Spaces:
Runtime error
Runtime error
Soumic
commited on
Commit
β’
d06b274
1
Parent(s):
681d043
:lady_beetle: Repaired some major mistakes, but the model returns accuracy = 50%
Browse files- README.md +4 -0
- app.py β failed_app_v3.py +18 -10
- failed_app_v4.py +435 -0
README.md
CHANGED
@@ -9,3 +9,7 @@ license: creativeml-openrail-m
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
|
13 |
+
## TODOS:
|
14 |
+
https://github.com/jerryji1993/DNABERT/issues/11#issuecomment-802389446 Based on this comment, we need to split the
|
15 |
+
sequences into 512 length subsequences. Maybe that will give better results from with DNABert 6.
|
app.py β failed_app_v3.py
RENAMED
@@ -17,6 +17,11 @@ timber = logging.getLogger()
|
|
17 |
# logging.basicConfig(level=logging.DEBUG)
|
18 |
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
black = "\u001b[30m"
|
21 |
red = "\u001b[31m"
|
22 |
green = "\u001b[32m"
|
@@ -195,9 +200,9 @@ class MQtlBertClassifierLightningModule(LightningModule):
|
|
195 |
def __init__(self,
|
196 |
classifier: nn.Module,
|
197 |
criterion=None, # nn.BCEWithLogitsLoss(),
|
198 |
-
regularization: int =
|
199 |
-
l1_lambda=0.
|
200 |
-
l2_wright_decay=0.
|
201 |
*args: Any,
|
202 |
**kwargs: Any):
|
203 |
super().__init__(*args, **kwargs)
|
@@ -227,7 +232,7 @@ class MQtlBertClassifierLightningModule(LightningModule):
|
|
227 |
weight_decay = 0.0
|
228 |
if self.regularization == 2 or self.regularization == 3:
|
229 |
weight_decay = self.l2_weight_decay
|
230 |
-
return torch.optim.Adam(self.parameters(), lr=1e-
|
231 |
|
232 |
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
233 |
# Accuracy on training batch data
|
@@ -362,6 +367,9 @@ class DNABERTDataModule(LightningDataModule):
|
|
362 |
# "tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_validate_binned.csv",
|
363 |
# "tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_test_binned.csv",
|
364 |
|
|
|
|
|
|
|
365 |
}
|
366 |
if self.is_local:
|
367 |
self.dataset = load_dataset("csv", data_files=data_files, streaming=True)
|
@@ -369,9 +377,9 @@ class DNABERTDataModule(LightningDataModule):
|
|
369 |
self.dataset = load_dataset("fahimfarhan/mqtl-classification-datasets")
|
370 |
|
371 |
def setup(self, stage=None):
|
372 |
-
self.train_dataset = PagingMQTLDnaBertDataset(self.dataset['
|
373 |
-
self.validate_dataset = PagingMQTLDnaBertDataset(self.dataset['
|
374 |
-
self.test_dataset = PagingMQTLDnaBertDataset(self.dataset['
|
375 |
|
376 |
def train_dataloader(self):
|
377 |
return DataLoader(self.train_dataset, batch_size=self.batch_size, num_workers=1)
|
@@ -384,7 +392,7 @@ class DNABERTDataModule(LightningDataModule):
|
|
384 |
|
385 |
|
386 |
def start_bert(classifier_model, model_save_path, criterion, WINDOW, batch_size=4,
|
387 |
-
|
388 |
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
|
389 |
model_local_directory = f"my-awesome-model-{WINDOW}"
|
390 |
model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
|
@@ -398,7 +406,7 @@ def start_bert(classifier_model, model_save_path, criterion, WINDOW, batch_size=
|
|
398 |
|
399 |
classifier_module = MQtlBertClassifierLightningModule(
|
400 |
classifier=classifier_model,
|
401 |
-
regularization=
|
402 |
|
403 |
# if os.path.exists(model_save_path):
|
404 |
# classifier_module.load_state_dict(torch.load(model_save_path))
|
@@ -440,7 +448,7 @@ if __name__ == "__main__":
|
|
440 |
pytorch_model = MQtlDnaBERT6Classifier()
|
441 |
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
|
442 |
criterion=ReshapedBCEWithLogitsLoss(), WINDOW=4000, batch_size=12, # max 14 on my laptop...
