File size: 19,419 Bytes
9e90264
a491ee5
a458b71
9e90264
 
 
 
 
 
 
 
 
31eb488
9e90264
 
a491ee5
 
 
78e1dd9
d06b274
 
 
 
 
78e1dd9
 
 
 
 
 
 
 
 
 
 
 
9e90264
 
78e1dd9
9e90264
 
 
 
 
 
 
 
 
 
 
 
 
 
78e1dd9
 
9e90264
 
 
a491ee5
 
9e90264
a491ee5
9e90264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681d043
9e90264
 
 
 
 
 
 
 
 
 
 
 
681d043
 
 
9e90264
 
 
 
 
 
 
 
 
 
 
d06b274
 
 
9e90264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d06b274
9e90264
 
 
 
 
 
 
 
 
 
 
 
 
 
681d043
9e90264
 
 
 
 
681d043
 
9e90264
a491ee5
9e90264
 
 
 
 
 
 
 
 
 
681d043
9e90264
 
 
 
 
 
681d043
 
9e90264
 
 
 
 
 
 
 
 
 
681d043
9e90264
 
 
 
 
 
681d043
 
9e90264
 
 
 
 
 
 
 
a491ee5
 
9e90264
 
 
a491ee5
 
 
 
 
 
 
 
 
 
31eb488
9e90264
 
 
 
 
 
 
 
 
 
 
a491ee5
 
9e90264
 
a491ee5
9e90264
 
 
 
 
 
a491ee5
9e90264
 
a491ee5
 
9e90264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d06b274
 
 
9e90264
 
 
 
 
 
 
d06b274
 
 
9e90264
 
 
 
 
 
a491ee5
9e90264
 
a491ee5
 
9e90264
d06b274
31eb488
9e90264
 
 
 
 
78e1dd9
9e90264
78e1dd9
9e90264
31eb488
9e90264
 
d06b274
31eb488
9e90264
 
31eb488
9e90264
31eb488
9e90264
 
 
31eb488
9e90264
31eb488
9e90264
 
 
 
31eb488
9e90264
31eb488
9e90264
 
 
 
 
31eb488
9e90264
 
 
 
 
a0b4d21
31eb488
 
 
9e90264
a458b71
 
9e90264
 
 
 
d06b274
a458b71
 
 
 
 
 
 
 
78e1dd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import logging
import os
import time
from typing import Any

from huggingface_hub import PyTorchModelHubMixin
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
from torch.utils.data import DataLoader, Dataset, IterableDataset
from torcheval.metrics import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
import torch
from torch import nn
from datasets import load_dataset
timber = logging.getLogger()
# logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=logging.INFO)  # change to level=logging.DEBUG to print more logs...

NO_REGULARIZATION = 0
L1_REGULARIZATION_CODE = 1
L2_REGULARIZATION_CODE = 2
L1_AND_L2_REGULARIZATION_CODE = 3

black = "\u001b[30m"
red = "\u001b[31m"
green = "\u001b[32m"
yellow = "\u001b[33m"
blue = "\u001b[34m"
magenta = "\u001b[35m"
cyan = "\u001b[36m"
white = "\u001b[37m"

FORWARD = "FORWARD_INPUT"
BACKWARD = "BACKWARD_INPUT"

DNA_BERT_6 = "zhihan1996/DNA_bert_6"


class CommonAttentionLayer(nn.Module):
  def __init__(self, hidden_size, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self.attention_linear = nn.Linear(hidden_size, 1)
    pass

  def forward(self, hidden_states):
    # Apply linear layer
    attn_weights = self.attention_linear(hidden_states)
    # Apply softmax to get attention scores
    attn_weights = torch.softmax(attn_weights, dim=1)
    # Apply attention weights to hidden states
    context_vector = torch.sum(attn_weights * hidden_states, dim=1)
    return context_vector, attn_weights


class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
  def forward(self, input, target):
    return super().forward(input.squeeze(), target.float())


class MQtlDnaBERT6Classifier(nn.Module, PyTorchModelHubMixin):
  def __init__(self,
               bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
               hidden_size=768,
               num_classes=1,
               *args,
               **kwargs
               ):
    super().__init__(*args, **kwargs)

    self.model_name = "MQtlDnaBERT6Classifier"

    self.bert_model = bert_model
    self.attention = CommonAttentionLayer(hidden_size)
    self.classifier = nn.Linear(hidden_size, num_classes)
    pass

  def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
    """
    # torch.Size([128, 1, 512]) --> [128, 512]
    input_ids = input_ids.squeeze(dim=1).to(DEVICE)
    # torch.Size([16, 1, 512]) --> [16, 512]
    attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
    token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
    """
    bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
      input_ids=input_ids,
      attention_mask=attention_mask,
      token_type_ids=token_type_ids
    )

    last_hidden_state = bert_output.last_hidden_state
    context_vector, ignore_attention_weight = self.attention(last_hidden_state)
    y = self.classifier(context_vector)
    return y

