Spaces:
Runtime error
Runtime error
Soumic
commited on
Commit
•
a491ee5
1
Parent(s):
8cac562
:hammer_and_pick: Update dnabert6 classifier to run on huggingface
Browse files- .env_sample +1 -0
- .gitignore +171 -0
- README.md +2 -2
- app.py +310 -151
- app_v1_backup.py +337 -0
- requirements.txt +1 -2
.env_sample
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
HF_TOKEN=hf_YOUR_AWESOME_TOKEN
|
.gitignore
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
# c++ generated files
|
163 |
+
*.out
|
164 |
+
*.exe
|
165 |
+
|
166 |
+
# my custom gitignores
|
167 |
+
lightning_logs/
|
168 |
+
*.pth
|
169 |
+
my-awesome-model/
|
170 |
+
my-awesome-model-200/
|
171 |
+
my-awesome-model-4000/
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Mqtl Classification Using Dnabert 6
|
3 |
emoji: 👁
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: creativeml-openrail-m
|
|
|
1 |
---
|
2 |
title: Mqtl Classification Using Dnabert 6
|
3 |
emoji: 👁
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: white
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: creativeml-openrail-m
|
app.py
CHANGED
@@ -1,14 +1,28 @@
|
|
|
|
|
|
|
|
1 |
from typing import Any
|
2 |
|
|
|
|
|
3 |
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
4 |
-
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
|
|
|
5 |
from torch.utils.data import DataLoader, Dataset
|
6 |
-
from
|
7 |
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
8 |
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
9 |
import torch
|
10 |
from torch import nn
|
11 |
-
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
black = "\u001b[30m"
|
14 |
red = "\u001b[31m"
|
@@ -22,83 +36,101 @@ white = "\u001b[37m"
|
|
22 |
FORWARD = "FORWARD_INPUT"
|
23 |
BACKWARD = "BACKWARD_INPUT"
|
24 |
|
25 |
-
|
26 |
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Apply softmax to get attention scores
|
38 |
-
attn_weights = torch.softmax(attn_weights, dim=1)
|
39 |
-
# Apply attention weights to hidden states
|
40 |
-
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
41 |
-
return context_vector, attn_weights
|
42 |
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
-
class MQtlDnaBERT6Classifier(nn.Module):
|
50 |
-
def __init__(self,
|
51 |
-
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
52 |
-
hidden_size=768,
|
53 |
-
num_classes=1,
|
54 |
-
*args,
|
55 |
-
**kwargs
|
56 |
-
):
|
57 |
-
super().__init__(*args, **kwargs)
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
self.attention = CommonAttentionLayer(hidden_size)
|
63 |
-
self.classifier = nn.Linear(hidden_size, num_classes)
|
64 |
-
pass
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
class TorchMetrics:
|
87 |
-
def __init__(self):
|
88 |
-
self.binary_accuracy = BinaryAccuracy()
|
89 |
-
self.binary_auc = BinaryAUROC()
|
90 |
-
self.binary_f1_score = BinaryF1Score()
|
91 |
-
self.binary_precision = BinaryPrecision()
|
92 |
-
self.binary_recall = BinaryRecall()
|
93 |
pass
|
94 |
|
95 |
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
96 |
-
|
97 |
-
self.
|
98 |
-
self.
|
99 |
-
self.
|
100 |
-
self.
|
101 |
-
self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
|
102 |
pass
|
103 |
|
104 |
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
|
@@ -107,7 +139,8 @@ class TorchMetrics:
|
|
107 |
b_f1_score = self.binary_f1_score.compute()
|
108 |
b_precision = self.binary_precision.compute()
|
109 |
b_recall = self.binary_recall.compute()
|
110 |
-
|
|
|
111 |
log(f"{log_prefix}_accuracy", b_accuracy)
|
112 |
log(f"{log_prefix}_auc", b_auc)
|
113 |
log(f"{log_prefix}_f1_score", b_f1_score)
|
@@ -122,6 +155,95 @@ class TorchMetrics:
|
|
122 |
pass
|
123 |
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
class MQtlBertClassifierLightningModule(LightningModule):
|
126 |
def __init__(self,
|
127 |
classifier: nn.Module,
|
@@ -185,7 +307,7 @@ class MQtlBertClassifierLightningModule(LightningModule):
|
|
185 |
# print(f"debug { batch = }")
|
186 |
x, y = batch
|
187 |
preds = self.forward(x)
|
188 |
-
loss =
|
189 |
self.log("valid_loss", loss)
|
190 |
# calculate the scores start
|
191 |
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
@@ -214,76 +336,117 @@ class MQtlBertClassifierLightningModule(LightningModule):
|
|
214 |
pass
|
215 |
|
216 |
|
217 |
-
|
218 |
-
def __init__(self, dataset, tokenizer, max_length=512):
|
219 |
-
self.dataset = dataset
|
220 |
-
self.bert_tokenizer = tokenizer
|
221 |
-
self.max_length = max_length
|
222 |
-
|
223 |
-
def __len__(self):
|
224 |
-
return len(self.dataset)
|
225 |
|
226 |
-
def __getitem__(self, idx):
|
227 |
-
sequence = self.dataset[idx]['sequence'] # Fetch the 'sequence' column
|
228 |
-
label = self.dataset[idx]['label'] # Fetch the 'label' column (or whatever target you use)
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
max_length=self.max_length,
|
236 |
-
return_tensors='pt'
|
237 |
-
)
|
238 |
-
|
239 |
-
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
|
240 |
-
return encoded_sequence_squeezed, label
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
class DNABERTDataModule(LightningDataModule):
|
244 |
-
def __init__(self, model_name=DNA_BERT_6, batch_size=8):
|
245 |
-
super().__init__()
|
246 |
-
self.tokenized_dataset = None
|
247 |
-
self.dataset = None
|
248 |
-
self.train_dataset: DNABERTDataset = None
|
249 |
-
self.validate_dataset: DNABERTDataset = None
|
250 |
-
self.test_dataset: DNABERTDataset = None
|
251 |
-
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
|
252 |
-
self.batch_size = batch_size
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
|
258 |
-
def setup(self, stage=None):
|
259 |
-
self.train_dataset = DNABERTDataset(self.dataset['train'], self.tokenizer)
|
260 |
-
self.validate_dataset = DNABERTDataset(self.dataset['validate'], self.tokenizer)
|
261 |
-
self.test_dataset = DNABERTDataset(self.dataset['test'], self.tokenizer)
|
262 |
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
|
267 |
-
return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=15)
|
268 |
|
269 |
-
|
270 |
-
|
|
|
|
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
276 |
|
277 |
|
278 |
-
def start_bert(classifier_model,
|
279 |
-
|
280 |
file_suffix = ""
|
281 |
if is_binned:
|
282 |
file_suffix = "_binned"
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
classifier_module = MQtlBertClassifierLightningModule(
|
289 |
classifier=classifier_model,
|
@@ -294,44 +457,40 @@ def start_bert(classifier_model, model_save_path, criterion, WINDOW=200, batch_s
|
|
294 |
|
295 |
classifier_module = classifier_module # .double()
|
296 |
|
297 |
-
# Set up training arguments
|
298 |
-
training_args = TrainingArguments(
|
299 |
-
output_dir='./results',
|
300 |
-
evaluation_strategy="epoch",
|
301 |
-
per_device_train_batch_size=batch_size,
|
302 |
-
per_device_eval_batch_size=batch_size,
|
303 |
-
num_train_epochs=max_epochs,
|
304 |
-
logging_dir='./logs',
|
305 |
-
report_to="none", # Disable reporting to WandB, etc.