|
443 |
-
|
444 |
|
445 |
# Record the end time
|
446 |
end_time = time.time()
|
|
|
17 |
# logging.basicConfig(level=logging.DEBUG)
|
18 |
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
19 |
|
20 |
+
NO_REGULARIZATION = 0
|
21 |
+
L1_REGULARIZATION_CODE = 1
|
22 |
+
L2_REGULARIZATION_CODE = 2
|
23 |
+
L1_AND_L2_REGULARIZATION_CODE = 3
|
24 |
+
|
25 |
black = "\u001b[30m"
|
26 |
red = "\u001b[31m"
|
27 |
green = "\u001b[32m"
|
|
|
200 |
def __init__(self,
|
201 |
classifier: nn.Module,
|
202 |
criterion=None, # nn.BCEWithLogitsLoss(),
|
203 |
+
regularization: int = L2_REGULARIZATION_CODE, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
|
204 |
+
l1_lambda=0.0001,
|
205 |
+
l2_wright_decay=0.0001,
|
206 |
*args: Any,
|
207 |
**kwargs: Any):
|
208 |
super().__init__(*args, **kwargs)
|
|
|
232 |
weight_decay = 0.0
|
233 |
if self.regularization == 2 or self.regularization == 3:
|
234 |
weight_decay = self.l2_weight_decay
|
235 |
+
return torch.optim.Adam(self.parameters(), lr=1e-5, weight_decay=weight_decay) # , weight_decay=0.005)
|
236 |
|
237 |
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
238 |
# Accuracy on training batch data
|
|
|
367 |
# "tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_validate_binned.csv",
|
368 |
# "tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_test_binned.csv",
|
369 |
|
370 |
+
"tiny_train": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_train_binned.csv",
|
371 |
+
"tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_validate_binned.csv",
|
372 |
+
"tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_test_binned.csv",
|
373 |
}
|
374 |
if self.is_local:
|
375 |
self.dataset = load_dataset("csv", data_files=data_files, streaming=True)
|
|
|
377 |
self.dataset = load_dataset("fahimfarhan/mqtl-classification-datasets")
|
378 |
|
379 |
def setup(self, stage=None):
|
380 |
+
self.train_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_train'], self.tokenizer)
|
381 |
+
self.validate_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_validate'], self.tokenizer)
|
382 |
+
self.test_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_test'], self.tokenizer)
|
383 |
|
384 |
def train_dataloader(self):
|
385 |
return DataLoader(self.train_dataset, batch_size=self.batch_size, num_workers=1)
|
|
|
392 |
|
393 |
|
394 |
def start_bert(classifier_model, model_save_path, criterion, WINDOW, batch_size=4,
|
395 |
+
is_binned=True, is_debug=False, max_epochs=10, regularization_code = L2_REGULARIZATION_CODE):
|
396 |
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
|
397 |
model_local_directory = f"my-awesome-model-{WINDOW}"
|
398 |
model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
|
|
|
406 |
|
407 |
classifier_module = MQtlBertClassifierLightningModule(
|
408 |
classifier=classifier_model,
|
409 |
+
regularization=regularization_code, criterion=criterion)
|
410 |
|
411 |
# if os.path.exists(model_save_path):
|
412 |
# classifier_module.load_state_dict(torch.load(model_save_path))
|
|
|
448 |
pytorch_model = MQtlDnaBERT6Classifier()
|
449 |
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
|
450 |
criterion=ReshapedBCEWithLogitsLoss(), WINDOW=4000, batch_size=12, # max 14 on my laptop...
