|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import random |
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL |
|
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler |
|
import cv2 |
|
import torch |
|
import spaces |
|
|
|
def nms(x, t, s): |
|
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) |
|
|
|
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) |
|
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) |
|
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) |
|
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) |
|
|
|
y = np.zeros_like(x) |
|
|
|
for f in [f1, f2, f3, f4]: |
|
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) |
|
|
|
z = np.zeros_like(y, dtype=np.uint8) |
|
z[y > t] = 255 |
|
return z |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"xinsir/controlnet-scribble-sdxl-1.0", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"yodayo-ai/holodayo-xl-2.1", |
|
controlnet=controlnet, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1216 |
|
|
|
@spaces.GPU |
|
def infer(image: Image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps) -> Image: |
|
|
|
width, height = image.size |
|
ratio = np.sqrt(1024. * 1024. / (width * height)) |
|
new_width, new_height = int(width * ratio), int(height * ratio) |
|
image = image.resize((new_width, new_height)) |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
controlnet_img = np.array(image) |
|
controlnet_img = nms(controlnet_img, 127, 3) |
|
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3) |
|
|
|
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255) |
|
controlnet_img[controlnet_img > random_val] = 255 |
|
controlnet_img[controlnet_img < 255] = 0 |
|
image = Image.fromarray(controlnet_img) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
output_image = pipe( |
|
prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres", |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
return output_image |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(""" |
|
# Text-to-Image Demo |
|
using [Holodayo XL 2.1](https://huggingface.co/yodayo-ai/holodayo-xl-2.1) |
|
""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) |
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=832, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1216, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.1, |
|
value=7, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=28, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result] |
|
) |
|
|
|
demo.queue().launch() |
|
|