Move buttoms under select columns window into categories
Browse files- app.py +87 -31
- src/display/utils.py +26 -18
app.py
CHANGED
@@ -63,16 +63,22 @@ leaderboard_df = original_df.copy()
|
|
63 |
# Searching and filtering
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
type_query: list,
|
68 |
-
precision_query:
|
69 |
size_query: list,
|
70 |
show_deleted: bool,
|
71 |
query: str,
|
72 |
):
|
73 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
74 |
filtered_df = filter_queries(query, filtered_df)
|
75 |
-
|
|
|
|
|
76 |
return df
|
77 |
|
78 |
|
@@ -131,6 +137,8 @@ def filter_models(
|
|
131 |
|
132 |
return filtered_df
|
133 |
|
|
|
|
|
134 |
|
135 |
demo = gr.Blocks(css=custom_css)
|
136 |
with demo:
|
@@ -148,20 +156,54 @@ with demo:
|
|
148 |
elem_id="search-bar",
|
149 |
)
|
150 |
with gr.Row():
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
],
|
162 |
-
label="Select columns to show",
|
163 |
-
elem_id="column-select",
|
164 |
-
interactive=True,
|
165 |
)
|
166 |
with gr.Row():
|
167 |
deleted_models_visibility = gr.Checkbox(
|
@@ -191,12 +233,13 @@ with demo:
|
|
191 |
elem_id="filter-columns-size",
|
192 |
)
|
193 |
|
194 |
-
leaderboard_table = gr.
|
195 |
value=leaderboard_df[
|
196 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
-
+
|
198 |
],
|
199 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
|
|
200 |
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
202 |
interactive=False,
|
@@ -204,7 +247,7 @@ with demo:
|
|
204 |
)
|
205 |
|
206 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
207 |
-
hidden_leaderboard_table_for_search = gr.
|
208 |
value=original_df[COLS],
|
209 |
headers=COLS,
|
210 |
datatype=TYPES,
|
@@ -212,30 +255,43 @@ with demo:
|
|
212 |
)
|
213 |
search_bar.submit(
|
214 |
update_table,
|
215 |
-
[
|
216 |
hidden_leaderboard_table_for_search,
|
217 |
-
|
|
|
|
|
|
|
|
|
218 |
filter_columns_type,
|
219 |
filter_columns_precision,
|
220 |
filter_columns_size,
|
221 |
deleted_models_visibility,
|
222 |
search_bar,
|
223 |
],
|
224 |
-
leaderboard_table,
|
225 |
)
|
226 |
-
for selector in [
|
|
|
|
|
|
|
|
|
|
|
227 |
selector.change(
|
228 |
update_table,
|
229 |
-
[
|
230 |
hidden_leaderboard_table_for_search,
|
231 |
-
|
|
|
|
|
|
|
|
|
232 |
filter_columns_type,
|
233 |
filter_columns_precision,
|
234 |
filter_columns_size,
|
235 |
deleted_models_visibility,
|
236 |
search_bar,
|
237 |
],
|
238 |
-
leaderboard_table,
|
239 |
queue=True,
|
240 |
)
|
241 |
|
@@ -253,7 +309,7 @@ with demo:
|
|
253 |
open=False,
|
254 |
):
|
255 |
with gr.Row():
|
256 |
-
finished_eval_table = gr.
|
257 |
value=finished_eval_queue_df,
|
258 |
headers=EVAL_COLS,
|
259 |
datatype=EVAL_TYPES,
|
@@ -264,7 +320,7 @@ with demo:
|
|
264 |
open=False,
|
265 |
):
|
266 |
with gr.Row():
|
267 |
-
running_eval_table = gr.
|
268 |
value=running_eval_queue_df,
|
269 |
headers=EVAL_COLS,
|
270 |
datatype=EVAL_TYPES,
|
@@ -276,7 +332,7 @@ with demo:
|
|
276 |
open=False,
|
277 |
):
|
278 |
with gr.Row():
|
279 |
-
pending_eval_table = gr.
