Spaces:
Running
Running
File size: 199,631 Bytes
7ef93e7 0f596fb 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 0f596fb 7ef93e7 0f596fb 7ef93e7 0f596fb 7ef93e7 0f596fb 7ef93e7 0f596fb 7ef93e7 0f596fb 7ef93e7 0f596fb 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 02d04ea 7ef93e7 c22afdf 7ef93e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 |
import transformers
transformers.utils.move_cache()
import random
import tempfile
import time
import gradio as gr
import numpy as np
import torch
import math
import re
import sys
from gradio import inputs
from diffusers import (
AutoencoderKL,
#UNet2DConditionModel,
ControlNetModel,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DDIMScheduler,
DPMSolverSDEScheduler,
DPMSolverSinglestepScheduler,
T2IAdapter,
SASolverScheduler,
EDMEulerScheduler,
EDMDPMSolverMultistepScheduler,
ConsistencyDecoderVAE,
)
from modules.u_net_condition_modify import UNet2DConditionModel
from modules.model_diffusers import (
StableDiffusionPipeline_finetune,
StableDiffusionControlNetPipeline_finetune,
StableDiffusionControlNetImg2ImgPipeline_finetune,
StableDiffusionImg2ImgPipeline_finetune,
StableDiffusionInpaintPipeline_finetune,
StableDiffusionControlNetInpaintPipeline_finetune,
)
from modules.attention_modify import AttnProcessor,IPAdapterAttnProcessor,AttnProcessor2_0,IPAdapterAttnProcessor2_0
from modules.model_k_diffusion import StableDiffusionPipeline
from torchvision import transforms
from transformers import CLIPTokenizer, CLIPTextModel,CLIPImageProcessor
from PIL import Image,ImageOps, ImageChops
from pathlib import Path
from safetensors.torch import load_file
import modules.safe as _
from modules.lora import LoRANetwork
import os
import cv2
from controlnet_aux import PidiNetDetector, HEDdetector,LineartAnimeDetector,LineartDetector,MLSDdetector,OpenposeDetector,MidasDetector,NormalBaeDetector,ContentShuffleDetector,ZoeDetector
from transformers import pipeline
from modules import samplers_extra_k_diffusion
import gc
import copy
from modules.preprocessing_segmentation import preprocessing_segmentation
import torch.nn.functional as F
from modules.t2i_adapter import setup_model_t2i_adapter
from diffusers.image_processor import IPAdapterMaskProcessor
from typing import Callable, Dict, List, Optional, Union
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from diffusers.utils import load_image
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
)
embeddings_dict = dict()
lora_dict = dict()
lora_scale_dict = dict()
# lora_dict = {'Not using Lora':None,}
# lora_scale_dict = {'Not using Lora':1.0,}
# lora_lst = ['Not using Lora']
lora_lst = ['Not using Lora']
formula = [
['w = token_weight_martix * sigma * std(qk)',0],
['w = token_weight_martix * log(1 + sigma) * max(qk)',1],
['w = token_weight_martix * log(1 + sigma) * std(qk)',2],
['w = token_weight_martix * log(1 + sigma^2) * std(qk)',3],
]
encoding_type ={
"Automatic111 Encoding": 0,
"Long Prompt Encoding": 1,
"Short Prompt Encoding": 2,
}
model_ip_adapter_lst = ['IP-Adapter','IP-Adapter VIT-G','IP-Adapter Light','IP-Adapter Light v1.1','IP-Adapter Face','IP-Adapter FaceID','IP-Adapter Plus','IP-Adapter Plus Face',"IP-Adapter Plus FaceID","IP-Adapter Plus FaceIDv2"]
model_ip_adapter_type = {
"IP-Adapter": "ip-adapter_sd15.bin",
"IP-Adapter VIT-G": "ip-adapter_sd15_vit-G.bin",
"IP-Adapter Light": "ip-adapter_sd15_light.bin",
"IP-Adapter Light v1.1": "ip-adapter_sd15_light_v11.bin",
"IP-Adapter Face":"ip-adapter-full-face_sd15.bin",