|
451 |
+
max_epochs=1, regularization_code=L2_REGULARIZATION_CODE)
|
452 |
|
453 |
# Record the end time
|
454 |
end_time = time.time()
|
failed_app_v4.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
7 |
+
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
8 |
+
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
|
9 |
+
from torch.utils.data import DataLoader, Dataset, IterableDataset
|
10 |
+
from torcheval.metrics import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
11 |
+
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from datasets import load_dataset
|
16 |
+
|
17 |
+
timber = logging.getLogger()
|
18 |
+
# logging.basicConfig(level=logging.DEBUG)
|
19 |
+
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
20 |
+
|
21 |
+
NO_REGULARIZATION = 0
|
22 |
+
L1_REGULARIZATION_CODE = 1
|
23 |
+
L2_REGULARIZATION_CODE = 2
|
24 |
+
L1_AND_L2_REGULARIZATION_CODE = 3
|
25 |
+
|
26 |
+
black = "\u001b[30m"
|
27 |
+
red = "\u001b[31m"
|
28 |
+
green = "\u001b[32m"
|
29 |
+
yellow = "\u001b[33m"
|
30 |
+
blue = "\u001b[34m"
|
31 |
+
magenta = "\u001b[35m"
|
32 |
+
cyan = "\u001b[36m"
|
33 |
+
white = "\u001b[37m"
|
34 |
+
|
35 |
+
FORWARD = "FORWARD_INPUT"
|
36 |
+
BACKWARD = "BACKWARD_INPUT"
|
37 |
+
|
38 |
+
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
|
39 |
+
|
40 |
+
|
41 |
+
class CommonAttentionLayer(nn.Module):
|
42 |
+
def __init__(self, hidden_size, *args, **kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.attention_linear = nn.Linear(hidden_size, 1)
|
45 |
+
pass
|
46 |
+
|
47 |
+
def forward(self, hidden_states):
|
48 |
+
# Apply linear layer
|
49 |
+
attn_weights = self.attention_linear(hidden_states)
|
50 |
+
# Apply softmax to get attention scores
|
51 |
+
attn_weights = torch.softmax(attn_weights, dim=1)
|
52 |
+
# Apply attention weights to hidden states
|
53 |
+
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
54 |
+
return context_vector, attn_weights
|
55 |
+
|
56 |
+
|
57 |
+
class DNABert6MqtlClassifier(nn.Module, PyTorchModelHubMixin):
|
58 |
+
def __init__(self,
|
59 |
+
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
60 |
+
hidden_size=768, # I got mat-mul error, looks like this will be 12 times :/
|
61 |
+
num_classes=1,
|
62 |
+
*args,
|
63 |
+
**kwargs):
|
64 |
+
super().__init__(*args, **kwargs)
|
65 |
+
self.model_name = "DNABert6MqtlClassifier"
|
66 |
+
self.bert_model = bert_model
|
67 |
+
self.attention = CommonAttentionLayer(hidden_size) # Optional if you want to use attention
|
68 |
+
|
69 |
+
classifier_input_size = 8 # cz mat-mul error
|
70 |
+
self.classifier = nn.Linear(classifier_input_size, num_classes)
|
71 |
+
|
72 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
73 |
+
# Run BERT on each sub-sequence and collect the embeddings
|
74 |
+
embeddings = []
|
75 |
+
for i in range(input_ids.size(0)): # Iterate over sub-sequences
|
76 |
+
outputs = self.bert_model(
|
77 |
+
input_ids=input_ids[i],
|
78 |
+
