Apply 8 categories from FinBen paper
Browse files- app.py +118 -44
- src/about.py +35 -35
- src/display/utils.py +9 -16
app.py
CHANGED
@@ -64,20 +64,29 @@ leaderboard_df = original_df.copy()
|
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
66 |
columns_info: list,
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
type_query: list,
|
72 |
precision_query: list,
|
73 |
size_query: list,
|
74 |
show_deleted: bool,
|
75 |
query: str,
|
76 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
78 |
filtered_df = filter_queries(query, filtered_df)
|
79 |
-
# Combine all column selections
|
80 |
-
selected_columns = columns_info + columns_eval + columns_metadata + columns_popularity + columns_revision
|
81 |
df = select_columns(filtered_df, selected_columns)
|
82 |
return df
|
83 |
|
@@ -91,13 +100,18 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
91 |
AutoEvalColumn.model_type_symbol.name,
|
92 |
AutoEvalColumn.model.name,
|
93 |
]
|
|
|
|
|
|
|
|
|
94 |
# We use COLS to maintain sorting
|
95 |
filtered_df = df[
|
96 |
-
|
97 |
]
|
98 |
return filtered_df
|
99 |
|
100 |
|
|
|
101 |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
102 |
final_df = []
|
103 |
if query != "":
|
@@ -138,7 +152,7 @@ def filter_models(
|
|
138 |
return filtered_df
|
139 |
|
140 |
def uncheck_all():
|
141 |
-
return [], [], [], [], []
|
142 |
|
143 |
demo = gr.Blocks(css=custom_css)
|
144 |
with demo:
|
@@ -164,32 +178,67 @@ with demo:
|
|
164 |
label="Model Information",
|
165 |
interactive=True,
|
166 |
)
|
167 |
-
with gr.Tab("
|
168 |
-
|
169 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
170 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
171 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
interactive=True,
|
173 |
)
|
174 |
-
with gr.Tab("
|
175 |
-
|
176 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
177 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
178 |
-
label="
|
179 |
interactive=True,
|
180 |
)
|
181 |
-
with gr.Tab("
|
182 |
-
|
183 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
184 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
185 |
-
label="
|
186 |
interactive=True,
|
187 |
)
|
188 |
-
with gr.Tab("
|
189 |
-
|
190 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
191 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
192 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
interactive=True,
|
194 |
)
|
195 |
with gr.Row():
|
@@ -199,10 +248,16 @@ with demo:
|
|
199 |
inputs=[],
|
200 |
outputs=[
|
201 |
shown_columns_info,
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
],
|
207 |
)
|
208 |
with gr.Row():
|
@@ -236,16 +291,17 @@ with demo:
|
|
236 |
leaderboard_table = gr.Dataframe(
|
237 |
value=leaderboard_df[
|
238 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
239 |
-
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
|
240 |
],
|
241 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
242 |
-
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
243 |
datatype=TYPES,
|
244 |
elem_id="leaderboard-table",
|
245 |
interactive=False,
|
246 |
visible=True,
|
247 |
)
|
248 |
|
|
|
249 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
250 |
hidden_leaderboard_table_for_search = gr.Dataframe(
|
251 |
value=original_df[COLS],
|
@@ -258,10 +314,15 @@ with demo:
|
|
258 |
inputs=[
|
259 |
hidden_leaderboard_table_for_search,
|
260 |
shown_columns_info,
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
265 |
filter_columns_type,
|
266 |
filter_columns_precision,
|
267 |
filter_columns_size,
|
@@ -271,8 +332,16 @@ with demo:
|
|
271 |
outputs=leaderboard_table,
|
272 |
)
|
273 |
for selector in [
|
274 |
-
shown_columns_info,
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
filter_columns_type, filter_columns_precision,
|
277 |
filter_columns_size, deleted_models_visibility
|
278 |
]:
|
@@ -281,10 +350,15 @@ with demo:
|
|
281 |
inputs=[
|
282 |
hidden_leaderboard_table_for_search,
|
283 |
shown_columns_info,
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
288 |
filter_columns_type,
|
289 |
filter_columns_precision,
|
290 |
filter_columns_size,
|
|
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
66 |
columns_info: list,
|
67 |
+
columns_IE: list,
|
68 |
+
columns_TA: list,
|
69 |
+
columns_QA: list,
|
70 |
+
columns_TG: list,
|
71 |
+
columns_RM: list,