"IP-Adapter FaceID":"ip-adapter-faceid_sd15.bin",
"IP-Adapter Plus": "ip-adapter-plus_sd15.bin",
"IP-Adapter Plus Face": "ip-adapter-plus-face_sd15.bin",
"IP-Adapter Plus FaceID": "ip-adapter-faceid-plus_sd15.bin",
"IP-Adapter Plus FaceIDv2": "ip-adapter-faceid-plusv2_sd15.bin",
}
controlnet_lst = ["Canny","Depth","Openpose","Soft Edge","Lineart","Lineart (anime)","Scribble","MLSD","Semantic Segmentation","Normal Map","Shuffle","Instruct Pix2Pix"]
adapter_lst = ["Canny","Sketch","Color","Depth","Openpose","Semantic Segmentation","Zoedepth"]
controlnet_type ={
"Canny": "lllyasviel/control_v11p_sd15_canny",
"Depth": "lllyasviel/control_v11f1p_sd15_depth",
"Openpose": "lllyasviel/control_v11p_sd15_openpose",
"Soft Edge": "lllyasviel/control_v11p_sd15_softedge",
"Lineart":"ControlNet-1-1-preview/control_v11p_sd15_lineart",
"Lineart (anime)":"lllyasviel/control_v11p_sd15s2_lineart_anime",
"Scribble":"lllyasviel/control_v11p_sd15_scribble",
"MLSD":"lllyasviel/control_v11p_sd15_mlsd",
"Semantic Segmentation":"lllyasviel/control_v11p_sd15_seg",
"Normal Map":"lllyasviel/control_v11p_sd15_normalbae",
"Shuffle":"lllyasviel/control_v11e_sd15_shuffle",
"Instruct Pix2Pix":"lllyasviel/control_v11e_sd15_ip2p",
}
adapter_type ={
"Canny": "TencentARC/t2iadapter_canny_sd15v2",
"Sketch": "TencentARC/t2iadapter_sketch_sd15v2",
"Color": "TencentARC/t2iadapter_color_sd14v1",
"Depth": "TencentARC/t2iadapter_depth_sd15v2",
"Openpose":"TencentARC/t2iadapter_openpose_sd14v1",
"Semantic Segmentation":"TencentARC/t2iadapter_seg_sd14v1",
"Zoedepth":"TencentARC/t2iadapter_zoedepth_sd15v1",
}
models_single_file = []
models = [
("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF"),
("BloodOrangeMix", "WarriorMama777/BloodOrangeMix"),
("ElyOrangeMix", "WarriorMama777/ElyOrangeMix"),
("Pastal Mix", "JamesFlare/pastel-mix"),
("Basil Mix", "nuigurumi/basil_mix"),
("Stable Diffusion v1.5", "runwayml/stable-diffusion-v1-5"),
("Stable Diffusion v2.1", "stabilityai/stable-diffusion-2-1-base"),
("Realistic Vision v1.4", "SG161222/Realistic_Vision_V1.4"),
("Dreamlike Photoreal v2.0", "dreamlike-art/dreamlike-photoreal-2.0"),
("Waifu-diffusion v1.4", "hakurei/waifu-diffusion"),
("Stable diffusion PixelArt v1.4", "Onodofthenorth/SD_PixelArt_SpriteSheet_Generator"),
("Anything v3", "Linaqruf/anything-v3.0"),
("Sketch style", "Cosk/sketchstyle-cutesexyrobutts"),
("Anything v5", "stablediffusionapi/anything-v5"),
("Counterfeit v2.5", "gsdf/Counterfeit-V2.5"),
("Edge of realism", "stablediffusionapi/edge-of-realism"),
("Photorealistic fuen", "claudfuen/photorealistic-fuen-v1"),
("Protogen x5.8 (Scifi-Anime)", "darkstorm2150/Protogen_x5.8_Official_Release"),
("Dreamlike Anime", "dreamlike-art/dreamlike-anime-1.0"),
("Something V2.2", "NoCrypt/SomethingV2_2"),
("Realistic Vision v3.0", "SG161222/Realistic_Vision_V3.0_VAE"),
("Noosphere v3.0", "digiplay/Noosphere_v3"),
("Beauty Fool v1.2", "digiplay/BeautyFool_v1.2VAE_pruned"),
("Prefix RealisticMix v1.0", "digiplay/PrefixRealisticMix_v1"),
("Prefix FantasyMix v1.0", "digiplay/PrefixFantasyMix_v1"),
("Unstable Diffusers YamerMIX v3.0", "digiplay/unstableDiffusersYamerMIX_v3"),
("GTA5 Artwork Diffusion", "ItsJayQz/GTA5_Artwork_Diffusion"),
("Open Journey", "prompthero/openjourney"),
("SoapMix2.5D v2.0", "digiplay/SoapMix2.5D_v2"),
("CoffeeMix v2.0", "digiplay/CoffeeMix_v2"),
("helloworld v3.0", "digiplay/helloworld_v3"),
("ARRealVX v1.1", "digiplay/ARRealVX1.1"),
("Fishmix v1.0", "digiplay/fishmix_other_v1"),