attention_mask=attention_mask[i],
|
79 |
+
token_type_ids=token_type_ids[i] if token_type_ids is not None else None
|
80 |
+
)
|
81 |
+
last_hidden_state = outputs.last_hidden_state
|
82 |
+
embedding = last_hidden_state.mean(dim=1) # Example: taking the mean of hidden states
|
83 |
+
embeddings.append(embedding)
|
84 |
+
|
85 |
+
# Concatenate embeddings from all sub-sequences
|
86 |
+
concatenated_embedding = torch.cat(embeddings, dim=1)
|
87 |
+
|
88 |
+
# apply attention here
|
89 |
+
context_vector, _ = self.attention(concatenated_embedding)
|
90 |
+
|
91 |
+
# Classify
|
92 |
+
y_probability = self.classifier(context_vector)
|
93 |
+
return y_probability # float / double
|
94 |
+
|
95 |
+
|
96 |
+
class TorchMetrics:
|
97 |
+
def __init__(self):
|
98 |
+
self.binary_accuracy = BinaryAccuracy() #.to(device)
|
99 |
+
self.binary_auc = BinaryAUROC() # .to(device)
|
100 |
+
self.binary_f1_score = BinaryF1Score() # .to(device)
|
101 |
+
self.binary_precision = BinaryPrecision() # .to(device)
|
102 |
+
self.binary_recall = BinaryRecall() # .to(device)
|
103 |
+
pass
|
104 |
+
|
105 |
+
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
106 |
+
# it looks like the library maintainers changed preds to input, ie, before: preds, now: input
|
107 |
+
self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
|
108 |
+
self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
|
109 |
+
self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
|
110 |
+
self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
|
111 |
+
self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
|
112 |
+
pass
|
113 |
+
|
114 |
+
def compute_metrics_and_log(self, log, log_prefix: str, log_color: str = green):
|
115 |
+
b_accuracy = self.binary_accuracy.compute()
|
116 |
+
b_auc = self.binary_auc.compute()
|
117 |
+
b_f1_score = self.binary_f1_score.compute()
|
118 |
+
b_precision = self.binary_precision.compute()
|
119 |
+
b_recall = self.binary_recall.compute()
|
120 |
+
timber.info(
|
121 |
+
log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
|
122 |
+
log(f"{log_prefix}_accuracy", b_accuracy)
|
123 |
+
log(f"{log_prefix}_auc", b_auc)
|
124 |
+
log(f"{log_prefix}_f1_score", b_f1_score)
|
125 |
+
log(f"{log_prefix}_precision", b_precision)
|
126 |
+
log(f"{log_prefix}_recall", b_recall)
|
127 |
+
|
128 |
+
pass
|
129 |
+
|
130 |
+
def reset_on_epoch_end(self):
|
131 |
+
self.binary_accuracy.reset()
|
132 |
+
self.binary_auc.reset()
|
133 |
+
self.binary_f1_score.reset()
|
134 |
+
self.binary_precision.reset()
|
135 |
+
self.binary_recall.reset()
|
136 |
+
|
137 |
+
|
138 |
+
class MQtlBertClassifierLightningModule(LightningModule):
|
139 |
+
def __init__(self,
|
140 |
+
classifier: nn.Module,
|
141 |
+
criterion=nn.BCEWithLogitsLoss(),
|
142 |
+
regularization: int = L2_REGULARIZATION_CODE,
|
143 |
+
# 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
|
144 |
+
l1_lambda=0.0001,
|
145 |
+
l2_wright_decay=0.0001,
|
146 |