"""
class TorchMetrics:
  def __init__(self):
    self.binary_accuracy = BinaryAccuracy()  #.to(device)
    self.binary_auc = BinaryAUROC()  # .to(device)
    self.binary_f1_score = BinaryF1Score()  # .to(device)
    self.binary_precision = BinaryPrecision()  # .to(device)
    self.binary_recall = BinaryRecall()  # .to(device)
    pass

  def update_on_each_step(self, batch_predicted_labels, batch_actual_labels):  # todo: Add log if needed
    # it looks like the library maintainers changed preds to input, ie, before: preds, now: input
    self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
    pass

  def compute_and_log_on_each_step(self, log, log_prefix: str, log_color: str = green):
    b_accuracy = self.binary_accuracy.compute()
    b_auc = self.binary_auc.compute()
    b_f1_score = self.binary_f1_score.compute()
    b_precision = self.binary_precision.compute()
    b_recall = self.binary_recall.compute()
    timber.info(log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
    log(f"{log_prefix}_accuracy", b_accuracy)
    log(f"{log_prefix}_auc", b_auc)
    log(f"{log_prefix}_f1_score", b_f1_score)
    log(f"{log_prefix}_precision", b_precision)
    log(f"{log_prefix}_recall", b_recall)

  # def reset_on_epoch_end(self):
  #   self.binary_accuracy.reset()
  #   self.binary_auc.reset()
  #   self.binary_f1_score.reset()
  #   self.binary_precision.reset()
  #   self.binary_recall.reset()

  def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
    b_accuracy = self.binary_accuracy.compute()
    b_auc = self.binary_auc.compute()
    b_f1_score = self.binary_f1_score.compute()
    b_precision = self.binary_precision.compute()
    b_recall = self.binary_recall.compute()
    timber.info(  log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
    log(f"{log_prefix}_accuracy", b_accuracy)
    log(f"{log_prefix}_auc", b_auc)
    log(f"{log_prefix}_f1_score", b_f1_score)
    log(f"{log_prefix}_precision", b_precision)
    log(f"{log_prefix}_recall", b_recall)

    self.binary_accuracy.reset()
    self.binary_auc.reset()
    self.binary_f1_score.reset()
    self.binary_precision.reset()
    self.binary_recall.reset()
    pass
"""


class TorchMetrics:
  def __init__(self):
    self.binary_accuracy = BinaryAccuracy()  #.to(device)
    self.binary_auc = BinaryAUROC()  # .to(device)
    self.binary_f1_score = BinaryF1Score()  # .to(device)
    self.binary_precision = BinaryPrecision()  # .to(device)
    self.binary_recall = BinaryRecall()  # .to(device)
    pass

  def update_on_each_step(self, batch_predicted_labels, batch_actual_labels):  # todo: Add log if needed
    # it looks like the library maintainers changed preds to input, ie, before: preds, now: input
    self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
    self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
    pass

  def compute_metrics_and_log(self, log, log_prefix: str, log_color: str = green):
    b_accuracy = self.binary_accuracy.compute()
    b_auc = self.binary_auc.compute()
    b_f1_score = self.binary_f1_score.compute()
    b_precision = self.binary_precision.compute()
    b_recall = self.binary_recall.compute()
    timber.info(  log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
    log(f"{log_prefix}_accuracy", b_accuracy)
    log(f"{log_prefix}_auc", b_auc)
    log(f"{log_prefix}_f1_score", b_f1_score)
    log(f"{log_prefix}_precision", b_precision)
    log(f"{log_prefix}_recall", b_recall)

    pass

  def reset_on_epoch_end(self):
    self.binary_accuracy.reset()
    self.binary_auc.reset()
    self.binary_f1_score.reset()
    self.binary_precision.reset()
    self.binary_recall.reset()