("DiamondCoalMix v2.0", "digiplay/DiamondCoalMix_v2_pruned_diffusers"),
("ISOMix v3.22", "digiplay/ISOmix_v3.22"),
("Pika v2", "digiplay/Pika_v2"),
("BluePencil v0.9b", "digiplay/bluePencil_v09b"),
("MeinaPastel v6", "Meina/MeinaPastel_V6"),
("Realistic Vision v4", "SG161222/Realistic_Vision_V4.0"),
("Revanimated v1.2.2", "stablediffusionapi/revanimated"),
("NeverEnding Dream v1.2.2", "Lykon/NeverEnding-Dream"),
("CetusMixCoda", "Stax124/CetusMixCoda"),
("NewMarsMix R11", "digiplay/NewMarsMix_R11"),
("Juggernaut Final", "digiplay/Juggernaut_final"),
("BlankCanvas v1.0", "digiplay/BlankCanvas_v1"),
("FumizukiMix v1.0", "digiplay/FumizukiMix_v1"),
("CampurSari v1.0", "digiplay/CampurSari_Gen1"),
("Realisian v1.0", "digiplay/Realisian_v5"),
("Real Epic Majic Revolution v1.0", "digiplay/RealEpicMajicRevolution_v1"),
("QuinceMix v2.0", "digiplay/quincemix_v2"),
("Counterfeit v3.0", "stablediffusionapi/counterfeit-v30"),
("MeinaMix v11.0", "Meina/MeinaMix_V11"),
("MeinaPastel V7.0", "Meina/MeinaPastel_V7"),
("Alter V3.0", "Meina/Alter_V3"),
("MeinaUnreal V5.0", "Meina/MeinaUnreal_V5"),
("MeinaHentai V5.0", "Meina/MeinaHentai_V5"),
("AnyOrangeMix Mint", "GraydientPlatformAPI/anyorange-mint"),
]
#Name / link / True = single file , False = need config.json
vae_link ={
"Vae ft MSE": "stabilityai/sd-vae-ft-mse",
"Vae ft MSE original": "stabilityai/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.safetensors",
"Vae ft EMA": "stabilityai/sd-vae-ft-ema",
"Vae ft EMA original": "stabilityai/sd-vae-ft-ema-original/vae-ft-ema-560000-ema-pruned.safetensors",
"ClearVAE V2.1" : "digiplay/VAE/ClearVAE_V2.1.safetensors",
"Blessed": "digiplay/VAE/blessed.vae.pt",
"Color101VAE v1": "digiplay/VAE/color101VAE_v1.safetensors",
"kl-f8-anime2": "digiplay/VAE/klF8Anime2VAE_klF8Anime2VAE.ckpt",
"Mangled Merge": "digiplay/VAE/mangledMergeVAE_v10.pt",
"Orangemix": "digiplay/VAE/orangemix.vae.pt",
"Stable 780000": "digiplay/VAE/stable-780000.vae.pt",
"CustomVAE Q6": "duongve/VAE/customvae_q6.safetensors",
"Voidnoise VAE": "duongve/VAE/voidnoiseVAE_baseonR0829.safetensors",
"Lastpiece Contrast": "duongve/VAE/lastpieceVAE_contrast.safetensors",
"Lastpiece Brightness": "duongve/VAE/lastpieceVAE_brightness.safetensors",
"Berry's Mix v1.0": "duongve/VAE/berrysMixVAE_v10.safetensors",
"Async's VAE v1.0": "duongve/VAE/asyncsVAE_v10.safetensors",
"WD-VAE v1.0": "duongve/VAE/wdVAE_v10.safetensors",
"Nocturnal": "duongve/VAE/nocturnalVAE_.safetensors",
"Apricots": "duongve/VAE/apricotsVAESeries_tensorQuantizerV10.safetensors",
"Earth & Dusk v1.0": "duongve/VAE/earthDuskVAE_v10.safetensors",
"HotaruVAE Anime v1.0": "duongve/VAE/hotaruvae_AnimeV10.safetensors",
"HotaruVAE Real v1.0": "duongve/VAE/hotaruvae_RealV10.safetensors",
"Consistency Decoder": "openai/consistency-decoder",
}
vae_single_file ={
"Vae ft MSE": False,
"Vae ft MSE original": True,
"Vae ft EMA": False,
"Vae ft EMA original": True,
"ClearVAE V2.1": True,
"Blessed": True,
"Color101VAE v1": True,
"kl-f8-anime2": True,
"Mangled Merge": True,
"Orangemix": True,
"Stable 780000": True,
"CustomVAE Q6": True,
"Voidnoise VAE": True,
"Lastpiece Contrast": True,
"Lastpiece Brightness": True,
"Berry's Mix v1.0": True,
"Async's VAE v1.0": True,
"WD-VAE v1.0": True,
"Nocturnal": True,
"Apricots": True,
"Earth & Dusk v1.0": True,
"HotaruVAE Anime v1.0": True,
"HotaruVAE Real v1.0": True,
"Consistency Decoder": False,
}
vae_lst = [
"Default",
"Vae ft MSE",
"Vae ft MSE original",
"Vae ft EMA",