|
306 |
-
)
|
307 |
-
|
308 |
-
# Prepare data using the DataModule
|
309 |
-
data_module.prepare_data()
|
310 |
-
data_module.setup()
|
311 |
-
|
312 |
-
# Initialize Trainer
|
313 |
-
# trainer = Trainer(
|
314 |
-
# model=classifier_module,
|
315 |
-
# args=training_args,
|
316 |
-
# train_dataset=data_module.tokenized_dataset["train"],
|
317 |
-
# eval_dataset=data_module.tokenized_dataset["test"],
|
318 |
-
# )
|
319 |
-
|
320 |
trainer = Trainer(max_epochs=max_epochs, precision="32")
|
321 |
-
|
322 |
-
# Train the model
|
323 |
trainer.fit(model=classifier_module, datamodule=data_module)
|
|
|
324 |
trainer.test(model=classifier_module, datamodule=data_module)
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
-
classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")
|
328 |
pass
|
329 |
|
330 |
|
331 |
-
if __name__ ==
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
337 |
pass
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
from typing import Any
|
5 |
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
9 |
+
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
|
10 |
+
from torch.nn.utils.rnn import pad_sequence
|
11 |
from torch.utils.data import DataLoader, Dataset
|
12 |
+
from torchmetrics.classification import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
13 |
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
14 |
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
15 |
import torch
|
16 |
from torch import nn
|
17 |
+
from datasets import load_dataset, IterableDataset
|
18 |
+
from huggingface_hub import PyTorchModelHubMixin
|
19 |
+
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
from huggingface_hub import login
|
22 |
+
|
23 |
+
timber = logging.getLogger()
|
24 |
+
# logging.basicConfig(level=logging.DEBUG)
|
25 |
+
logging.basicConfig(level=logging.INFO) # change to level=logging.DEBUG to print more logs...
|
26 |
|
27 |
black = "\u001b[30m"
|
28 |
red = "\u001b[31m"
|
|
|
36 |
FORWARD = "FORWARD_INPUT"
|
37 |
BACKWARD = "BACKWARD_INPUT"
|
38 |
|
39 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
|
41 |
|
42 |
+
def login_inside_huggingface_virtualmachine():
|
43 |
+
# Load the .env file, but don't crash if it's not found (e.g., in Hugging Face Space)
|
44 |
+
try:
|
45 |
+
load_dotenv() # Only useful on your laptop if .env exists
|
46 |
+
print(".env file loaded successfully.")
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Warning: Could not load .env file. Exception: {e}")
|
49 |
|
50 |
+
# Try to get the token from environment variables
|
51 |
+
try:
|
52 |
+
token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
if not token:
|
55 |
+
raise ValueError("HF_TOKEN not found. Make sure to set it in the environment variables or .env file.")
|
56 |
|
57 |
+
# Log in to Hugging Face Hub
|
58 |
+
login(token)
|
59 |
+
print("Logged in to Hugging Face Hub successfully.")