class MQtlBertClassifierLightningModule(LightningModule):
  def __init__(self,
               classifier: nn.Module,
               criterion=None,  # nn.BCEWithLogitsLoss(),
               regularization: int = L2_REGULARIZATION_CODE,  # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
               l1_lambda=0.0001,
               l2_wright_decay=0.0001,
               *args: Any,
               **kwargs: Any):
    super().__init__(*args, **kwargs)
    self.classifier = classifier
    self.criterion = criterion
    self.train_metrics = TorchMetrics()
    self.validate_metrics = TorchMetrics()
    self.test_metrics = TorchMetrics()

    self.regularization = regularization
    self.l1_lambda = l1_lambda
    self.l2_weight_decay = l2_wright_decay
    pass

  def forward(self, x, *args: Any, **kwargs: Any) -> Any:
    input_ids: torch.tensor = x["input_ids"]
    attention_mask: torch.tensor = x["attention_mask"]
    token_type_ids: torch.tensor = x["token_type_ids"]
    # print(f"\n{ type(input_ids) = }, {input_ids = }")
    # print(f"{ type(attention_mask) = }, { attention_mask = }")
    # print(f"{ type(token_type_ids) = }, { token_type_ids = }")

    return self.classifier.forward(input_ids, attention_mask, token_type_ids)

  def configure_optimizers(self) -> OptimizerLRScheduler:
    # Here we add weight decay (L2 regularization) to the optimizer
    weight_decay = 0.0
    if self.regularization == 2 or self.regularization == 3:
      weight_decay = self.l2_weight_decay
    return torch.optim.Adam(self.parameters(), lr=1e-5, weight_decay=weight_decay)  # , weight_decay=0.005)

  def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
    # Accuracy on training batch data
    x, y = batch
    preds = self.forward(x)
    loss = self.criterion(preds, y)

    if self.regularization == 1 or self.regularization == 3:  # apply l1 regularization
      l1_norm = sum(p.abs().sum() for p in self.parameters())
      loss += self.l1_lambda * l1_norm

    self.log("train_loss", loss)
    # calculate the scores start
    self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
    self.train_metrics.compute_metrics_and_log(log=self.log, log_prefix="train")
    # self.train_metrics.compute_and_log_on_each_step(log=self.log, log_prefix="train")
    # calculate the scores end
    return loss

  def on_train_epoch_end(self) -> None:
    self.train_metrics.compute_metrics_and_log(log=self.log, log_prefix="train")
    self.train_metrics.reset_on_epoch_end()
    pass

  def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
    # Accuracy on validation batch data
    # print(f"debug { batch = }")
    x, y = batch
    preds = self.forward(x)
    loss = self.criterion(preds, y)
    """ loss = 0 #  <------------------------- maybe the loss calculation is problematic """
    self.log("valid_loss", loss)
    # calculate the scores start
    self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
    self.validate_metrics.compute_metrics_and_log(log=self.log, log_prefix="validate", log_color=blue)
    # self.validate_metrics.compute_and_log_on_each_step(log=self.log, log_prefix="validate", log_color=blue)

    # calculate the scores end
    return loss

  def on_validation_epoch_end(self) -> None:
    self.validate_metrics.compute_metrics_and_log(log=self.log, log_prefix="validate", log_color=blue)
    self.validate_metrics.reset_on_epoch_end()
    return None

  def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
    # Accuracy on validation batch data
    x, y = batch
    preds = self.forward(x)
    loss = self.criterion(preds, y)
    self.log("test_loss", loss)  # do we need this?
    # calculate the scores start
    self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
    self.test_metrics.compute_metrics_and_log(log=self.log, log_prefix="test", log_color=magenta)
    # self.test_metrics.compute_and_log_on_each_step(log=self.log, log_prefix="test", log_color=magenta)

    # calculate the scores end
    return loss

  def on_test_epoch_end(self) -> None:
    self.test_metrics.compute_metrics_and_log(log=self.log, log_prefix="test", log_color=magenta)
    self.test_metrics.reset_on_epoch_end()
    return None

  pass


class PagingMQTLDnaBertDataset(IterableDataset):
  def __init__(self, dataset, tokenizer, max_length=512):  # hold on! why is it 512? I added 4000, and it crashed, the error suggested 512, that's why 512
    self.dataset = dataset
    self.bert_tokenizer = tokenizer
    self.max_length = max_length

  # def __len__(self):
  #   return len(self.dataset)

  def __iter__(self):
    for row in self.dataset:
      processed = self.preprocess(row)
      if processed is not None:
        yield processed

  def preprocess(self, row):
    sequence = row['sequence']  # Fetch the 'sequence' column
    label = row['label']  # Fetch the 'label' column (or whatever target you use)

