Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import PIL.Image
|
@@ -8,22 +7,11 @@ from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
|
|
8 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
9 |
import cv2
|
10 |
import torch
|
11 |
-
|
12 |
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
-
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
16 |
-
|
17 |
-
#pipe = StableDiffusionXLPipeline.from_pretrained(
|
18 |
-
# #"yodayo-ai/clandestine-xl-1.0",
|
19 |
-
# torch_dtype=torch.float16,
|
20 |
-
# use_safetensors=True,
|
21 |
-
# custom_pipeline="lpw_stable_diffusion_xl",
|
22 |
-
# add_watermarker=False #,
|
23 |
-
# #variant="fp16"
|
24 |
-
#)
|
25 |
pipe = StableDiffusionXLPipeline.from_single_file(
|
26 |
-
#"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules4/fp16/checkpoint-e0_s10000.safetensors/checkpoint-e0_s10000.safetensors",
|
27 |
"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors",
|
28 |
use_safetensors=True,
|
29 |
torch_dtype=torch.float16,
|
@@ -34,7 +22,6 @@ pipe.to(device)
|
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
MAX_IMAGE_SIZE = 1216
|
36 |
|
37 |
-
|
38 |
@spaces.GPU
|
39 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
40 |
|
@@ -53,8 +40,11 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
53 |
generator=generator
|
54 |
).images[0]
|
55 |
|
56 |
-
|
|
|
|
|
57 |
|
|
|
58 |
|
59 |
css = """
|
60 |
#col-container {
|
@@ -70,8 +60,6 @@ with gr.Blocks(css=css) as demo:
|
|
70 |
Text-to-Image Demo
|
71 |
using [Noob SDXL beta model](https://huggingface.co/Laxhar)
|
72 |
""")
|
73 |
-
#yodayo-ai/clandestine-xl-1.0
|
74 |
-
#yodayo-ai/holodayo-xl-2.1
|
75 |
with gr.Row():
|
76 |
prompt = gr.Text(
|
77 |
label="Prompt",
|
@@ -83,7 +71,7 @@ with gr.Blocks(css=css) as demo:
|
|
83 |
|
84 |
run_button = gr.Button("Run", scale=0)
|
85 |
|
86 |
-
result = gr.Image(label="Result", show_label=False,
|
87 |
|
88 |
with gr.Accordion("Advanced Settings", open=False):
|
89 |
|
@@ -110,7 +98,7 @@ with gr.Blocks(css=css) as demo:
|
|
110 |
minimum=256,
|
111 |
maximum=MAX_IMAGE_SIZE,
|
112 |
step=32,
|
113 |
-
value=1024
|
114 |
)
|
115 |
|
116 |
height = gr.Slider(
|
@@ -118,7 +106,7 @@ with gr.Blocks(css=css) as demo:
|
|
118 |
minimum=256,
|
119 |
maximum=MAX_IMAGE_SIZE,
|
120 |
step=32,
|
121 |
-
value=1024
|
122 |
)
|
123 |
|
124 |
with gr.Row():
|
@@ -138,7 +126,7 @@ with gr.Blocks(css=css) as demo:
|
|
138 |
value=28,
|
139 |
)
|
140 |
|
141 |
-
run_button.click(
|
142 |
fn=infer,
|
143 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
144 |
outputs=[result]
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import PIL.Image
|
|
|
7 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
8 |
import cv2
|
9 |
import torch
|
10 |
+
import os
|
11 |
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pipe = StableDiffusionXLPipeline.from_single_file(
|
|
|
15 |
"https://huggingface.co/Laxhar/noob_sdxl_beta/noob_hercules3/checkpoint/checkpoint-e2_s109089.safetensors/checkpoint-e2_s109089.safetensors",
|
16 |
use_safetensors=True,
|
17 |
torch_dtype=torch.float16,
|
|
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1216
|
24 |
|
|
|
25 |
@spaces.GPU
|
26 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
27 |
|
|
|
40 |
generator=generator
|
41 |
).images[0]
|
42 |
|
43 |
+
# PNG形式で一時的に保存
|
44 |
+
output_path = "output_image.png"
|
45 |
+
output_image.save(output_path, format="PNG")
|
46 |
|
47 |
+
return output_path # ファイルパスを返す
|
48 |
|
49 |
css = """
|
50 |
#col-container {
|
|
|
60 |
Text-to-Image Demo
|
61 |
using [Noob SDXL beta model](https://huggingface.co/Laxhar)
|
62 |
""")
|
|
|
|
|
63 |
with gr.Row():
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
|
|
71 |
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
|
74 |
+
result = gr.Image(label="Result", show_label=False, type="filepath")
|
75 |
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
|
|
|
98 |
minimum=256,
|
99 |
maximum=MAX_IMAGE_SIZE,
|
100 |
step=32,
|
101 |
+
value=1024,
|
102 |
)
|
103 |
|
104 |
height = gr.Slider(
|
|
|
106 |
minimum=256,
|
107 |
maximum=MAX_IMAGE_SIZE,
|
108 |
step=32,
|
109 |
+
value=1024,
|
110 |
)
|
111 |
|
112 |
with gr.Row():
|
|
|
126 |
value=28,
|
127 |
)
|
128 |
|
129 |
+
run_button.click(
|
130 |
fn=infer,
|
131 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
132 |
outputs=[result]
|