|
60 |
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error during Hugging Face login: {e}")
|
63 |
+
# Handle the error appropriately (e.g., exit or retry)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
def one_hot_e(dna_seq: str) -> np.ndarray:
|
67 |
+
mydict = {'A': np.asarray([1.0, 0.0, 0.0, 0.0]), 'C': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
68 |
+
'G': np.asarray([0.0, 0.0, 1.0, 0.0]), 'T': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
69 |
+
'N': np.asarray([0.0, 0.0, 0.0, 0.0]), 'H': np.asarray([0.0, 0.0, 0.0, 0.0]),
|
70 |
+
'a': np.asarray([1.0, 0.0, 0.0, 0.0]), 'c': np.asarray([0.0, 1.0, 0.0, 0.0]),
|
71 |
+
'g': np.asarray([0.0, 0.0, 1.0, 0.0]), 't': np.asarray([0.0, 0.0, 0.0, 1.0]),
|
72 |
+
'n': np.asarray([0.0, 0.0, 0.0, 0.0]), '-': np.asarray([0.0, 0.0, 0.0, 0.0])}
|
73 |
|
74 |
+
size_of_a_seq: int = len(dna_seq)
|
|
|
|
|
|
|
75 |
|
76 |
+
# forward = np.zeros(shape=(size_of_a_seq, 4))
|
77 |
+
|
78 |
+
forward_list: list = [mydict[dna_seq[i]] for i in range(0, size_of_a_seq)]
|
79 |
+
encoded = np.asarray(forward_list)
|
80 |
+
encoded_transposed = encoded.transpose() # todo: Needs review
|
81 |
+
return encoded_transposed
|
82 |
+
|
83 |
+
|
84 |
+
def one_hot_e_column(column: pd.Series) -> np.ndarray:
|
85 |
+
tmp_list: list = [one_hot_e(seq) for seq in column]
|
86 |
+
encoded_column = np.asarray(tmp_list).astype(np.float32)
|
87 |
+
return encoded_column
|
88 |
+
|
89 |
+
|
90 |
+
def reverse_dna_seq(dna_seq: str) -> str:
|
91 |
+
# m_reversed = ""
|
92 |
+
# for i in range(0, len(dna_seq)):
|
93 |
+
# m_reversed = dna_seq[i] + m_reversed
|
94 |
+
# return m_reversed
|
95 |
+
return dna_seq[::-1]
|
96 |
|
97 |
+
|
98 |
+
def complement_dna_seq(dna_seq: str) -> str:
|
99 |
+
comp_map = {"A": "T", "C": "G", "T": "A", "G": "C",
|
100 |
+
"a": "t", "c": "g", "t": "a", "g": "c",
|
101 |
+
"N": "N", "H": "H", "-": "-",
|
102 |
+
"n": "n", "h": "h"
|
103 |
+
}
|
104 |
+
|
105 |
+
comp_dna_seq_list: list = [comp_map[nucleotide] for nucleotide in dna_seq]
|
106 |
+
comp_dna_seq: str = "".join(comp_dna_seq_list)
|
107 |
+
return comp_dna_seq
|
108 |
+
|
109 |
+
|
110 |
+
def reverse_complement_dna_seq(dna_seq: str) -> str:
|
111 |
+
return reverse_dna_seq(complement_dna_seq(dna_seq))
|
112 |
+
|
113 |
+
|
114 |
+
def reverse_complement_column(column: pd.Series) -> np.ndarray:
|
115 |
+
rc_column: list = [reverse_complement_dna_seq(seq) for seq in column]
|
116 |
+
return rc_column
|
117 |
|
118 |
|
119 |
class TorchMetrics:
|
120 |
+
def __init__(self, device=DEVICE):
|
121 |
+
self.binary_accuracy = BinaryAccuracy().to(device)
|
122 |
+
self.binary_auc = BinaryAUROC().to(device)
|
123 |
+
self.binary_f1_score = BinaryF1Score().to(device)
|
124 |
+
self.binary_precision = BinaryPrecision().to(device)
|
125 |
+
self.binary_recall = BinaryRecall().to(device)
|
126 |
pass
|
127 |
|
128 |
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
129 |
+
self.binary_accuracy.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
130 |
+
self.binary_auc.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
131 |
+
self.binary_f1_score.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
132 |
+
self.binary_precision.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
133 |
+
self.binary_recall.update(preds=batch_predicted_labels, target=batch_actual_labels)
|
|
|
134 |
pass
|
135 |
|
136 |
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
|
|
|
139 |
b_f1_score = self.binary_f1_score.compute()
|
140 |
b_precision = self.binary_precision.compute()
|
141 |
b_recall = self.binary_recall.compute()
|
142 |
+
timber.info(
|
143 |
+
log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
|
144 |
log(f"{log_prefix}_accuracy", b_accuracy)
|
145 |
log(f"{log_prefix}_auc", b_auc)
|
146 |
log(f"{log_prefix}_f1_score", b_f1_score)
|
|
|
155 |
pass
|
156 |
|
157 |
|
158 |
+
def insert_debug_motif_at_random_position(seq, DEBUG_MOTIF):
|
159 |
+
start = 0
|
160 |
+
end = len(seq)
|
161 |
+
rand_pos = random.randrange(start, (end - len(DEBUG_MOTIF)))
|
162 |
+
random_end = rand_pos + len(DEBUG_MOTIF)
|
163 |
+
output = seq[start: rand_pos] + DEBUG_MOTIF + seq[random_end: end]
|
164 |
+
assert len(seq) == len(output)
|
165 |
+
return output
|
166 |
+
|
167 |
+
|
168 |
+
class PagingMQTLDataset(IterableDataset):
|
169 |
+
def __init__(self,
|
170 |
+
m_dataset,
|
171 |
+
seq_len,
|
172 |
+
tokenizer,
|
173 |
+
max_length=512,
|
174 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=False):
|
175 |
+
self.dataset = m_dataset
|
176 |
+
self.check_if_pipeline_is_ok_by_inserting_debug_motif = check_if_pipeline_is_ok_by_inserting_debug_motif
|
177 |
+
self.debug_motif = "ATCGCCTA"
|
178 |
+
self.seq_len = seq_len
|
179 |
+
|
180 |
+
self.bert_tokenizer = tokenizer
|
181 |
+
self.max_length = max_length
|
182 |
+
pass
|
183 |
+
|
184 |
+
def __iter__(self):
|
185 |
+
for row in self.dataset:
|
186 |
+
processed = self.preprocess(row)
|
187 |
+
if processed is not None:
|
188 |
+
yield processed
|
189 |
+
|
190 |
+
def preprocess(self, row):
|
191 |
+
sequence = row['sequence'] # Fetch the 'sequence' column
|
192 |
+
if len(sequence) != self.seq_len:
|
193 |
+
return None # skip problematic row!