|
72 |
+
columns_FO: list,
|
73 |
+
columns_DM: list,
|
74 |
+
columns_spanish: list,
|
75 |
+
columns_other: list,
|
76 |
type_query: list,
|
77 |
precision_query: list,
|
78 |
size_query: list,
|
79 |
show_deleted: bool,
|
80 |
query: str,
|
81 |
):
|
82 |
+
# Combine all column selections
|
83 |
+
selected_columns = (
|
84 |
+
columns_info + columns_IE + columns_TA + columns_QA + columns_TG +
|
85 |
+
columns_RM + columns_FO + columns_DM + columns_spanish + columns_other
|
86 |
+
)
|
87 |
+
# Filter models based on queries
|
88 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
89 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
90 |
df = select_columns(filtered_df, selected_columns)
|
91 |
return df
|
92 |
|
|
|
100 |
AutoEvalColumn.model_type_symbol.name,
|
101 |
AutoEvalColumn.model.name,
|
102 |
]
|
103 |
+
|
104 |
+
# Ensure no duplicates when never_hidden and displayed_by_default are both True
|
105 |
+
unique_columns = set(always_here_cols + columns)
|
106 |
+
|
107 |
# We use COLS to maintain sorting
|
108 |
filtered_df = df[
|
109 |
+
[c for c in COLS if c in df.columns and c in unique_columns]
|
110 |
]
|
111 |
return filtered_df
|
112 |
|
113 |
|
114 |
+
|
115 |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
116 |
final_df = []
|
117 |
if query != "":
|
|
|
152 |
return filtered_df
|
153 |
|
154 |
def uncheck_all():
|
155 |
+
return [], [], [], [], [], [], [], [], [], []
|
156 |
|
157 |
demo = gr.Blocks(css=custom_css)
|
158 |
with demo:
|
|
|
178 |
label="Model Information",
|
179 |
interactive=True,
|
180 |
)
|
181 |
+
with gr.Tab("Information Extraction (IE)"):
|
182 |
+
shown_columns_IE = gr.CheckboxGroup(
|
183 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Information Extraction (IE)"],
|
184 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Information Extraction (IE)"],
|
185 |
+
label="Information Extraction (IE)",
|
186 |
+
interactive=True,
|
187 |
+
)
|
188 |
+
with gr.Tab("Textual Analysis (TA)"):
|
189 |
+
shown_columns_TA = gr.CheckboxGroup(
|
190 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Textual Analysis (TA)"],
|
191 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Textual Analysis (TA)"],
|
192 |
+
label="Textual Analysis (TA)",
|
193 |
+
interactive=True,
|
194 |
+
)
|
195 |
+
with gr.Tab("Question Answering (QA)"):
|
196 |
+
shown_columns_QA = gr.CheckboxGroup(
|
197 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Question Answering (QA)"],
|
198 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Question Answering (QA)"],
|
199 |
+
label="Question Answering (QA)",
|
200 |
+
interactive=True,
|
201 |
+
)
|
202 |
+
with gr.Tab("Text Generation (TG)"):
|
203 |
+
shown_columns_TG = gr.CheckboxGroup(
|
204 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Text Generation (TG)"],
|
205 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Text Generation (TG)"],
|
206 |
+
label="Text Generation (TG)",
|
207 |
+
interactive=True,
|
208 |
+
)
|
209 |
+
with gr.Tab("Risk Management (RM)"):
|
210 |
+
shown_columns_RM = gr.CheckboxGroup(
|
211 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Risk Management (RM)"],
|
212 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Risk Management (RM)"],
|
213 |
+
label="Risk Management (RM)",
|
214 |
interactive=True,
|
215 |
)
|
216 |
+
with gr.Tab("Forecasting (FO)"):
|
217 |
+
shown_columns_FO = gr.CheckboxGroup(
|
218 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Forecasting (FO)"],
|
219 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Forecasting (FO)"],
|
220 |
+
label="Forecasting (FO)",
|
221 |
interactive=True,
|
222 |
)
|
223 |
+
with gr.Tab("Decision-Making (DM)"):
|
224 |
+
shown_columns_DM = gr.CheckboxGroup(
|
225 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Decision-Making (DM)"],
|
226 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Decision-Making (DM)"],
|
227 |
+
label="Decision-Making (DM)",
|
228 |
interactive=True,
|
229 |
)
|
230 |
+
with gr.Tab("Spanish"):
|
231 |
+
shown_columns_spanish = gr.CheckboxGroup(
|
232 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Spanish"],
|
233 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Spanish"],
|
234 |
+
label="Spanish",
|
235 |
+
interactive=True,
|
236 |
+
)
|
237 |
+
with gr.Tab("Other"):
|
238 |
+
shown_columns_other = gr.CheckboxGroup(
