Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,77 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
3 |
import random
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
import torch
|
8 |
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
12 |
-
if torch.cuda.is_available()
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
pipe =
|
18 |
-
pipe
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE =
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
def infer(
|
26 |
-
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
41 |
-
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
44 |
guidance_scale=guidance_scale,
|
45 |
num_inference_steps=num_inference_steps,
|
46 |
width=width,
|
47 |
height=height,
|
48 |
-
generator=generator
|
49 |
).images[0]
|
50 |
|
51 |
-
return
|
52 |
|
53 |
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
@@ -77,16 +81,17 @@ with gr.Blocks(css=css) as demo:
|
|
77 |
container=False,
|
78 |
)
|
79 |
|
80 |
-
run_button = gr.Button("Run", scale=0
|
81 |
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
-
|
90 |
)
|
91 |
|
92 |
seed = gr.Slider(
|
@@ -105,7 +110,7 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=1024,
|
109 |
)
|
110 |
|
111 |
height = gr.Slider(
|
@@ -113,42 +118,30 @@ with gr.Blocks(css=css) as demo:
|
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=1024,
|
117 |
)
|
118 |
|
119 |
with gr.Row():
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
minimum=0.0,
|
123 |
-
maximum=
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
-
maximum=
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
-
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
import PIL.Image
|
5 |
+
from PIL import Image
|
6 |
import random
|
7 |
+
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
|
8 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
9 |
+
import cv2
|
10 |
import torch
|
11 |
|
|
|
|
|
12 |
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
16 |
+
|
17 |
+
#pipe = StableDiffusionXLPipeline.from_pretrained(
|
18 |
+
# "yodayo-ai/holodayo-xl-2.1",
|
19 |
+
# vae=vae,
|
20 |
+
# torch_dtype=torch.float16,
|
21 |
+
#)
|
22 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
23 |
+
"yodayo-ai/clandestine-xl-1.0",
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
use_safetensors=True,
|
26 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
27 |
+
add_watermarker=False #,
|
28 |
+
#variant="fp16"
|
29 |
+
)
|
30 |
|
31 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
32 |
+
pipe.to(device)
|
33 |
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
+
MAX_IMAGE_SIZE = 1216
|
36 |
+
|
37 |
+
|
38 |
+
@spaces.GPU
|
39 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
if randomize_seed:
|
42 |
seed = random.randint(0, MAX_SEED)
|
43 |
|
44 |
generator = torch.Generator().manual_seed(seed)
|
45 |
|
46 |
+
output_image = pipe(
|
47 |
prompt=prompt,
|
48 |
negative_prompt=negative_prompt,
|
49 |
guidance_scale=guidance_scale,
|
50 |
num_inference_steps=num_inference_steps,
|
51 |
width=width,
|
52 |
height=height,
|
53 |
+
generator=generator
|
54 |
).images[0]
|
55 |
|
56 |
+
return output_image
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
css = """
|
60 |
#col-container {
|
61 |
margin: 0 auto;
|
62 |
+
max-width: 520px;
|
63 |
}
|
64 |
"""
|
65 |
|
66 |
with gr.Blocks(css=css) as demo:
|
|
|
|
|
67 |
|
68 |
+
with gr.Column(elem_id="col-container"):
|
69 |
+
gr.Markdown("""
|
70 |
+
# Text-to-Image Demo
|
71 |
+
using [clandestine XL 1.0](https://huggingface.co/yodayo-ai/clandestine-xl-1.0)
|
72 |
+
""")
|
73 |
+
#yodayo-ai/clandestine-xl-1.0
|
74 |
+
#yodayo-ai/holodayo-xl-2.1
|
75 |
with gr.Row():
|
76 |
prompt = gr.Text(
|
77 |
label="Prompt",
|
|
|
81 |
container=False,
|
82 |
)
|
83 |
|
84 |
+
run_button = gr.Button("Run", scale=0)
|
85 |
|
86 |
result = gr.Image(label="Result", show_label=False)
|
87 |
+
|
88 |
with gr.Accordion("Advanced Settings", open=False):
|
89 |
+
|
90 |
negative_prompt = gr.Text(
|
91 |
label="Negative prompt",
|
92 |
max_lines=1,
|
93 |
placeholder="Enter a negative prompt",
|
94 |
+
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
95 |
)
|
96 |
|
97 |
seed = gr.Slider(
|
|
|
110 |
minimum=256,
|
111 |
maximum=MAX_IMAGE_SIZE,
|
112 |
step=32,
|
113 |
+
value=1024,#832,
|
114 |
)
|
115 |
|
116 |
height = gr.Slider(
|
|
|
118 |
minimum=256,
|
119 |
maximum=MAX_IMAGE_SIZE,
|
120 |
step=32,
|
121 |
+
value=1024,#1216,
|
122 |
)
|
123 |
|
124 |
with gr.Row():
|
125 |
guidance_scale = gr.Slider(
|
126 |
label="Guidance scale",
|
127 |
minimum=0.0,
|
128 |
+
maximum=20.0,
|
129 |
step=0.1,
|
130 |
+
value=7,
|
131 |
)
|
132 |
|
133 |
num_inference_steps = gr.Slider(
|
134 |
label="Number of inference steps",
|
135 |
minimum=1,
|
136 |
+
maximum=28,
|
137 |
step=1,
|
138 |
+
value=28,
|
139 |
)
|
140 |
|
141 |
+
run_button.click(#lambda x: None, inputs=None, outputs=result).then(
|
|
|
|
|
142 |
fn=infer,
|
143 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
144 |
+
outputs=[result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
)
|
146 |
|
147 |
+
demo.queue().launch()
|
|