File size: 22,255 Bytes
1ffc326 9346f1c 4596a70 2a5f9fb 9d3d5c0 2a5f9fb 1ffc326 8c49cb6 976f398 df66f6e 9d22eee df66f6e 24622c4 df66f6e 8c49cb6 2a73469 10f9b3c 50df158 d084b26 4879b93 d084b26 4879b93 d084b26 26286b2 a885f09 3dfaf22 adb0416 2a73469 ffefe11 adb0416 614ee1f 1f60a20 8c49cb6 72a0f0f 318071f 2d29ab2 72a0f0f 318071f 72a0f0f 2d29ab2 e3a8804 ef5b51c 318071f a2790cb 72a0f0f 512b095 24622c4 aa7c3f4 adb0416 8c49cb6 2d29ab2 91f5d94 2d29ab2 8c49cb6 91f5d94 ecef2dc 7644705 72a0f0f 2d29ab2 91f5d94 efeee6d ef5b51c adb0416 ef5b51c adb0416 8c49cb6 e3a8804 8c49cb6 a2790cb 7723d4d 2a5f9fb 8c49cb6 7723d4d 8c49cb6 d2179b0 7723d4d 318071f 2d29ab2 7644705 9d3d5c0 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 613696b ecef2dc 8c49cb6 e3a8804 72a0f0f e3a8804 8c49cb6 318071f 2d29ab2 318071f 2d29ab2 318071f 2d29ab2 318071f 2d29ab2 318071f 2d29ab2 df66f6e 8c49cb6 7723d4d 8c49cb6 601f2e9 fc1e99b 7723d4d fc1e99b 7723d4d fc1e99b 7723d4d fc1e99b 8c49cb6 7723d4d 318071f 8c49cb6 2a5f9fb 2d29ab2 8c49cb6 318071f 2d29ab2 6e8f400 ecef2dc 6e8f400 460d762 2d29ab2 6e8f400 318071f 2a5f9fb 6e8f400 a2790cb 318071f 8c49cb6 318071f 2d29ab2 a2790cb e3a8804 a2790cb 8c49cb6 318071f 8c49cb6 318071f 2d29ab2 318071f ab6f548 318071f ab6f548 318071f 2d29ab2 ab6f548 318071f ab6f548 f2bc0a5 613696b 6e8f400 0227006 613696b 8dfa543 0227006 8dfa543 6e8f400 8dfa543 8c49cb6 8dfa543 318071f 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 318071f 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 318071f 8dfa543 fc1e99b 8dfa543 00358b1 0227006 6e8f400 a163e5c b323764 9d22eee 8c49cb6 b323764 ef627e9 b323764 0227006 6e8f400 12cea14 9d22eee 8c49cb6 12cea14 24622c4 217b585 12cea14 9d22eee 8c49cb6 12cea14 6e8f400 8c49cb6 8cb7546 6e8f400 12cea14 8c49cb6 6e8f400 8cb7546 9d3d5c0 b355bb0 9d3d5c0 d16cee2 67109fc d16cee2 adb0416 d16cee2 10f9b3c a2790cb 10f9b3c 318071f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns_info: list,
columns_IE: list,
columns_TA: list,
columns_QA: list,
columns_TG: list,
columns_RM: list,
columns_FO: list,
columns_DM: list,
columns_spanish: list,
columns_other: list,
type_query: list,
precision_query: list,
size_query: list,
show_deleted: bool,
query: str,
):
# Combine all column selections
selected_columns = (
columns_info + columns_IE + columns_TA + columns_QA + columns_TG +
columns_RM + columns_FO + columns_DM + columns_spanish + columns_other
)
# Filter models based on queries
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, selected_columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# Ensure no duplicates and add the new average columns
unique_columns = set(always_here_cols + columns)
# We use COLS to maintain sorting
filtered_df = df[[c for c in COLS if c in df.columns and c in unique_columns]]
# Debugging print to see if the new columns are included
print(f"Columns included in DataFrame: {filtered_df.columns.tolist()}")
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else:
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
if "All" not in type_query:
if "?" in type_query:
filtered_df = filtered_df.loc[~df[AutoEvalColumn.model_type_symbol.name].isin([t for t in ModelType if t != "?"])]