|
239 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Other"],
|
240 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Other"],
|
241 |
+
label="Other",
|
242 |
interactive=True,
|
243 |
)
|
244 |
with gr.Row():
|
|
|
248 |
inputs=[],
|
249 |
outputs=[
|
250 |
shown_columns_info,
|
251 |
+
shown_columns_IE,
|
252 |
+
shown_columns_TA,
|
253 |
+
shown_columns_QA,
|
254 |
+
shown_columns_TG,
|
255 |
+
shown_columns_RM,
|
256 |
+
shown_columns_FO,
|
257 |
+
shown_columns_DM,
|
258 |
+
shown_columns_spanish,
|
259 |
+
shown_columns_other,
|
260 |
+
|
261 |
],
|
262 |
)
|
263 |
with gr.Row():
|
|
|
291 |
leaderboard_table = gr.Dataframe(
|
292 |
value=leaderboard_df[
|
293 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
294 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden]
|
295 |
],
|
296 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
297 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden],
|
298 |
datatype=TYPES,
|
299 |
elem_id="leaderboard-table",
|
300 |
interactive=False,
|
301 |
visible=True,
|
302 |
)
|
303 |
|
304 |
+
|
305 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
306 |
hidden_leaderboard_table_for_search = gr.Dataframe(
|
307 |
value=original_df[COLS],
|
|
|
314 |
inputs=[
|
315 |
hidden_leaderboard_table_for_search,
|
316 |
shown_columns_info,
|
317 |
+
shown_columns_IE,
|
318 |
+
shown_columns_TA,
|
319 |
+
shown_columns_QA,
|
320 |
+
shown_columns_TG,
|
321 |
+
shown_columns_RM,
|
322 |
+
shown_columns_FO,
|
323 |
+
shown_columns_DM,
|
324 |
+
shown_columns_spanish,
|
325 |
+
shown_columns_other,
|
326 |
filter_columns_type,
|
327 |
filter_columns_precision,
|
328 |
filter_columns_size,
|
|
|
332 |
outputs=leaderboard_table,
|
333 |
)
|
334 |
for selector in [
|
335 |
+
shown_columns_info,
|
336 |
+
shown_columns_IE,
|
337 |
+
shown_columns_TA,
|
338 |
+
shown_columns_QA,
|
339 |
+
shown_columns_TG,
|
340 |
+
shown_columns_RM,
|
341 |
+
shown_columns_FO,
|
342 |
+
shown_columns_DM,
|
343 |
+
shown_columns_spanish,
|
344 |
+
shown_columns_other,
|
345 |
filter_columns_type, filter_columns_precision,
|
346 |
filter_columns_size, deleted_models_visibility
|
347 |
]:
|
|
|
350 |
inputs=[
|
351 |
hidden_leaderboard_table_for_search,
|
352 |
shown_columns_info,
|
353 |
+
shown_columns_IE,
|
354 |
+
shown_columns_TA,
|
355 |
+
shown_columns_QA,
|
356 |
+
shown_columns_TG,
|
357 |
+
shown_columns_RM,
|
358 |
+
shown_columns_FO,
|
359 |
+
shown_columns_DM,
|
360 |
+
shown_columns_spanish,
|
361 |
+
shown_columns_other,
|
362 |
filter_columns_type,
|
363 |
filter_columns_precision,
|
364 |
filter_columns_size,
|
src/about.py
CHANGED
@@ -7,46 +7,46 @@ class Task:
|
|
7 |
benchmark: str
|
8 |
metric: str
|
9 |
col_name: str
|
|
|
10 |
|
11 |
|
12 |
# Select your tasks here
|
13 |
# ---------------------------------------------------
|
14 |
class Tasks(Enum):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
task50 = Task("travelinsurance", "MCC", "travelinsurance")
|
50 |
|
51 |
|
52 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
7 |
benchmark: str
|
8 |
metric: str
|
9 |
col_name: str
|
10 |
+
category: str
|
11 |
|
12 |
|
13 |
# Select your tasks here
|
14 |
# ---------------------------------------------------
|
15 |
class Tasks(Enum):
|
16 |
+
task0 = Task("FPB", "F1", "FPB", category="Spanish")
|
17 |
+
task2 = Task("FiQA-SA", "F1", "FiQA-SA", category="Textual Analysis (TA)")
|
18 |
+
task3 = Task("TSA", "RMSE", "TSA", category="Textual Analysis (TA)")
|
19 |
+
task4 = Task("Headlines", "AvgF1", "Headlines", category="Textual Analysis (TA)")
|
20 |
+
task5 = Task("FOMC", "F1", "FOMC", category="Forecasting (FO)")
|
21 |
+
task7 = Task("FinArg-ACC", "MicroF1", "FinArg-ACC", category="Textual Analysis (TA)")
|
22 |
+
task8 = Task("FinArg-ARC", "MicroF1", "FinArg-ARC", category="Textual Analysis (TA)")
|
23 |
+
task9 = Task("MultiFin", "MicroF1", "Multifin", category="Textual Analysis (TA)")
|
24 |
+
task10 = Task("MA", "MicroF1", "MA", category="Textual Analysis (TA)")
|
25 |
+
task11 = Task("MLESG", "MicroF1", "MLESG", category="Textual Analysis (TA)")
|
26 |
+
task12 = Task("NER", "EntityF1", "NER", category="Information Extraction (IE)")
|
27 |
+
task13 = Task("FINER-ORD", "EntityF1", "FINER-ORD", category="Information Extraction (IE)")
|
28 |
+