+
*args: Any,
|
147 |
+
**kwargs: Any):
|
148 |
+
super().__init__(*args, **kwargs)
|
149 |
+
self.classifier = classifier
|
150 |
+
self.criterion = criterion
|
151 |
+
self.train_metrics = TorchMetrics()
|
152 |
+
self.validate_metrics = TorchMetrics()
|
153 |
+
self.test_metrics = TorchMetrics()
|
154 |
+
|
155 |
+
self.regularization = regularization
|
156 |
+
self.l1_lambda = l1_lambda
|
157 |
+
self.l2_weight_decay = l2_wright_decay
|
158 |
+
pass
|
159 |
+
|
160 |
+
def forward(self, input_ids, attention_mask, token_type_ids, *args: Any, **kwargs: Any) -> Any:
|
161 |
+
# print(f"\n{ type(input_ids) = }, {input_ids = }")
|
162 |
+
# print(f"{ type(attention_mask) = }, { attention_mask = }")
|
163 |
+
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
|
164 |
+
|
165 |
+
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
|
166 |
+
|
167 |
+
def configure_optimizers(self) -> OptimizerLRScheduler:
|
168 |
+
# Here we add weight decay (L2 regularization) to the optimizer
|
169 |
+
weight_decay = 0.0
|
170 |
+
if self.regularization == L2_REGULARIZATION_CODE or self.regularization == L1_AND_L2_REGULARIZATION_CODE:
|
171 |
+
weight_decay = self.l2_weight_decay
|
172 |
+
return torch.optim.Adam(self.parameters(), lr=1e-5, weight_decay=weight_decay) # , weight_decay=0.005)
|
173 |
+
|
174 |
+
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
175 |
+
# Accuracy on training batch data
|
176 |
+
input_ids, attention_mask, token_type_ids, y = batch
|
177 |
+
probability = self.forward(input_ids, attention_mask, token_type_ids)
|
178 |
+
# prediction
|
179 |
+
predicted_class = (probability >= 0.5).int() # Convert to binary and cast to int
|
180 |
+
|
181 |
+
loss = self.criterion(probability, y.float())
|
182 |
+
|
183 |
+
if self.regularization == L1_REGULARIZATION_CODE or self.regularization == L1_AND_L2_REGULARIZATION_CODE: # apply l1 regularization
|
184 |
+
l1_norm = sum(p.abs().sum() for p in self.parameters())
|
185 |
+
loss += self.l1_lambda * l1_norm
|
186 |
+
|
187 |
+
self.log("train_loss", loss)
|
188 |
+
# calculate the scores start
|
189 |
+
self.train_metrics.update_on_each_step(batch_predicted_labels=predicted_class, batch_actual_labels=y)
|
190 |
+
self.train_metrics.compute_metrics_and_log(log=self.log, log_prefix="train")
|
191 |
+
# self.train_metrics.compute_and_log_on_each_step(log=self.log, log_prefix="train")
|
192 |
+
# calculate the scores end
|
193 |
+
return loss
|
194 |
+
|
195 |
+
def on_train_epoch_end(self) -> None:
|
196 |
+
self.train_metrics.compute_metrics_and_log(log=self.log, log_prefix="train")
|
197 |
+
self.train_metrics.reset_on_epoch_end()
|
198 |
+
pass
|
199 |
+
|
200 |
+
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
201 |
+
# Accuracy on validation batch data
|
202 |
+
# print(f"debug { batch = }")
|
203 |
+
input_ids, attention_mask, token_type_ids, y = batch
|
204 |
+
probability = self.forward(input_ids, attention_mask, token_type_ids)