"Vae ft EMA original",
"ClearVAE V2.1",
"Blessed",
"Color101VAE v1",
"kl-f8-anime2",
"Mangled Merge",
"Orangemix",
"Stable 780000",
"CustomVAE Q6",
"Voidnoise VAE",
"Lastpiece Contrast",
"Lastpiece Brightness",
"Berry's Mix v1.0",
"Async's VAE v1.0",
"WD-VAE v1.0",
"Nocturnal",
"Apricots",
"Earth & Dusk v1.0",
"HotaruVAE Anime v1.0",
"HotaruVAE Real v1.0",
"Consistency Decoder",
]
keep_vram = [
"Korakoe/AbyssOrangeMix2-HF",
"WarriorMama777/BloodOrangeMix",
"WarriorMama777/ElyOrangeMix",
"JamesFlare/pastel-mix",
"nuigurumi/basil_mix",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1-base",
"SG161222/Realistic_Vision_V1.4",
"dreamlike-art/dreamlike-photoreal-2.0",
"hakurei/waifu-diffusion",
"Onodofthenorth/SD_PixelArt_SpriteSheet_Generator",
"Linaqruf/anything-v3.0",
"Cosk/sketchstyle-cutesexyrobutts",
"stablediffusionapi/anything-v5",
"gsdf/Counterfeit-V2.5",
"stablediffusionapi/edge-of-realism",
"claudfuen/photorealistic-fuen-v1",
"darkstorm2150/Protogen_x5.8_Official_Release",
"dreamlike-art/dreamlike-anime-1.0",
"NoCrypt/SomethingV2_2",
"SG161222/Realistic_Vision_V3.0_VAE",
"digiplay/Noosphere_v3",
"digiplay/BeautyFool_v1.2VAE_pruned",
"digiplay/PrefixRealisticMix_v1",
"digiplay/PrefixFantasyMix_v1",
"digiplay/unstableDiffusersYamerMIX_v3",
"ItsJayQz/GTA5_Artwork_Diffusion",
"prompthero/openjourney",
"digiplay/SoapMix2.5D_v2",
"digiplay/CoffeeMix_v2",
"digiplay/helloworld_v3",
"digiplay/ARRealVX1.1",
"digiplay/fishmix_other_v1",
"digiplay/DiamondCoalMix_v2_pruned_diffusers",
"digiplay/ISOmix_v3.22",
"digiplay/Pika_v2",
"digiplay/bluePencil_v09b",
"Meina/MeinaPastel_V6",
"SG161222/Realistic_Vision_V4.0",
"stablediffusionapi/revanimated",
"Lykon/NeverEnding-Dream",
"Stax124/CetusMixCoda",
"digiplay/NewMarsMix_R11",
"digiplay/Juggernaut_final",
"digiplay/BlankCanvas_v1",
"digiplay/FumizukiMix_v1",
"digiplay/CampurSari_Gen1",
"digiplay/Realisian_v5",
"digiplay/RealEpicMajicRevolution_v1",
"stablediffusionapi/counterfeit-v30",
"Meina/MeinaMix_V11",
"Meina/MeinaPastel_V7",
"Meina/Alter_V3",
"Meina/MeinaUnreal_V5",
"Meina/MeinaHentai_V5",
"GraydientPlatformAPI/anyorange-mint",
]
base_name, base_model = models[0]
samplers_k_diffusion = [
('Euler', 'sample_euler', {}),
('Euler a', 'sample_euler_ancestral', {"uses_ensd": True}),
('LMS', 'sample_lms', {}),
('LCM', samplers_extra_k_diffusion.sample_lcm, {"second_order": True}),
('Heun', 'sample_heun', {"second_order": True}),
('Heun++', samplers_extra_k_diffusion.sample_heunpp2, {"second_order": True}),
('DDPM', samplers_extra_k_diffusion.sample_ddpm, {"second_order": True}),
('DPM2', 'sample_dpm_2', {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', {'discard_next_to_last_sigma': True, "uses_ensd": True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', {"uses_ensd": True, "second_order": True}),
('DPM++ 2M', 'sample_dpmpp_2m', {}),
('DPM++ SDE', 'sample_dpmpp_sde', {"second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', {"brownian_noise": True}),
('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', {'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM fast (img-to-img)', 'sample_dpm_fast', {"uses_ensd": True}),
('DPM adaptive (img-to-img)', 'sample_dpm_adaptive', {"uses_ensd": True}),
('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', {"brownian_noise": True, "solver_type": "heun"}),
('Restart', samplers_extra_k_diffusion.restart_sampler, {"second_order": True}),
('Euler Karras', 'sample_euler', {'scheduler': 'karras'}),