|
194 |
+
label = row['label'] # Fetch the 'label' column (or whatever target you use)
|
195 |
+
if label == 1 and self.check_if_pipeline_is_ok_by_inserting_debug_motif:
|
196 |
+
sequence = insert_debug_motif_at_random_position(seq=sequence, DEBUG_MOTIF=self.debug_motif)
|
197 |
+
# Tokenize the sequence
|
198 |
+
encoded_sequence: BatchEncoding = self.bert_tokenizer(
|
199 |
+
sequence,
|
200 |
+
truncation=True,
|
201 |
+
padding='max_length',
|
202 |
+
max_length=self.max_length,
|
203 |
+
return_tensors='pt'
|
204 |
+
)
|
205 |
+
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
|
206 |
+
return encoded_sequence_squeezed, label
|
207 |
+
|
208 |
+
|
209 |
+
class MqtlDataModule(LightningDataModule):
|
210 |
+
def __init__(self, train_ds, val_ds, test_ds, batch_size=16):
|
211 |
+
super().__init__()
|
212 |
+
self.batch_size = batch_size
|
213 |
+
self.train_loader = DataLoader(train_ds, batch_size=self.batch_size, shuffle=False,
|
214 |
+
# collate_fn=collate_fn,
|
215 |
+
num_workers=1,
|
216 |
+
# persistent_workers=True
|
217 |
+
)
|
218 |
+
self.validate_loader = DataLoader(val_ds, batch_size=self.batch_size, shuffle=False,
|
219 |
+
# collate_fn=collate_fn,
|
220 |
+
num_workers=1,
|
221 |
+
# persistent_workers=True
|
222 |
+
)
|
223 |
+
self.test_loader = DataLoader(test_ds, batch_size=self.batch_size, shuffle=False,
|
224 |
+
# collate_fn=collate_fn,
|
225 |
+
num_workers=1,
|
226 |
+
# persistent_workers=True
|
227 |
+
)
|
228 |
+
pass
|
229 |
+
|
230 |
+
def prepare_data(self):
|
231 |
+
pass
|
232 |
+
|
233 |
+
def setup(self, stage: str) -> None:
|
234 |
+
timber.info(f"inside setup: {stage = }")
|
235 |
+
pass
|
236 |
+
|
237 |
+
def train_dataloader(self) -> TRAIN_DATALOADERS:
|
238 |
+
return self.train_loader
|
239 |
+
|
240 |
+
def val_dataloader(self) -> EVAL_DATALOADERS:
|
241 |
+
return self.validate_loader
|
242 |
+
|
243 |
+
def test_dataloader(self) -> EVAL_DATALOADERS:
|
244 |
+
return self.test_loader
|
245 |
+
|
246 |
+
|
247 |
class MQtlBertClassifierLightningModule(LightningModule):
|
248 |
def __init__(self,
|
249 |
classifier: nn.Module,
|
|
|
307 |
# print(f"debug { batch = }")
|
308 |
x, y = batch
|
309 |
preds = self.forward(x)
|
310 |
+
loss = self.criterion(preds, y)
|
311 |
self.log("valid_loss", loss)
|
312 |
# calculate the scores start
|
313 |
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
|
|
336 |
pass
|
337 |
|
338 |
|
339 |
+
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
|
|
|
|
|
|
341 |
|
342 |
+
class CommonAttentionLayer(nn.Module):
|
343 |
+
def __init__(self, hidden_size, *args, **kwargs):
|
344 |
+
super().__init__(*args, **kwargs)
|
345 |
+
self.attention_linear = nn.Linear(hidden_size, 1)
|
346 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
+
def forward(self, hidden_states):
|
349 |
+
# Apply linear layer
|
350 |
+
attn_weights = self.attention_linear(hidden_states)
|
351 |
+
# Apply softmax to get attention scores
|
352 |
+
attn_weights = torch.softmax(attn_weights, dim=1)
|
353 |
+
# Apply attention weights to hidden states
|
354 |
+
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
355 |
+
return context_vector, attn_weights
|
356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
|
359 |
+
def forward(self, input, target):
|
360 |
+
return super().forward(input.squeeze(), target.float())
|
361 |
|
|
|
|
|
|
|
|
|
362 |
|
363 |
+
class DnaBert6MQTLClassifier(nn.Module):
|
364 |
+
def __init__(self,
|
365 |
+
seq_len: int, model_repository_name: str,
|
366 |
+
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
367 |
+
hidden_size=768,
|
368 |
+
num_classes=1,
|
369 |
+
*args,
|
370 |
+
**kwargs
|
371 |
+
):
|
372 |
+
super().__init__(*args, **kwargs)
|
373 |
+
self.seq_len = seq_len
|
374 |
+
self.model_repository_name = model_repository_name
|
375 |
|
376 |
+
self.model_name = "MQtlDnaBERT6Classifier"
|
|
|
377 |
|
378 |
+
self.bert_model = bert_model
|
379 |
+
self.attention = CommonAttentionLayer(hidden_size)
|
380 |
+
self.classifier = nn.Linear(hidden_size, num_classes)
|
381 |
+
pass
|
382 |
|
383 |
+
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
|
384 |
+
"""
|
385 |
+
# torch.Size([128, 1, 512]) --> [128, 512]
|
386 |
+
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
|
387 |
+
# torch.Size([16, 1, 512]) --> [16, 512]
|
388 |
+
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
|
389 |
+
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
|
390 |
+
"""
|
391 |
+
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
|
392 |
+
input_ids=input_ids,
|
393 |
+
attention_mask=attention_mask,
|
394 |
+
token_type_ids=token_type_ids
|
395 |
+
)
|
396 |
|
397 |
+
last_hidden_state = bert_output.last_hidden_state
|
398 |
+
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
|
399 |
+
y = self.classifier(context_vector)
|
400 |
+