|
205 |
+
# prediction
|
206 |
+
predicted_class = (probability >= 0.5).int() # Convert to binary and cast to int
|
207 |
+
|
208 |
+
# print(blue+f"{x.shape = }")
|
209 |
+
# x should have [32, sth...]
|
210 |
+
loss = self.criterion(probability, y.float())
|
211 |
+
""" loss = 0 # <------------------------- maybe the loss calculation is problematic """
|
212 |
+
self.log("valid_loss", loss)
|
213 |
+
# calculate the scores start
|
214 |
+
self.validate_metrics.update_on_each_step(batch_predicted_labels=predicted_class, batch_actual_labels=y)
|
215 |
+
self.validate_metrics.compute_metrics_and_log(log=self.log, log_prefix="validate", log_color=blue)
|
216 |
+
# self.validate_metrics.compute_and_log_on_each_step(log=self.log, log_prefix="validate", log_color=blue)
|
217 |
+
|
218 |
+
# calculate the scores end
|
219 |
+
return loss
|
220 |
+
|
221 |
+
def on_validation_epoch_end(self) -> None:
|
222 |
+
self.validate_metrics.compute_metrics_and_log(log=self.log, log_prefix="validate", log_color=blue)
|
223 |
+
self.validate_metrics.reset_on_epoch_end()
|
224 |
+
return None
|
225 |
+
|
226 |
+
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
227 |
+
# Accuracy on validation batch data
|
228 |
+
input_ids, attention_mask, token_type_ids, y = batch
|
229 |
+
probability = self.forward(input_ids, attention_mask, token_type_ids)
|
230 |
+
# prediction
|
231 |
+
predicted_class = (probability >= 0.5).int() # Convert to binary and cast to int
|
232 |
+
|
233 |
+
loss = self.criterion(probability, y.float())
|
234 |
+
self.log("test_loss", loss) # do we need this?
|
235 |
+
# calculate the scores start
|
236 |
+
self.test_metrics.update_on_each_step(batch_predicted_labels=predicted_class, batch_actual_labels=y)
|
237 |
+
self.test_metrics.compute_metrics_and_log(log=self.log, log_prefix="test", log_color=magenta)
|
238 |
+
# self.test_metrics.compute_and_log_on_each_step(log=self.log, log_prefix="test", log_color=magenta)
|
239 |
+
|
240 |
+
# calculate the scores end
|
241 |
+
return loss
|
242 |
+
|
243 |
+
def on_test_epoch_end(self) -> None:
|
244 |
+
self.test_metrics.compute_metrics_and_log(log=self.log, log_prefix="test", log_color=magenta)
|
245 |
+
self.test_metrics.reset_on_epoch_end()
|
246 |
+
return None
|
247 |
+
|
248 |
+
pass
|
249 |
+
|
250 |
+
|
251 |
+
class PagingMQTLDnaBertDataset(IterableDataset):
|
252 |
+
def __init__(self, dataset, tokenizer, max_length=512):
|
253 |
+
self.dataset = dataset
|
254 |
+
self.bert_tokenizer = tokenizer
|
255 |
+
self.max_length = max_length
|
256 |
+
|
257 |
+
def __iter__(self):
|
258 |
+
for row in self.dataset:
|
259 |
+
processed = self.preprocess(row)
|
260 |
+
if processed is not None:
|
261 |
+
yield processed
|
262 |
+
|
263 |
+
def preprocess(self, row):
|
264 |
+
sequence = row['sequence']
|
265 |
+
label = row['label']
|
266 |
+
|
267 |
+
# Split the sequence into chunks of size max_length (512)
|
268 |
+
chunks = [sequence[i:i + self.max_length] for i in range(0, len(sequence), self.max_length)]
|
269 |
+
|
270 |
+
# Tokenize each chunk and return the tokenized inputs
|
271 |
+
tokenized_inputs = {
|
272 |
+
'input_ids': [],
|
273 |
+
'attention_mask': [],
|
274 |
+
'token_type_ids': [] # If needed for DNABERT
|
275 |
+
}
|
276 |
+
|
277 |
+
for chunk in chunks:
|
278 |
+
encoded_chunk = self.bert_tokenizer(
|
279 |
+
chunk,
|
280 |
+
truncation=True,
|
281 |
+
padding='max_length',
|
282 |
+
max_length=self.max_length,
|
283 |
+
return_tensors='pt'
|
284 |
+
)
|
285 |
+
|
286 |
+
tokenized_inputs['input_ids'].append(encoded_chunk['input_ids'].squeeze(0))
|
287 |
+