|
280 |
value=pending_eval_queue_df,
|
281 |
headers=EVAL_COLS,
|
282 |
datatype=EVAL_TYPES,
|
@@ -342,4 +398,4 @@ with demo:
|
|
342 |
scheduler = BackgroundScheduler()
|
343 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
scheduler.start()
|
345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
63 |
# Searching and filtering
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
66 |
+
columns_info: list,
|
67 |
+
columns_eval: list,
|
68 |
+
columns_metadata: list,
|
69 |
+
columns_popularity: list,
|
70 |
+
columns_revision: list,
|
71 |
type_query: list,
|
72 |
+
precision_query: list,
|
73 |
size_query: list,
|
74 |
show_deleted: bool,
|
75 |
query: str,
|
76 |
):
|
77 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
78 |
filtered_df = filter_queries(query, filtered_df)
|
79 |
+
# Combine all column selections
|
80 |
+
selected_columns = columns_info + columns_eval + columns_metadata + columns_popularity + columns_revision
|
81 |
+
df = select_columns(filtered_df, selected_columns)
|
82 |
return df
|
83 |
|
84 |
|
|
|
137 |
|
138 |
return filtered_df
|
139 |
|
140 |
+
def uncheck_all():
|
141 |
+
return [], [], [], [], []
|
142 |
|
143 |
demo = gr.Blocks(css=custom_css)
|
144 |
with demo:
|
|
|
156 |
elem_id="search-bar",
|
157 |
)
|
158 |
with gr.Row():
|
159 |
+
with gr.Accordion("Select columns to show"):
|
160 |
+
with gr.Tab("Model Information"):
|
161 |
+
shown_columns_info = gr.CheckboxGroup(
|
162 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Model Information"],
|
163 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Model Information"],
|
164 |
+
label="Model Information",
|
165 |
+
interactive=True,
|
166 |
+
)
|
167 |
+
with gr.Tab("Evaluation Scores"):
|
168 |
+
shown_columns_eval = gr.CheckboxGroup(
|
169 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Evaluation Scores"],
|
170 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Evaluation Scores"],
|
171 |
+
label="Evaluation Scores",
|
172 |
+
interactive=True,
|
173 |
+
)
|
174 |
+
with gr.Tab("Model Metadata"):
|
175 |
+
shown_columns_metadata = gr.CheckboxGroup(
|
176 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Model Metadata"],
|
177 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Model Metadata"],
|
178 |
+
label="Model Metadata",
|
179 |
+
interactive=True,
|
180 |
+
)
|
181 |
+
with gr.Tab("Popularity Metrics"):
|
182 |
+
shown_columns_popularity = gr.CheckboxGroup(
|
183 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Popularity Metrics"],
|
184 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Popularity Metrics"],
|
185 |
+
label="Popularity Metrics",
|
186 |
+
interactive=True,
|
187 |
+
)
|
188 |
+
with gr.Tab("Revision and Availability"):
|
189 |
+
shown_columns_revision = gr.CheckboxGroup(
|
190 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Revision and Availability"],
|
191 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Revision and Availability"],
|
192 |
+
label="Revision and Availability",
|
193 |
+
interactive=True,
|
194 |
+
)
|
195 |
+
with gr.Row():
|
196 |
+
uncheck_all_button = gr.Button("Uncheck All")
|
197 |
+
uncheck_all_button.click(
|
198 |
+
uncheck_all,
|
199 |
+
inputs=[],
|
200 |
+
outputs=[
|
201 |
+
shown_columns_info,
|
202 |
+
shown_columns_eval,
|
203 |
+
shown_columns_metadata,
|
204 |
+
shown_columns_popularity,
|
205 |
+
shown_columns_revision
|
206 |
],
|
|
|
|
|
|
|
207 |
)
|
208 |
with gr.Row():
|
209 |
deleted_models_visibility = gr.Checkbox(
|
|
|
233 |
elem_id="filter-columns-size",
|
234 |
)
|
235 |
|
236 |
+
leaderboard_table = gr.Dataframe(
|
237 |
value=leaderboard_df[
|
238 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
239 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
|
240 |
],
|
241 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
242 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
243 |
datatype=TYPES,
|
244 |
elem_id="leaderboard-table",
|
245 |
interactive=False,
|
|
|
247 |
)
|
248 |
|
249 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
250 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
251 |
value=original_df[COLS],
|
252 |
headers=COLS,
|
253 |
datatype=TYPES,
|
|
|
255 |
)
|
256 |
search_bar.submit(
|
257 |
update_table,
|
258 |
+
inputs=[
|
259 |
hidden_leaderboard_table_for_search,
|
260 |
+