return y
|
401 |
|
402 |
|
403 |
+
def start_bert(classifier_model, criterion, m_optimizer=torch.optim.Adam, WINDOW=200,
|
404 |
+
is_binned=True, is_debug=False, max_epochs=10, batch_size=8):
|
405 |
file_suffix = ""
|
406 |
if is_binned:
|
407 |
file_suffix = "_binned"
|
408 |
|
409 |
+
data_files = {
|
410 |
+
# small samples
|
411 |
+
"train_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_train_binned.csv",
|
412 |
+
"validate_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_validate_binned.csv",
|
413 |
+
"test_binned_200": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_200_test_binned.csv",
|
414 |
+
# large samples
|
415 |
+
"train_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_train_binned.csv",
|
416 |
+
"validate_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_validate_binned.csv",
|
417 |
+
"test_binned_4000": "/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv",
|
418 |
+
}
|
419 |
+
|
420 |
+
dataset_map = None
|
421 |
+
is_my_laptop = os.path.isfile("/home/soumic/Codes/mqtl-classification/src/inputdata/dataset_4000_test_binned.csv")
|
422 |
+
if is_my_laptop:
|
423 |
+
dataset_map = load_dataset("csv", data_files=data_files, streaming=True)
|
424 |
+
else:
|
425 |
+
dataset_map = load_dataset("fahimfarhan/mqtl-classification-datasets", streaming=True)
|
426 |
+
|
427 |
+
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
|
428 |
+
|
429 |
+
train_dataset = PagingMQTLDataset(dataset_map[f"train_binned_{WINDOW}"],
|
430 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
431 |
+
tokenizer=tokenizer,
|
432 |
+
seq_len=WINDOW
|
433 |
+
)
|
434 |
+
val_dataset = PagingMQTLDataset(dataset_map[f"validate_binned_{WINDOW}"],
|
435 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
436 |
+
tokenizer=tokenizer,
|
437 |
+
seq_len=WINDOW)
|
438 |
+
test_dataset = PagingMQTLDataset(dataset_map[f"test_binned_{WINDOW}"],
|
439 |
+
check_if_pipeline_is_ok_by_inserting_debug_motif=is_debug,
|
440 |
+
tokenizer=tokenizer,
|
441 |
+
seq_len=WINDOW)
|
442 |
+
|
443 |
+
data_module = MqtlDataModule(train_ds=train_dataset, val_ds=val_dataset, test_ds=test_dataset, batch_size=batch_size)
|
444 |
+
|
445 |
+
classifier_model = classifier_model #.to(DEVICE)
|
446 |
+
try:
|
447 |
+
classifier_model = classifier_model.from_pretrained(classifier_model.model_repository_name)
|
448 |
+
except Exception as x:
|
449 |
+
print(x)
|
450 |
|
451 |
classifier_module = MQtlBertClassifierLightningModule(
|
452 |
classifier=classifier_model,
|
|
|
457 |
|
458 |
classifier_module = classifier_module # .double()
|
459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
trainer = Trainer(max_epochs=max_epochs, precision="32")
|
|
|
|
|
461 |
trainer.fit(model=classifier_module, datamodule=data_module)
|
462 |
+
timber.info("\n\n")
|
463 |
trainer.test(model=classifier_module, datamodule=data_module)
|
464 |
+
timber.info("\n\n")
|
465 |
+
# torch.save(classifier_module.state_dict(), model_save_path) # deprecated, use classifier_model.save_pretrained(model_subdirectory) instead
|
466 |
+
|
467 |
+
# save locally
|
468 |
+
model_subdirectory = classifier_model.model_repository_name
|
469 |
+
classifier_model.save_pretrained(model_subdirectory)
|
470 |
+
|
471 |
+
# push to the hub
|
472 |
+
commit_message = f":tada: Push model for window size {WINDOW} from huggingface space"
|
473 |
+
if is_my_laptop:
|
474 |
+
commit_message = f":tada: Push model for window size {WINDOW} from zephyrus"
|
475 |
+
|
476 |
+
classifier_model.push_to_hub(
|
477 |
+
repo_id=f"fahimfarhan/{classifier_model.model_repository_name}",
|
478 |
+
# subfolder=f"my-awesome-model-{WINDOW}", subfolder didn't work :/
|
479 |
+
commit_message=commit_message # f":tada: Push model for window size {WINDOW}"
|
480 |
+
)
|
481 |
+
|
482 |
+
# reload
|
483 |
+
classifier_model = classifier_model.from_pretrained(f"my-awesome-model-{WINDOW}")
|
484 |
|
|
|
485 |
pass
|
486 |
|
487 |
|
488 |
+
if __name__ == '__main__':
|
489 |
+
login_inside_huggingface_virtualmachine()
|
490 |
+
|
491 |
+
WINDOW = 200
|
492 |
+
some_model = DnaBert6MQTLClassifier(seq_len=WINDOW, model_repository_name="dnabert-6-mqtl-classifier")
|
493 |
+
criterion = ReshapedBCEWithLogitsLoss()
|
494 |
+
|
495 |
+
start_bert(classifier_model=some_model, criterion=criterion, WINDOW=WINDOW, is_debug=True, max_epochs=2)
|
496 |
pass
|
app_v1_backup.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from pytorch_lightning import Trainer, LightningModule, LightningDataModule
|
4 |
+
from pytorch_lightning.utilities.types import OptimizerLRScheduler, STEP_OUTPUT, EVAL_DATALOADERS
|
5 |
+
from torch.utils.data import DataLoader, Dataset
|
6 |
+
from torcheval.metrics import BinaryAccuracy, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryRecall
|
7 |
+
from transformers import BertModel, BatchEncoding, BertTokenizer, TrainingArguments