tokenized_inputs['attention_mask'].append(encoded_chunk['attention_mask'].squeeze(0))
|
288 |
+
tokenized_inputs['token_type_ids'].append(
|
289 |
+
encoded_chunk['token_type_ids'].squeeze(0) if 'token_type_ids' in encoded_chunk else None)
|
290 |
+
|
291 |
+
# Convert list of tensors to tensors with an extra batch dimension
|
292 |
+
tokenized_inputs = {k: torch.stack(v) for k, v in tokenized_inputs.items() if v[0] is not None}
|
293 |
+
|
294 |
+
input_ids = tokenized_inputs['input_ids']
|
295 |
+
attention_mask = tokenized_inputs['attention_mask']
|
296 |
+
token_type_ids = tokenized_inputs['token_type_ids']
|
297 |
+
|
298 |
+
# print(f"{type(input_ids) }")
|
299 |
+
# print(f"{type(attention_mask) }")
|
300 |
+
# print(f"{type(token_type_ids) }")
|
301 |
+
|
302 |
+
# Concatenate these tensors along a new dimension
|
303 |
+
# Result will be shape [3, num_chunks, 512]
|
304 |
+
# stacked_inputs = torch.stack([input_ids, attention_mask, token_type_ids], dim=0)
|
305 |
+
|
306 |
+
# return stacked_inputs, torch.tensor(label)
|
307 |
+
return input_ids, attention_mask, token_type_ids, torch.tensor(label).int()
|
308 |
+
|
309 |
+
|
310 |
+
class DNABERTDataModule(LightningDataModule):
|
311 |
+
def __init__(self, model_name=DNA_BERT_6, batch_size=8, WINDOW=-1, is_local=False):
|
312 |
+
super().__init__()
|
313 |
+
self.tokenized_dataset = None
|
314 |
+
self.dataset = None
|
315 |
+
self.train_dataset: PagingMQTLDnaBertDataset = None
|
316 |
+
self.validate_dataset: PagingMQTLDnaBertDataset = None
|
317 |
+
self.test_dataset: PagingMQTLDnaBertDataset = None
|
318 |
+
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=model_name)
|
319 |
+
self.batch_size = batch_size
|
320 |
+
self.is_local = is_local
|
321 |
+
self.window = WINDOW
|
322 |
+
|
323 |
+
def prepare_data(self):
|
324 |
+
# Download and prepare dataset
|
325 |
+
data_files = {
|
326 |
+
# small samples
|
327 |
+
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
|
328 |
+
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
|
329 |
+
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
|
330 |
+
# medium samples
|
331 |
+
"train_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_train_binned.csv",
|
332 |
+
"validate_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_validate_binned.csv",
|
333 |
+
"test_binned_1000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_1000_test_binned.csv",
|
334 |
+
|
335 |
+
# large samples
|
336 |
+
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
|
337 |
+
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
|
338 |
+
"test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
|
339 |
+
|
340 |
+
# really tiny
|
341 |
+
# "tiny_train": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_train_binned.csv",
|
342 |
+
# "tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_validate_binned.csv",
|
343 |
+
# "tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/tiny_dataset_4000_test_binned.csv",
|
344 |
+
|
345 |
+
"tiny_train": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_train_binned.csv",
|
346 |
+
"tiny_validate": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_validate_binned.csv",
|
347 |
+
"tiny_test": "/home/soumic/Codes/mqtl-classification/src/inputdata/medium_dataset_4000_test_binned.csv",
|
348 |
+
}
|
349 |
+
if self.is_local:
|
350 |
+
self.dataset = load_dataset("csv", data_files=data_files, streaming=True)
|
351 |
+
else:
|
352 |
+
self.dataset = load_dataset("fahimfarhan/mqtl-classification-datasets")
|
353 |
+
|
354 |
+
def setup(self, stage=None):
|
355 |
+