('Euler a Karras', 'sample_euler_ancestral', {'scheduler': 'karras',"uses_ensd": True}),
('LMS Karras', 'sample_lms', {'scheduler': 'karras'}),
('LCM Karras', samplers_extra_k_diffusion.sample_lcm, {'scheduler': 'karras',"second_order": True}),
('Heun Karras', 'sample_heun', {'scheduler': 'karras',"second_order": True}),
('Heun++ Karras', samplers_extra_k_diffusion.sample_heunpp2, {'scheduler': 'karras',"second_order": True}),
('DDPM Karras', samplers_extra_k_diffusion.sample_ddpm, {'scheduler': 'karras', "second_order": True}),
('DPM2 Karras', 'sample_dpm_2', {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', {'scheduler': 'karras', "brownian_noise": True}),
('DPM++ 2M SDE Heun Karras', 'sample_dpmpp_2m_sde', {'scheduler': 'karras', "brownian_noise": True, "solver_type": "heun"}),
('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('Restart Karras', samplers_extra_k_diffusion.restart_sampler, {'scheduler': 'karras', "second_order": True}),
('Euler Exponential', 'sample_euler', {'scheduler': 'exponential'}),
('Euler a Exponential', 'sample_euler_ancestral', {'scheduler': 'exponential',"uses_ensd": True}),
('LMS Exponential', 'sample_lms', {'scheduler': 'exponential'}),
('LCM Exponential', samplers_extra_k_diffusion.sample_lcm, {'scheduler': 'exponential',"second_order": True}),
('Heun Exponential', 'sample_heun', {'scheduler': 'exponential',"second_order": True}),
('Heun++ Exponential', samplers_extra_k_diffusion.sample_heunpp2, {'scheduler': 'exponential',"second_order": True}),
('DDPM Exponential', samplers_extra_k_diffusion.sample_ddpm, {'scheduler': 'exponential', "second_order": True}),
('DPM++ 2M Exponential', 'sample_dpmpp_2m', {'scheduler': 'exponential'}),
('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', {'scheduler': 'exponential', "brownian_noise": True}),
('DPM++ 2M SDE Heun Exponential', 'sample_dpmpp_2m_sde', {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}),
('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('Restart Exponential', samplers_extra_k_diffusion.restart_sampler, {'scheduler': 'exponential', "second_order": True}),
('Euler Polyexponential', 'sample_euler', {'scheduler': 'polyexponential'}),
('Euler a Polyexponential', 'sample_euler_ancestral', {'scheduler': 'polyexponential',"uses_ensd": True}),
('LMS Polyexponential', 'sample_lms', {'scheduler': 'polyexponential'}),
('LCM Polyexponential', samplers_extra_k_diffusion.sample_lcm, {'scheduler': 'polyexponential',"second_order": True}),
('Heun Polyexponential', 'sample_heun', {'scheduler': 'polyexponential',"second_order": True}),
('Heun++ Polyexponential', samplers_extra_k_diffusion.sample_heunpp2, {'scheduler': 'polyexponential',"second_order": True}),
('DDPM Polyexponential', samplers_extra_k_diffusion.sample_ddpm, {'scheduler': 'polyexponential', "second_order": True}),
('DPM++ 2M Polyexponential', 'sample_dpmpp_2m', {'scheduler': 'polyexponential'}),
('DPM++ 2M SDE Heun Polyexponential', 'sample_dpmpp_2m_sde', {'scheduler': 'polyexponential', "brownian_noise": True, "solver_type": "heun"}),
('DPM++ 3M SDE Polyexponential', 'sample_dpmpp_3m_sde', {'scheduler': 'polyexponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('Restart Polyexponential', samplers_extra_k_diffusion.restart_sampler, {'scheduler': 'polyexponential', "second_order": True}),
]
#Add to sigma sp which library is missing
'''class DEISMultistepScheduler_modify(DEISMultistepScheduler):
def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = in_sigmas[-1].item()