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
from datasets import load_dataset
|
12 |
+
|
13 |
+
black = "\u001b[30m"
|
14 |
+
red = "\u001b[31m"
|
15 |
+
green = "\u001b[32m"
|
16 |
+
yellow = "\u001b[33m"
|
17 |
+
blue = "\u001b[34m"
|
18 |
+
magenta = "\u001b[35m"
|
19 |
+
cyan = "\u001b[36m"
|
20 |
+
white = "\u001b[37m"
|
21 |
+
|
22 |
+
FORWARD = "FORWARD_INPUT"
|
23 |
+
BACKWARD = "BACKWARD_INPUT"
|
24 |
+
|
25 |
+
DNA_BERT_6 = "zhihan1996/DNA_bert_6"
|
26 |
+
|
27 |
+
|
28 |
+
class CommonAttentionLayer(nn.Module):
|
29 |
+
def __init__(self, hidden_size, *args, **kwargs):
|
30 |
+
super().__init__(*args, **kwargs)
|
31 |
+
self.attention_linear = nn.Linear(hidden_size, 1)
|
32 |
+
pass
|
33 |
+
|
34 |
+
def forward(self, hidden_states):
|
35 |
+
# Apply linear layer
|
36 |
+
attn_weights = self.attention_linear(hidden_states)
|
37 |
+
# Apply softmax to get attention scores
|
38 |
+
attn_weights = torch.softmax(attn_weights, dim=1)
|
39 |
+
# Apply attention weights to hidden states
|
40 |
+
context_vector = torch.sum(attn_weights * hidden_states, dim=1)
|
41 |
+
return context_vector, attn_weights
|
42 |
+
|
43 |
+
|
44 |
+
class ReshapedBCEWithLogitsLoss(nn.BCEWithLogitsLoss):
|
45 |
+
def forward(self, input, target):
|
46 |
+
return super().forward(input.squeeze(), target.float())
|
47 |
+
|
48 |
+
|
49 |
+
class MQtlDnaBERT6Classifier(nn.Module):
|
50 |
+
def __init__(self,
|
51 |
+
bert_model=BertModel.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6),
|
52 |
+
hidden_size=768,
|
53 |
+
num_classes=1,
|
54 |
+
*args,
|
55 |
+
**kwargs
|
56 |
+
):
|
57 |
+
super().__init__(*args, **kwargs)
|
58 |
+
|
59 |
+
self.model_name = "MQtlDnaBERT6Classifier"
|
60 |
+
|
61 |
+
self.bert_model = bert_model
|
62 |
+
self.attention = CommonAttentionLayer(hidden_size)
|
63 |
+
self.classifier = nn.Linear(hidden_size, num_classes)
|
64 |
+
pass
|
65 |
+
|
66 |
+
def forward(self, input_ids: torch.tensor, attention_mask: torch.tensor, token_type_ids):
|
67 |
+
"""
|
68 |
+
# torch.Size([128, 1, 512]) --> [128, 512]
|
69 |
+
input_ids = input_ids.squeeze(dim=1).to(DEVICE)
|
70 |
+
# torch.Size([16, 1, 512]) --> [16, 512]
|
71 |
+
attention_mask = attention_mask.squeeze(dim=1).to(DEVICE)
|
72 |
+
token_type_ids = token_type_ids.squeeze(dim=1).to(DEVICE)
|
73 |
+
"""
|
74 |
+
bert_output: BaseModelOutputWithPoolingAndCrossAttentions = self.bert_model(
|
75 |
+
input_ids=input_ids,
|
76 |
+
attention_mask=attention_mask,
|
77 |
+
token_type_ids=token_type_ids
|
78 |
+
)
|
79 |
+
|
80 |
+
last_hidden_state = bert_output.last_hidden_state
|
81 |
+
context_vector, ignore_attention_weight = self.attention(last_hidden_state)
|
82 |
+
y = self.classifier(context_vector)
|
83 |
+
return y
|
84 |
+
|
85 |
+
|
86 |
+
class TorchMetrics:
|
87 |
+
def __init__(self):
|
88 |
+
self.binary_accuracy = BinaryAccuracy() #.to(device)
|
89 |
+
self.binary_auc = BinaryAUROC() # .to(device)
|
90 |
+
self.binary_f1_score = BinaryF1Score() # .to(device)
|
91 |
+
self.binary_precision = BinaryPrecision() # .to(device)
|
92 |
+
self.binary_recall = BinaryRecall() # .to(device)
|
93 |
+
pass
|
94 |
+
|
95 |
+
def update_on_each_step(self, batch_predicted_labels, batch_actual_labels): # todo: Add log if needed
|
96 |
+
# it looks like the library maintainers changed preds to input, ie, before: preds, now: input
|
97 |
+
self.binary_accuracy.update(input=batch_predicted_labels, target=batch_actual_labels)
|
98 |
+
self.binary_auc.update(input=batch_predicted_labels, target=batch_actual_labels)
|
99 |
+
self.binary_f1_score.update(input=batch_predicted_labels, target=batch_actual_labels)
|
100 |
+
self.binary_precision.update(input=batch_predicted_labels, target=batch_actual_labels)
|
101 |
+
self.binary_recall.update(input=batch_predicted_labels, target=batch_actual_labels)
|
102 |
+
pass
|
103 |
+
|
104 |
+
def compute_and_reset_on_epoch_end(self, log, log_prefix: str, log_color: str = green):
|
105 |
+
b_accuracy = self.binary_accuracy.compute()
|
106 |
+
b_auc = self.binary_auc.compute()
|
107 |
+
b_f1_score = self.binary_f1_score.compute()
|
108 |
+
b_precision = self.binary_precision.compute()
|
109 |
+
b_recall = self.binary_recall.compute()
|
110 |
+
# timber.info( log_color + f"{log_prefix}_acc = {b_accuracy}, {log_prefix}_auc = {b_auc}, {log_prefix}_f1_score = {b_f1_score}, {log_prefix}_precision = {b_precision}, {log_prefix}_recall = {b_recall}")
|
111 |
+
log(f"{log_prefix}_accuracy", b_accuracy)
|
112 |
+
log(f"{log_prefix}_auc", b_auc)
|
113 |
+
log(f"{log_prefix}_f1_score", b_f1_score)
|
114 |
+
log(f"{log_prefix}_precision", b_precision)
|
115 |
+
log(f"{log_prefix}_recall", b_recall)
|
116 |
+
|
117 |
+
self.binary_accuracy.reset()
|
118 |
+
self.binary_auc.reset()
|
119 |
+
self.binary_f1_score.reset()
|
120 |
