'SBP ', 'HBP ', 'heart_rate  ', 'Glucose ', 'SpO2', 'Temprature ']
    )
    # Scale the input data
    input_data_scaled = scaler.transform(input_data)

    # Make prediction
    prediction = model.predict(input_data_scaled)

    # Map prediction to label
    label_map = {
        0: 'healthy',
        1: 'high BP',
        2: 'low BP',
        3: 'high sugar',
        4: 'low sugar',
        5: 'low oxygen',
        6: 'high temperature',
        7: 'heartbeat is high',
        8: 'risk'
    }

    return label_map[prediction[0]]



# Define the input data structure using Pydantic
class FraudInput(BaseModel):
    V1: float
    V2: float
    V3: float
    V4: float
    V5: float
    V6: float
    V7: float
    V8: float
    V9: float
    V10: float
    V11: float
    V12: float
    V13: float
    V14: float
    V15: float
    V16: float
    V17: float
    V18: float
    V19: float
    V20: float
    V21: float
    V22: float
    V23: float
    V24: float
    V25: float
    V26: float
    V27: float
    V28: float
    Amount: float


# Inference method for fraud detection
def fraud_inference(features, scaler_path="fraud_scaler.pkl", model_path="ann_model.h5"):
    # Load scaler and model
    with open(scaler_path, "rb") as f:
        scaler = pickle.load(f)

    ann_model_loaded = tf.keras.models.load_model(model_path)

    # Scale features
    scaled_features = scaler.transform(features)

    # Perform inference
    predictions = ann_model_loaded.predict(scaled_features)
    predicted_label = np.argmax(predictions, axis=-1)

    if predicted_label[0] == 0:
        return 'Not Fraud'
    else:
        return 'Fraud'

class CrimeData(BaseModel):
    Case: str
    Block: str
    IUCR: int
    Primary_Type: str
    Description: str
    Location_Description: str
    FBI_Code: int
    Updated_On: str
    Location: str

def crime_inference(Case, Block, IUCR, Primary_Type, Description, Location_Description, FBI_Code, Updated_On, Location):
    # Load the scaler
    with open('crime_scaler.pkl', 'rb') as file:
        scaler = joblib.load(file)

    # Load the model
    model_path = 'xgboost_model.pkl'
    with open(model_path, 'rb') as file:
        model = joblib.load(file)

    # Load the PCA
    with open('crime_pca.pkl', 'rb') as file:
        pca = joblib.load(file)

    with open('crime_label_encoder.pkl', 'rb') as file:
        label_encoder = joblib.load(file)

    # Create input DataFrame
    input_data = pd.DataFrame(
        [[Case, Block, IUCR, Primary_Type, Description, Location_Description, FBI_Code, Updated_On, Location]],
        columns=['Case Number', 'Block', 'IUCR', 'Primary Type', 'Description', 'Location Description', 'FBI Code',
                 'Updated On', 'Location']
    )
    categorical_cols = ['Case Number', 'Block', 'IUCR', 'Primary Type', 'Description',
                        'Location Description', 'FBI Code', 'Updated On', 'Location']

    # Label encoding for categorical columns
    for col in categorical_cols:
        input_data[col] = label_encoder.fit_transform(input_data[col])

    # Scale the input data
    input_data_scaled = scaler.transform(input_data)

    # Apply PCA transformation
    pca_features = pca.transform(input_data_scaled)
    print(pca_features.shape)


    # Make prediction
    prediction = model.predict(pca_features)

    # Map prediction to label
    label_map = {0: 'not arrest', 1: 'arrest'}

    return label_map[prediction[0]]

# API endpoint
@app.post("/health_predict")
def predict(request: HealthPredictionRequest):
    try:
        # Call the prediction function
        result = get_prediction(
            Gender=request.Gender,
            Age=request.Age,
            SBP=request.SBP,
            HBP=request.HBP,
            heart_rate=request.heart_rate,
            Glucose=request.Glucose,
            SpO2=request.SpO2,
            Temprature=request.Temprature
        )
        return {"prediction": result}
    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))



# Define an endpoint for prediction
@app.post("/fraud_predict")
async def predict(input_data: FraudInput):
    # Convert input data to DataFrame
    data_dict = input_data.dict()
    data = pd.DataFrame([data_dict])

    # Call the fraud detection inference method
    label = fraud_inference(data)
    return {"prediction": label}

@app.post("/predict_crime")
async def predict_crime(data: CrimeData):
    result = crime_inference(
        Case=data.Case,
        Block=data.Block,
        IUCR=data.IUCR,
        Primary_Type=data.Primary_Type,
        Description=data.Description,
        Location_Description=data.Location_Description,
        FBI_Code=data.FBI_Code,
        Updated_On=data.Updated_On,
        Location=data.Location
    )
    return {"prediction": result}