self.train_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_test'], self.tokenizer)
|
356 |
+
self.validate_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_validate'], self.tokenizer)
|
357 |
+
self.test_dataset = PagingMQTLDnaBertDataset(self.dataset['tiny_test'], self.tokenizer)
|
358 |
+
|
359 |
+
def train_dataloader(self):
|
360 |
+
return DataLoader(self.train_dataset, batch_size=self.batch_size, num_workers=1)
|
361 |
+
|
362 |
+
def val_dataloader(self):
|
363 |
+
return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=1)
|
364 |
+
|
365 |
+
def test_dataloader(self) -> EVAL_DATALOADERS:
|
366 |
+
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=1)
|
367 |
+
|
368 |
+
|
369 |
+
def start_bert(classifier_model, model_save_path, criterion, WINDOW, batch_size=4,
|
370 |
+
is_binned=True, is_debug=False, max_epochs=10, regularization_code=L2_REGULARIZATION_CODE):
|
371 |
+
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv")
|
372 |
+
model_local_directory = f"my-awesome-model-{WINDOW}"
|
373 |
+
model_remote_repository = f"fahimfarhan/dnabert-6-mqtl-classifier-{WINDOW}"
|
374 |
+
file_suffix = ""
|
375 |
+
if is_binned:
|
376 |
+
file_suffix = "_binned"
|
377 |
+
|
378 |
+
data_module = DNABERTDataModule(batch_size=batch_size, WINDOW=WINDOW, is_local=is_my_laptop)
|
379 |
+
|
380 |
+
# classifier_model = classifier_model.to(DEVICE)
|
381 |
+
|
382 |
+
classifier_module = MQtlBertClassifierLightningModule(
|
383 |
+
classifier=classifier_model,
|
384 |
+
regularization=regularization_code, criterion=criterion)
|
385 |
+
|
386 |
+
# if os.path.exists(model_save_path):
|
387 |
+
# classifier_module.load_state_dict(torch.load(model_save_path))
|
388 |
+
|
389 |
+
classifier_module = classifier_module # .double()
|
390 |
+
|
391 |
+
# Prepare data using the DataModule
|
392 |
+
data_module.prepare_data()
|
393 |
+
data_module.setup()
|
394 |
+
|
395 |
+
trainer = Trainer(max_epochs=max_epochs, precision="32")
|
396 |
+
|
397 |
+
# Train the model
|
398 |
+
trainer.fit(model=classifier_module, datamodule=data_module)
|
399 |
+
trainer.test(model=classifier_module, datamodule=data_module)
|
400 |
+
torch.save(classifier_module.state_dict(), model_save_path)
|
401 |
+
|
402 |
+
# classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")
|
403 |
+
|
404 |
+
classifier_model.save_pretrained(save_directory=model_local_directory, safe_serialization=False)
|
405 |
+
# push to the hub
|
406 |
+
commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
|
407 |
+
if is_my_laptop:
|
408 |
+
commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"
|
409 |
+
|
410 |
+
classifier_model.push_to_hub(
|
411 |
+
repo_id=model_remote_repository,
|
412 |
+
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
|
413 |
+
commit_message=commit_message, # f":tada: Push model for window size {WINDOW}"
|
414 |
+
# safe_serialization=False
|
415 |
+
)
|
416 |
+
pass
|
417 |
+
|
418 |
+
|
419 |
+
if __name__ == "__main__":
|
420 |
+
start_time = time.time()
|
421 |
+
|
422 |
+
dataset_folder_prefix = "inputdata/"
|
423 |
+
pytorch_model = DNABert6MqtlClassifier()
|
424 |
+
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
|
425 |
+
criterion=nn.BCEWithLogitsLoss(), WINDOW=4000, batch_size=1, # 12, # max 14 on my laptop...
|
426 |
+
max_epochs=1, regularization_code=L2_REGULARIZATION_CODE)
|
427 |
+
|
428 |
+
# Record the end time
|
429 |
+
end_time = time.time()
|
430 |
+
# Calculate the duration
|
431 |
+
duration = end_time - start_time
|
432 |
+
# Print the runtime
|
433 |
+
print(f"Runtime: {duration:.2f} seconds")
|
434 |
+
|
435 |
+
pass
|