+
self.binary_precision.reset()
|
121 |
+
self.binary_recall.reset()
|
122 |
+
pass
|
123 |
+
|
124 |
+
|
125 |
+
class MQtlBertClassifierLightningModule(LightningModule):
|
126 |
+
def __init__(self,
|
127 |
+
classifier: nn.Module,
|
128 |
+
criterion=None, # nn.BCEWithLogitsLoss(),
|
129 |
+
regularization: int = 2, # 1 == L1, 2 == L2, 3 (== 1 | 2) == both l1 and l2, else ignore / don't care
|
130 |
+
l1_lambda=0.001,
|
131 |
+
l2_wright_decay=0.001,
|
132 |
+
*args: Any,
|
133 |
+
**kwargs: Any):
|
134 |
+
super().__init__(*args, **kwargs)
|
135 |
+
self.classifier = classifier
|
136 |
+
self.criterion = criterion
|
137 |
+
self.train_metrics = TorchMetrics()
|
138 |
+
self.validate_metrics = TorchMetrics()
|
139 |
+
self.test_metrics = TorchMetrics()
|
140 |
+
|
141 |
+
self.regularization = regularization
|
142 |
+
self.l1_lambda = l1_lambda
|
143 |
+
self.l2_weight_decay = l2_wright_decay
|
144 |
+
pass
|
145 |
+
|
146 |
+
def forward(self, x, *args: Any, **kwargs: Any) -> Any:
|
147 |
+
input_ids: torch.tensor = x["input_ids"]
|
148 |
+
attention_mask: torch.tensor = x["attention_mask"]
|
149 |
+
token_type_ids: torch.tensor = x["token_type_ids"]
|
150 |
+
# print(f"\n{ type(input_ids) = }, {input_ids = }")
|
151 |
+
# print(f"{ type(attention_mask) = }, { attention_mask = }")
|
152 |
+
# print(f"{ type(token_type_ids) = }, { token_type_ids = }")
|
153 |
+
|
154 |
+
return self.classifier.forward(input_ids, attention_mask, token_type_ids)
|
155 |
+
|
156 |
+
def configure_optimizers(self) -> OptimizerLRScheduler:
|
157 |
+
# Here we add weight decay (L2 regularization) to the optimizer
|
158 |
+
weight_decay = 0.0
|
159 |
+
if self.regularization == 2 or self.regularization == 3:
|
160 |
+
weight_decay = self.l2_weight_decay
|
161 |
+
return torch.optim.Adam(self.parameters(), lr=1e-3, weight_decay=weight_decay) # , weight_decay=0.005)
|
162 |
+
|
163 |
+
def training_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
164 |
+
# Accuracy on training batch data
|
165 |
+
x, y = batch
|
166 |
+
preds = self.forward(x)
|
167 |
+
loss = self.criterion(preds, y)
|
168 |
+
|
169 |
+
if self.regularization == 1 or self.regularization == 3: # apply l1 regularization
|
170 |
+
l1_norm = sum(p.abs().sum() for p in self.parameters())
|
171 |
+
loss += self.l1_lambda * l1_norm
|
172 |
+
|
173 |
+
self.log("train_loss", loss)
|
174 |
+
# calculate the scores start
|
175 |
+
self.train_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
176 |
+
# calculate the scores end
|
177 |
+
return loss
|
178 |
+
|
179 |
+
def on_train_epoch_end(self) -> None:
|
180 |
+
self.train_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="train")
|
181 |
+
pass
|
182 |
+
|
183 |
+
def validation_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
184 |
+
# Accuracy on validation batch data
|
185 |
+
# print(f"debug { batch = }")
|
186 |
+
x, y = batch
|
187 |
+
preds = self.forward(x)
|
188 |
+
loss = 0 # self.criterion(preds, y)
|
189 |
+
self.log("valid_loss", loss)
|
190 |
+
# calculate the scores start
|
191 |
+
self.validate_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
192 |
+
# calculate the scores end
|
193 |
+
return loss
|
194 |
+
|
195 |
+
def on_validation_epoch_end(self) -> None:
|
196 |
+
self.validate_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="validate", log_color=blue)
|
197 |
+
return None
|
198 |
+
|
199 |
+
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any) -> STEP_OUTPUT:
|
200 |
+
# Accuracy on validation batch data
|
201 |
+
x, y = batch
|
202 |
+
preds = self.forward(x)
|
203 |
+
loss = self.criterion(preds, y)
|
204 |
+
self.log("test_loss", loss) # do we need this?
|
205 |
+
# calculate the scores start
|
206 |
+
self.test_metrics.update_on_each_step(batch_predicted_labels=preds.squeeze(), batch_actual_labels=y)
|
207 |
+
# calculate the scores end
|
208 |
+
return loss
|
209 |
+
|
210 |
+
def on_test_epoch_end(self) -> None:
|
211 |
+
self.test_metrics.compute_and_reset_on_epoch_end(log=self.log, log_prefix="test", log_color=magenta)
|
212 |
+
return None
|
213 |
+
|
214 |
+
pass
|
215 |
+
|
216 |
+
|
217 |
+
class DNABERTDataset(Dataset):
|
218 |
+
def __init__(self, dataset, tokenizer, max_length=512):
|
219 |
+
self.dataset = dataset
|
220 |
+
self.bert_tokenizer = tokenizer
|
221 |
+
self.max_length = max_length
|
222 |
+
|
223 |
+
def __len__(self):
|
224 |
+
return len(self.dataset)
|
225 |
+
|
226 |
+
def __getitem__(self, idx):
|
227 |
+
sequence = self.dataset[idx]['sequence'] # Fetch the 'sequence' column
|
228 |
+
label = self.dataset[idx]['label'] # Fetch the 'label' column (or whatever target you use)
|
229 |
+
|
230 |
+
# Tokenize the sequence
|
231 |
+
encoded_sequence: BatchEncoding = self.bert_tokenizer(
|
232 |
+
sequence,
|
233 |
+
truncation=True,
|
234 |
+
padding='max_length',
|