shown_columns_info,
|
261 |
+
shown_columns_eval,
|
262 |
+
shown_columns_metadata,
|
263 |
+
shown_columns_popularity,
|
264 |
+
shown_columns_revision,
|
265 |
filter_columns_type,
|
266 |
filter_columns_precision,
|
267 |
filter_columns_size,
|
268 |
deleted_models_visibility,
|
269 |
search_bar,
|
270 |
],
|
271 |
+
outputs=leaderboard_table,
|
272 |
)
|
273 |
+
for selector in [
|
274 |
+
shown_columns_info, shown_columns_eval, shown_columns_metadata,
|
275 |
+
shown_columns_popularity, shown_columns_revision,
|
276 |
+
filter_columns_type, filter_columns_precision,
|
277 |
+
filter_columns_size, deleted_models_visibility
|
278 |
+
]:
|
279 |
selector.change(
|
280 |
update_table,
|
281 |
+
inputs=[
|
282 |
hidden_leaderboard_table_for_search,
|
283 |
+
shown_columns_info,
|
284 |
+
shown_columns_eval,
|
285 |
+
shown_columns_metadata,
|
286 |
+
shown_columns_popularity,
|
287 |
+
shown_columns_revision,
|
288 |
filter_columns_type,
|
289 |
filter_columns_precision,
|
290 |
filter_columns_size,
|
291 |
deleted_models_visibility,
|
292 |
search_bar,
|
293 |
],
|
294 |
+
outputs=leaderboard_table,
|
295 |
queue=True,
|
296 |
)
|
297 |
|
|
|
309 |
open=False,
|
310 |
):
|
311 |
with gr.Row():
|
312 |
+
finished_eval_table = gr.Dataframe(
|
313 |
value=finished_eval_queue_df,
|
314 |
headers=EVAL_COLS,
|
315 |
datatype=EVAL_TYPES,
|
|
|
320 |
open=False,
|
321 |
):
|
322 |
with gr.Row():
|
323 |
+
running_eval_table = gr.Dataframe(
|
324 |
value=running_eval_queue_df,
|
325 |
headers=EVAL_COLS,
|
326 |
datatype=EVAL_TYPES,
|
|
|
332 |
open=False,
|
333 |
):
|
334 |
with gr.Row():
|
335 |
+
pending_eval_table = gr.Dataframe(
|
336 |
value=pending_eval_queue_df,
|
337 |
headers=EVAL_COLS,
|
338 |
datatype=EVAL_TYPES,
|
|
|
398 |
scheduler = BackgroundScheduler()
|
399 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
400 |
scheduler.start()
|
401 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/display/utils.py
CHANGED
@@ -17,30 +17,38 @@ class ColumnContent:
|
|
17 |
name: str
|
18 |
type: str
|
19 |
displayed_by_default: bool
|
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
-
|
26 |
-
|
27 |
-
auto_eval_column_dict.append(["
|
28 |
-
|
29 |
-
auto_eval_column_dict.append(["
|
|
|
|
|
|
|
|
|
30 |
for task in Tasks:
|
31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
-
|
33 |
-
|
34 |
-
auto_eval_column_dict.append(["
|
35 |
-
auto_eval_column_dict.append(["
|
36 |
-
auto_eval_column_dict.append(["
|
37 |
-
auto_eval_column_dict.append(["
|
38 |
-
|
39 |
-
|
40 |
-
auto_eval_column_dict.append(["
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
|
46 |
## For the queue columns in the submission tab
|
|
|
17 |
name: str
|
18 |
type: str
|
19 |
displayed_by_default: bool
|
20 |
+
category: str = "" # New attribute to hold the category
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
## Leaderboard columns
|
25 |
auto_eval_column_dict = []
|
26 |
+
|
27 |
+
# Model Information
|
28 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
|
29 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
30 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
31 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
32 |
+
|
33 |
+
# Evaluation Scores
|
34 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Evaluation Scores")])
|
35 |
for task in Tasks:
|
36 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, category="Evaluation Scores")])
|
37 |
+
|
38 |
+
# Model Metadata
|
39 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Metadata", hidden=True)])
|
40 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Metadata")])
|
41 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Metadata")])
|
42 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Metadata")])
|
43 |
+
|
44 |
+
# Popularity Metrics
|
45 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Popularity Metrics")])
|
46 |
+
|
47 |
+
# Revision and Availability
|
48 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Revision and Availability")])
|
49 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Revision and Availability", hidden=False)])
|
50 |
+
|
51 |
+
# We use make_dataclass to dynamically fill the scores from Tasks
|
52 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
53 |
|
54 |
## For the queue columns in the submission tab
|