sigma_max: float = in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t'''
samplers_diffusers = [
('Euler a', lambda ddim_scheduler_config: EulerAncestralDiscreteScheduler.from_config(ddim_scheduler_config), {}),
('Euler', lambda ddim_scheduler_config: EulerDiscreteScheduler.from_config(ddim_scheduler_config), {}),
#('EDM Euler', lambda ddim_scheduler_config: EDMEulerScheduler.from_config(ddim_scheduler_config), {}),
('LMS', lambda ddim_scheduler_config: LMSDiscreteScheduler.from_config(ddim_scheduler_config), {}),
('Heun',lambda ddim_scheduler_config: HeunDiscreteScheduler.from_config(ddim_scheduler_config), {}),
('DPM2',lambda ddim_scheduler_config: KDPM2DiscreteScheduler.from_config(ddim_scheduler_config), {}),
('DPM2 a',lambda ddim_scheduler_config: KDPM2AncestralDiscreteScheduler.from_config(ddim_scheduler_config), {}),
('DPM++ 2S a',lambda ddim_scheduler_config: DPMSolverSinglestepScheduler.from_config(ddim_scheduler_config), {}),
('DPM++ 2M',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config), {}),
#('EDM DPM++ 2M',lambda ddim_scheduler_config: EDMDPMSolverMultistepScheduler.from_config(ddim_scheduler_config), {}),
('DPM++ SDE',lambda ddim_scheduler_config: DPMSolverSDEScheduler.from_config(ddim_scheduler_config), {}),
('DPM++ 2M SDE',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config,algorithm_type="sde-dpmsolver++"), {}),
#('EDM DPM++ 2M SDE',lambda ddim_scheduler_config: EDMDPMSolverMultistepScheduler.from_config(ddim_scheduler_config,algorithm_type="sde-dpmsolver++"), {}),
('DEIS',lambda ddim_scheduler_config: DEISMultistepScheduler.from_config(ddim_scheduler_config), {}),
('UniPC Time Uniform 1',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh1"), {}),
('UniPC Time Uniform 2',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh2"), {}),
('SA-Solver',lambda ddim_scheduler_config: SASolverScheduler.from_config(ddim_scheduler_config), {}),
('Euler Karras', lambda ddim_scheduler_config: EulerDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('LMS Karras',lambda ddim_scheduler_config: LMSDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('Heun Karras',lambda ddim_scheduler_config: HeunDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('DPM2 Karras',lambda ddim_scheduler_config: KDPM2DiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('DPM2 a Karras',lambda ddim_scheduler_config: KDPM2AncestralDiscreteScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('DPM++ 2S a Karras',lambda ddim_scheduler_config: DPMSolverSinglestepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('DPM++ 2M Karras',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('DPM++ SDE Karras',lambda ddim_scheduler_config: DPMSolverSDEScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('DPM++ 2M SDE Karras',lambda ddim_scheduler_config: DPMSolverMultistepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True,algorithm_type="sde-dpmsolver++"), {}),
('DEIS Karras',lambda ddim_scheduler_config: DEISMultistepScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
('UniPC Time Uniform 1 Karras',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh1",use_karras_sigmas=True), {}),
('UniPC Time Uniform 2 Karras',lambda ddim_scheduler_config: UniPCMultistepScheduler.from_config(ddim_scheduler_config,solver_type = "bh2",use_karras_sigmas=True), {}),
('SA-Solver Karras',lambda ddim_scheduler_config: SASolverScheduler.from_config(ddim_scheduler_config,use_karras_sigmas=True), {}),