235 |
+
max_length=self.max_length,
|
236 |
+
return_tensors='pt'
|
237 |
+
)
|
238 |
+
|
239 |
+
encoded_sequence_squeezed = {key: val.squeeze() for key, val in encoded_sequence.items()}
|
240 |
+
return encoded_sequence_squeezed, label
|
241 |
+
|
242 |
+
|
243 |
+
class DNABERTDataModule(LightningDataModule):
|
244 |
+
def __init__(self, model_name=DNA_BERT_6, batch_size=8):
|
245 |
+
super().__init__()
|
246 |
+
self.tokenized_dataset = None
|
247 |
+
self.dataset = None
|
248 |
+
self.train_dataset: DNABERTDataset = None
|
249 |
+
self.validate_dataset: DNABERTDataset = None
|
250 |
+
self.test_dataset: DNABERTDataset = None
|
251 |
+
self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path=DNA_BERT_6)
|
252 |
+
self.batch_size = batch_size
|
253 |
+
|
254 |
+
def prepare_data(self):
|
255 |
+
# Download and prepare dataset
|
256 |
+
self.dataset = load_dataset("fahimfarhan/mqtl-classification-dataset-binned-200")
|
257 |
+
|
258 |
+
def setup(self, stage=None):
|
259 |
+
self.train_dataset = DNABERTDataset(self.dataset['train'], self.tokenizer)
|
260 |
+
self.validate_dataset = DNABERTDataset(self.dataset['validate'], self.tokenizer)
|
261 |
+
self.test_dataset = DNABERTDataset(self.dataset['test'], self.tokenizer)
|
262 |
+
|
263 |
+
def train_dataloader(self):
|
264 |
+
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=15)
|
265 |
+
|
266 |
+
def val_dataloader(self):
|
267 |
+
return DataLoader(self.validate_dataset, batch_size=self.batch_size, num_workers=15)
|
268 |
+
|
269 |
+
def test_dataloader(self) -> EVAL_DATALOADERS:
|
270 |
+
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=15)
|
271 |
+
|
272 |
+
|
273 |
+
# Initialize DataModule
|
274 |
+
model_name = "zhihan1996/DNABERT-6"
|
275 |
+
data_module = DNABERTDataModule(model_name=model_name, batch_size=8)
|
276 |
+
|
277 |
+
|
278 |
+
def start_bert(classifier_model, model_save_path, criterion, WINDOW=200, batch_size=4,
|
279 |
+
dataset_folder_prefix="inputdata/", is_binned=True, is_debug=False, max_epochs=10):
|
280 |
+
file_suffix = ""
|
281 |
+
if is_binned:
|
282 |
+
file_suffix = "_binned"
|
283 |
+
|
284 |
+
data_module = DNABERTDataModule(batch_size=batch_size)
|
285 |
+
|
286 |
+
# classifier_model = classifier_model.to(DEVICE)
|
287 |
+
|
288 |
+
classifier_module = MQtlBertClassifierLightningModule(
|
289 |
+
classifier=classifier_model,
|
290 |
+
regularization=2, criterion=criterion)
|
291 |
+
|
292 |
+
# if os.path.exists(model_save_path):
|
293 |
+
# classifier_module.load_state_dict(torch.load(model_save_path))
|
294 |
+
|
295 |
+
classifier_module = classifier_module # .double()
|
296 |
+
|
297 |
+
# Set up training arguments
|
298 |
+
training_args = TrainingArguments(
|
299 |
+
output_dir='./results',
|
300 |
+
evaluation_strategy="epoch",
|
301 |
+
per_device_train_batch_size=batch_size,
|
302 |
+
per_device_eval_batch_size=batch_size,
|
303 |
+
num_train_epochs=max_epochs,
|
304 |
+
logging_dir='./logs',
|
305 |
+
report_to="none", # Disable reporting to WandB, etc.
|
306 |
+
)
|
307 |
+
|
308 |
+
# Prepare data using the DataModule
|
309 |
+
data_module.prepare_data()
|
310 |
+
data_module.setup()
|
311 |
+
|
312 |
+
# Initialize Trainer
|
313 |
+
# trainer = Trainer(
|
314 |
+
# model=classifier_module,
|
315 |
+
# args=training_args,
|
316 |
+
# train_dataset=data_module.tokenized_dataset["train"],
|
317 |
+
# eval_dataset=data_module.tokenized_dataset["test"],
|
318 |
+
# )
|
319 |
+
|
320 |
+
trainer = Trainer(max_epochs=max_epochs, precision="32")
|
321 |
+
|
322 |
+
# Train the model
|
323 |
+
trainer.fit(model=classifier_module, datamodule=data_module)
|
324 |
+
trainer.test(model=classifier_module, datamodule=data_module)
|
325 |
+
torch.save(classifier_module.state_dict(), model_save_path)
|
326 |
+
|
327 |
+
classifier_module.push_to_hub("fahimfarhan/mqtl-classifier-model")
|
328 |
+
pass
|
329 |
+
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
dataset_folder_prefix = "inputdata/"
|
333 |
+
pytorch_model = MQtlDnaBERT6Classifier()
|
334 |
+
start_bert(classifier_model=pytorch_model, model_save_path=f"weights_{pytorch_model.model_name}.pth",
|
335 |
+
criterion=ReshapedBCEWithLogitsLoss(), WINDOW=200, batch_size=4,
|
336 |
+
dataset_folder_prefix=dataset_folder_prefix, max_epochs=2)
|
337 |
+
pass
|
requirements.txt
CHANGED
@@ -30,5 +30,4 @@ gReLU # luckily now available in pip!
|
|
30 |
# gReLU @ git+https://github.com/Genentech/gReLU # @623fee8023aabcef89f0afeedbeafff4b71453af
|
31 |
# lightning[extra] # cz I got a stupid warning in the console logs
|
32 |
torchmetrics
|
33 |
-
|
34 |
-
huggingface-hub
|
|
|
30 |
# gReLU @ git+https://github.com/Genentech/gReLU # @623fee8023aabcef89f0afeedbeafff4b71453af
|
31 |
# lightning[extra] # cz I got a stupid warning in the console logs
|
32 |
torchmetrics
|
33 |
+
python-dotenv
|
|