else:
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
if "All" not in precision_query:
if "?" in precision_query:
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isna()]
else:
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
if "All" not in size_query:
if "?" in size_query:
filtered_df = filtered_df.loc[df[AutoEvalColumn.params.name].isna()]
else:
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
def uncheck_all():
return [], [], [], [], [], [], [], [], [], []
# Get a list of all logo files in the directory
logos_dir = "logos"
logo_files = [f for f in os.listdir(logos_dir) if f.endswith(('.png', '.jpg', '.jpeg'))]
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
with gr.Accordion("Select columns to show"):
with gr.Tab("Model Information"):
shown_columns_info = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Model Information"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Model Information"],
label="Model Information",
interactive=True,
)
with gr.Tab("Information Extraction (IE)"):
shown_columns_IE = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Information Extraction (IE)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Information Extraction (IE)"],
label="Information Extraction (IE)",
interactive=True,
)
with gr.Tab("Textual Analysis (TA)"):
shown_columns_TA = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Textual Analysis (TA)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Textual Analysis (TA)"],
label="Textual Analysis (TA)",
interactive=True,
)
with gr.Tab("Question Answering (QA)"):
shown_columns_QA = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Question Answering (QA)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Question Answering (QA)"],
label="Question Answering (QA)",
interactive=True,
)
with gr.Tab("Text Generation (TG)"):
shown_columns_TG = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Text Generation (TG)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Text Generation (TG)"],
label="Text Generation (TG)",
interactive=True,
)
with gr.Tab("Risk Management (RM)"):
shown_columns_RM = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Risk Management (RM)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Risk Management (RM)"],
label="Risk Management (RM)",
interactive=True,
)
with gr.Tab("Forecasting (FO)"):
shown_columns_FO = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Forecasting (FO)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Forecasting (FO)"],
label="Forecasting (FO)",
interactive=True,
)
with gr.Tab("Decision-Making (DM)"):
shown_columns_DM = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Decision-Making (DM)"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Decision-Making (DM)"],
label="Decision-Making (DM)",
interactive=True,
)
with gr.Tab("Spanish"):
shown_columns_spanish = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Spanish"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Spanish"],
label="Spanish",
interactive=True,
)
with gr.Tab("Other"):
shown_columns_other = gr.CheckboxGroup(
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Other"],
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Other"],
label="Other",
interactive=True,
)
with gr.Row():
uncheck_all_button = gr.Button("Uncheck All")
uncheck_all_button.click(
uncheck_all,
inputs=[],
outputs=[
shown_columns_info,
shown_columns_IE,
shown_columns_TA,
shown_columns_QA,
shown_columns_TG,
shown_columns_RM,
shown_columns_FO,
shown_columns_DM,
shown_columns_spanish,
shown_columns_other,
],
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=True, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320):
#with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=["All"] + [t.to_str() for t in ModelType],
value=["All"],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=["All"] + [i.value.name for i in Precision],
value=["All"],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=["All"] + list(NUMERIC_INTERVALS.keys()) + ["?"],
value=["All"],
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden],
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
inputs=[
hidden_leaderboard_table_for_search,
shown_columns_info,
shown_columns_IE,
shown_columns_TA,
shown_columns_QA,
shown_columns_TG,
shown_columns_RM,
shown_columns_FO,
shown_columns_DM,
shown_columns_spanish,
shown_columns_other,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
outputs=leaderboard_table,
)
for selector in [
shown_columns_info,
shown_columns_IE,
shown_columns_TA,
shown_columns_QA,
shown_columns_TG,
shown_columns_RM,
shown_columns_FO,
shown_columns_DM,
shown_columns_spanish,
shown_columns_other,
filter_columns_type, filter_columns_precision,
filter_columns_size, deleted_models_visibility
]:
selector.change(
update_table,
inputs=[
hidden_leaderboard_table_for_search,
shown_columns_info,
shown_columns_IE,
shown_columns_TA,
shown_columns_QA,
shown_columns_TG,
shown_columns_RM,
shown_columns_FO,
shown_columns_DM,
shown_columns_spanish,
shown_columns_other,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
outputs=leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
# Footer with logos
with gr.Row(elem_id="footer"):
num_columns = min(5, len(logo_files))
for i in range(0, len(logo_files), num_columns):
with gr.Row():
for logo in logo_files[i:i + num_columns]:
logo_path = os.path.join(logos_dir, logo)
gr.Image(logo_path, show_label=False, elem_id="logo-image", width=100, height=100)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|