    # Tokenize the sequence
    encoded_sequence: BatchEncoding = self.bert_tokenizer(
      sequence,
      truncation=True,
      padding='max_length',
      max_length=self.max_length,
      return_tensors='pt'
    )

    encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
    return encoded_sequence_squeezed, label


class DNABERTDataModule(LightningDataModule):
  def __init__(self, model_name=DNA_BERT_6, batch_size=8, WINDOW=-1, is_local=False):
    super().__init__()
    self.tokenized_dataset = None
    self.dataset = None
    self.train_dataset: PagingMQTLDnaBertDataset = None
    self.validate_dataset: PagingMQTLDnaBertDataset = None
    self.test_dataset: PagingMQTLDnaBertDataset = None
    self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=model_name)
    self.batch_size = batch_size
    self.is_local = is_local
    self.window = WINDOW

  def prepare_data(self):
    # Download and prepare dataset
    data_files = {
      # small samples
      "train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
      "validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
      "test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
      # medium samples
      "train_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_train_binned.csv",
      "validate_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_validate_binned.csv",
      "test_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_test_binned.csv",

      # large samples
      "train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
      "validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
      "test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",

      # really tiny
      # "tiny_train": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_train_binned.csv",
      # "tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_validate_binned.csv",
      # "tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_test_binned.csv",

      "tiny_train": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_train_binned.csv",
      "tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_validate_binned.csv",
      "tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_test_binned.csv",
    }
    if self.is_local:
      self.dataset = load_dataset("csv", data_files=data_files, streaming=True)
    else:
      self.dataset = load_dataset("fahimfarhan/mqtl-classification-datasets")

  def setup(self, stage=None):
    self.train_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_train'], self.tokenizer)
    self.validate_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_validate'], self.tokenizer)
    self.test_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_test'], self.tokenizer)

  def train_dataloader(self):
    return DataLoader(self.train_dataset, batch_size=self.batch_size, num_workers=1)

  def val_dataloader(self):
    return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=1)

  def test_dataloader(self) -> EVAL_DATALOADERS:
    return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=1)


def start_bert(classifier_model, model_save_path, criterion, WINDOW, batch_size=4,
                is_binned=True, is_debug=False, max_epochs=10, regularization_code = L2_REGULARIZATION_CODE):
  is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
  model_local_directory = f"my-awesome-model-{WINDOW}"
  model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
  file_suffix = ""
  if is_binned:
    file_suffix = "_binned"

  data_module = DNABERTDataModule(batch_size=batch_size, WINDOW=WINDOW, is_local=is_my_laptop)

  # classifier_model = classifier_model.to(DEVICE)

  classifier_module = MQtlBertClassifierLightningModule(
    classifier=classifier_model,
    regularization=regularization_code, criterion=criterion)

  # if os.path.exists(model_save_path):
  #   classifier_module.load_state_dict(torch.load(model_save_path))

  classifier_module = classifier_module  # .double()

  # Prepare data using the DataModule
  data_module.prepare_data()
  data_module.setup()

  trainer = Trainer(max_epochs=max_epochs, precision="32")

  # Train the model
  trainer.fit(model=classifier_module, datamodule=data_module)
  trainer.test(model=classifier_module, datamodule=data_module)
  torch.save(classifier_module.state_dict(), model_save_path)

  # classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")

  classifier_model.save_pretrained(save_directory=model_local_directory, safe_serialization=False)
  # push to the hub
  commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
  if is_my_laptop:
    commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"

  classifier_model.push_to_hub(
    repo_id=model_remote_repository,
    # subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
    commit_message=commit_message,  # f":tada: Push model for window size {WINDOW}"
    # safe_serialization=False
  )
  pass


if __name__ == "__main__":
  start_time = time.time()

  dataset_folder_prefix = "inputdata/"
  pytorch_model = MQtlDnaBERT6Classifier()
  start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
             criterion=ReshapedBCEWithLogitsLoss(), WINDOW=4000, batch_size=12,  # max 14 on my laptop...
            max_epochs=1, regularization_code=L2_REGULARIZATION_CODE)

  # Record the end time
  end_time = time.time()
  # Calculate the duration
  duration = end_time - start_time
  # Print the runtime
  print(f"Runtime: {duration:.2f} seconds")

  pass