Spaces:
Runtime error
Runtime error
File size: 7,435 Bytes
19c9a4a 1650677 501ff66 1650677 501ff66 1650677 1c4f2f2 92a6390 1650677 501ff66 92a6390 11d6379 007938a 501ff66 11d6379 501ff66 1650677 501ff66 92a6390 501ff66 1650677 92a6390 501ff66 1650677 501ff66 1650677 92a6390 1650677 dda46e9 1650677 501ff66 ff7c088 dda46e9 ff7c088 92a6390 dda46e9 1650677 89f63ba dda46e9 92a6390 89f63ba 501ff66 dda46e9 501ff66 1650677 dda46e9 1650677 1c4f2f2 1650677 1c4f2f2 1650677 dda46e9 1650677 501ff66 1650677 501ff66 dda46e9 1650677 dda46e9 1650677 501ff66 1650677 501ff66 dda46e9 1650677 1c4f2f2 1650677 501ff66 1650677 92a6390 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
import torch
import os
import time
import glob
# 一時ファイルの保存ディレクトリ
TEMP_DIR = "temp_images"
# 一時ファイルの保持期間(秒)
FILE_RETENTION_PERIOD = 3600 # 1時間
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 一時ディレクトリの作成
os.makedirs(TEMP_DIR, exist_ok=True)
def cleanup_old_files():
"""古い一時ファイルを削除する"""
current_time = time.time()
pattern = os.path.join(TEMP_DIR, "output_*.png")
for file_path in glob.glob(pattern):
try:
# ファイルの最終更新時刻を取得
file_modified_time = os.path.getmtime(file_path)
if current_time - file_modified_time > FILE_RETENTION_PERIOD:
os.remove(file_path)
except Exception as e:
print(f"Error while cleaning up file {file_path}: {e}")
pipe = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors",
use_safetensors=True,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# 古い一時ファイルの削除
cleanup_old_files()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# 画像生成
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# RGBモードで保存
if output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
# 一時ファイルとして保存
timestamp = int(time.time())
temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png")
output_image.save(temp_filename)
return temp_filename
css = """
#col-container {
margin: 0 auto;
max-width: 100%;
padding: 0 1rem;
}
/* プロンプト入力エリアのスタイル */
.prompt-input {
min-height: 100px !important;
font-size: 16px !important;
line-height: 1.5 !important;
padding: 12px !important;
border-radius: 8px !important;
border: 1px solid #e0e0e0 !important;
background-color: #ffffff !important;
}
.prompt-input:focus {
border-color: #2196f3 !important;
box-shadow: 0 0 0 2px rgba(33, 150, 243, 0.1) !important;
}
/* ボタンのスタイル */
.generate-button {
margin-top: 1rem !important;
padding: 12px 24px !important;
font-size: 16px !important;
font-weight: 600 !important;
border-radius: 8px !important;
background-color: #2196f3 !important;
color: white !important;
transition: all 0.3s ease !important;
}
.generate-button:hover {
background-color: #1976d2 !important;
transform: translateY(-1px) !important;
}
/* スマートフォン対応 */
@media (max-width: 768px) {
#col-container {
padding: 0 0.5rem;
}
.prompt-input {
font-size: 16px !important;
}
.advanced-settings {
margin-top: 1rem;
}
}
/* 結果画像のコンテナ */
#output_image {
margin-top: 1rem;
border-radius: 8px;
overflow: hidden;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
}
/* アコーディオンのスタイル */
.advanced-settings {
margin-top: 2rem;
border: 1px solid #e0e0e0;
border-radius: 8px;
overflow: hidden;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Text-to-Image Demo
Using [Noob SDXL beta model](https://huggingface.co/Laxhar) to generate amazing images!
""")
with gr.Group():
prompt = gr.Textbox(
label="What would you like to create?",
elem_classes="prompt-input",
lines=3,
placeholder="Describe the image you want to generate. Be specific about details, style, and atmosphere.\n\nExample: 'A serene mountain landscape at sunset, with snow-capped peaks and a clear lake reflection, painted in watercolor style'",
show_label=True,
)
run_button = gr.Button(
"✨ Generate Image",
elem_classes="generate-button",
variant="primary",
scale=1,
size="lg"
)
result = gr.Image(
label="Generated Image",
show_label=True,
type="filepath",
elem_id="output_image"
)
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
lines=2,
placeholder="Specify what you don't want in the image. Example: nsfw, low quality, blur, etc.",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True,
info="Generate different results each time"
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
info="Controls how closely the image follows the prompt"
)
num_inference_steps = gr.Slider(
label="Number of Steps",
minimum=1,
maximum=28,
step=1,
value=28,
info="More steps = higher quality but slower generation"
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
# 起動時に古いファイルを削除
cleanup_old_files()
demo.queue().launch() |