task14 = Task("FinRED", "F1", "FinRED", category="Information Extraction (IE)")
|
29 |
+
task15 = Task("SC", "F1", "SC", category="Spanish")
|
30 |
+
task16 = Task("CD", "F1", "CD", category="Spanish")
|
31 |
+
task17 = Task("FinQA", "EmAcc", "FinQA", category="Question Answering (QA)")
|
32 |
+
task18 = Task("TATQA", "EmAcc", "TATQA", category="Question Answering (QA)")
|
33 |
+
task19 = Task("ConvFinQA", "EmAcc", "ConvFinQA", category="Question Answering (QA)")
|
34 |
+
task20 = Task("FNXL", "EntityF1", "FNXL", category="Information Extraction (IE)")
|
35 |
+
task21 = Task("FSRL", "EntityF1", "FSRL", category="Information Extraction (IE)")
|
36 |
+
task22 = Task("EDTSUM", "Rouge-1", "EDTSUM", category="Text Generation (TG)")
|
37 |
+
task25 = Task("ECTSUM", "Rouge-1", "ECTSUM", category="Text Generation (TG)")
|
38 |
+
task28 = Task("BigData22", "Acc", "BigData22", category="Risk Management (RM)")
|
39 |
+
task30 = Task("ACL18", "Acc", "ACL18", category="Decision-Making (DM)")
|
40 |
+
task32 = Task("CIKM18", "Acc", "CIKM18", category="Decision-Making (DM)")
|
41 |
+
task34 = Task("German", "MCC", "German", category="Decision-Making (DM)")
|
42 |
+
task36 = Task("Australian", "MCC", "Australian", category="Decision-Making (DM)")
|
43 |
+
task38 = Task("LendingClub", "MCC", "LendingClub", category="Risk Management (RM)")
|
44 |
+
task40 = Task("ccf", "MCC", "ccf", category="Risk Management (RM)")
|
45 |
+
task42 = Task("ccfraud", "MCC", "ccfraud", category="Risk Management (RM)")
|
46 |
+
task44 = Task("polish", "MCC", "polish", category="Risk Management (RM)")
|
47 |
+
task46 = Task("taiwan", "MCC", "taiwan", category="Risk Management (RM)")
|
48 |
+
task48 = Task("portoseguro", "MCC", "portoseguro", category="Risk Management (RM)")
|
49 |
+
task50 = Task("travelinsurance", "MCC", "travelinsurance", category="Risk Management (RM)")
|
|
|
50 |
|
51 |
|
52 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
@@ -27,26 +27,19 @@ auto_eval_column_dict = []
|
|
27 |
# Model Information
|
28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
|
|
30 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
31 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
# Evaluation Scores
|
34 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Evaluation Scores")])
|
35 |
for task in Tasks:
|
36 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, category=
|
37 |
-
|
38 |
-
# Model Metadata
|
39 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Metadata", hidden=True)])
|
40 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Metadata")])
|
41 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Metadata")])
|
42 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Metadata")])
|
43 |
-
|
44 |
-
# Popularity Metrics
|
45 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Popularity Metrics")])
|
46 |
-
|
47 |
-
# Revision and Availability
|
48 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Revision and Availability")])
|
49 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Revision and Availability", hidden=False)])
|
50 |
|
51 |
# We use make_dataclass to dynamically fill the scores from Tasks
|
52 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
27 |
# Model Information
|
28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
30 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Model Information")])
|
31 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
32 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
33 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Information", hidden=True)])
|
34 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Information")])
|
35 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Information")])
|
36 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Information")])
|
37 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Model Information")])
|
38 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Model Information")])
|
39 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Model Information", hidden=False)])
|
40 |
|
|
|
|
|
41 |
for task in Tasks:
|
42 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, category=task.value.category)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# We use make_dataclass to dynamically fill the scores from Tasks
|
45 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|