]
# samplers_diffusers = [
# ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {})
# ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {})
# ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {})
# ]
start_time = time.time()
timeout = 1800
scheduler = DDIMScheduler.from_pretrained(
base_model,
subfolder="scheduler",
)
'''vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse",
torch_dtype=torch.float16
)'''
vae = AutoencoderKL.from_pretrained(base_model,
subfolder="vae",
#torch_dtype=torch.float16,
)
if vae is None:
vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse",
#torch_dtype=torch.float16,
)
text_encoder = CLIPTextModel.from_pretrained(
base_model,
subfolder="text_encoder",
#torch_dtype=torch.float16,
)
tokenizer = CLIPTokenizer.from_pretrained(
base_model,
subfolder="tokenizer",
#torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
base_model,
subfolder="unet",
#torch_dtype=torch.float16,
)
feature_extract = CLIPImageProcessor.from_pretrained(
base_model,
subfolder="feature_extractor",
)
pipe = StableDiffusionPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
vae=vae,
scheduler=scheduler,
feature_extractor = feature_extract,
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
def get_model_list():
return models
scheduler_cache ={
base_name: scheduler
}
te_cache = {
base_name: text_encoder
}
vae_cache = {
base_name: vae
}
unet_cache = {
base_name: unet
}
lora_cache = {
base_name: LoRANetwork(text_encoder, unet)
}
tokenizer_cache ={
base_name: tokenizer
}
feature_cache ={
base_name: feature_extract
}
controlnetmodel_cache ={
}
adapter_cache ={
}
vae_enhance_cache ={
}
te_base_weight_length = text_encoder.get_input_embeddings().weight.data.shape[0]
original_prepare_for_tokenization = tokenizer.prepare_for_tokenization
current_model = base_name
def setup_controlnet(name_control,device):
global controlnet_type,controlnetmodel_cache
if name_control not in controlnetmodel_cache:
model_control = ControlNetModel.from_pretrained(name_control,
#torch_dtype=torch.float16
).to(device)
controlnetmodel_cache[name_control] = model_control
return controlnetmodel_cache[name_control]
def setup_adapter(adapter_sp,device):
global model_ip_adapter_type,adapter_cache
if adapter_sp not in adapter_cache:
model_control = T2IAdapter.from_pretrained(adapter_sp,
#torch_dtype=torch.float16
).to(device)
adapter_cache[adapter_sp] = model_control
return adapter_cache[adapter_sp]
def setup_vae(model,vae_used = "Default"):
global vae_link,vae_single_file
vae_model = None
if vae_used == "Default":
vae_model = AutoencoderKL.from_pretrained(model,subfolder="vae",
#torch_dtype=torch.float16
)
elif vae_used == "Consistency Decoder":
vae_model = ConsistencyDecoderVAE.from_pretrained(vae_link[vae_used],
#torch_dtype=torch.float16
)
else:
if vae_single_file[vae_used]:
vae_model = AutoencoderKL.from_single_file(vae_link[vae_used],
#torch_dtype=torch.float16
)
else:
vae_model = AutoencoderKL.from_pretrained(vae_link[vae_used],
#torch_dtype=torch.float16
)
if vae_model is None:
vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",
#torch_dtype=torch.float16
)
return vae_model
def setup_model(name,clip_skip, lora_group=None,diffuser_pipeline = False ,control_net_model = None,img_input = None,device = "cpu",mask_inpaiting = None,vae_used = "Default"):
global current_model,vae_link,vae_single_file,models_single_file
keys = [k[0] for k in models]
model = models[keys.index(name)][1]
if name not in unet_cache:
if name not in models_single_file:
try:
vae_model = AutoencoderKL.from_pretrained(model,subfolder="vae"
#,torch_dtype=torch.float16
)
except OSError:
vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",
#torch_dtype=torch.float16
)
try:
unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet",
#torch_dtype=torch.float16
)
except OSError:
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet",
#torch_dtype=torch.float16
)
try:
text_encoder = CLIPTextModel.from_pretrained(model, subfolder="text_encoder",
#torch_dtype=torch.float16
)
except OSError:
text_encoder = CLIPTextModel.from_pretrained(base_model, subfolder="text_encoder",
#torch_dtype=torch.float16
)
try:
tokenizer = CLIPTokenizer.from_pretrained(model,subfolder="tokenizer",
#torch_dtype=torch.float16
)
except OSError:
tokenizer = CLIPTokenizer.from_pretrained(base_model,subfolder="tokenizer",
#torch_dtype=torch.float16
)
try:
scheduler = DDIMScheduler.from_pretrained(model,subfolder="scheduler")
except OSError:
scheduler = DDIMScheduler.from_pretrained(base_model,subfolder="scheduler")
try:
feature_extract = CLIPImageProcessor.from_pretrained(model,subfolder="feature_extractor")
except OSError:
feature_extract = CLIPImageProcessor.from_pretrained(base_model,subfolder="feature_extractor")
else:
pipe_get = StableDiffusionPipeline_finetune.from_single_file(model,safety_checker= None,requires_safety_checker = False,
#torch_dtype=torch.float16
).to(device)
vae_model = pipe_get.vae
unet = pipe_get.unet
text_encoder = pipe_get.text_encoder
tokenizer = pipe_get.tokenizer
scheduler = pipe_get.scheduler
feature_extract = pipe_get.feature_extractor if pipe_get.feature_extractor is not None else CLIPImageProcessor.from_pretrained(base_model,subfolder="feature_extractor")
del pipe_get
# if vae_model is None:
# vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
scheduler_cache[name] = scheduler
unet_cache[name] = unet
te_cache[name] = text_encoder
vae_cache[name] = vae_model
tokenizer_cache[name] = tokenizer
feature_cache[name] = feature_extract
#lora_cache[model] = LoRANetwork(text_encoder, unet)
if vae_used != "Default" and vae_used not in vae_enhance_cache:
vae_enhance_cache[vae_used] = setup_vae(model,vae_used)
if current_model != name:
#if current_model not in keep_vram:
# offload current model
unet_cache[current_model].to(device)
te_cache[current_model].to(device)
vae_cache[current_model].to(device)
current_model = name
local_te, local_unet,local_sche,local_vae,local_token,local_feature = copy.deepcopy(te_cache[name]), copy.deepcopy(unet_cache[name]),scheduler_cache[name],vae_cache[name], copy.deepcopy(tokenizer_cache[name]),feature_cache[name]
if vae_used != "Default":
local_vae = vae_enhance_cache[vae_used]
if torch.cuda.is_available():
local_unet.to("cuda")
local_te.to("cuda")
local_vae.to("cuda")
#local_unet.set_attn_processor(AttnProcessor())
#local_lora.reset()
if diffuser_pipeline:
if control_net_model is not None:
if mask_inpaiting and img_input:
pipe = StableDiffusionControlNetInpaintPipeline_finetune(
vae= local_vae,
text_encoder= local_te,
tokenizer=local_token,
unet=local_unet,
controlnet = control_net_model,
safety_checker= None,
scheduler = local_sche,
feature_extractor=local_feature,
requires_safety_checker = False,
).to(device)
elif img_input is not None:
#pipe = StableDiffusionControlNetImg2ImgPipeline_finetune.from_pretrained(model,safety_checker = None,controlnet=control_net_model, torch_dtype=torch.float16).to(device)
pipe = StableDiffusionControlNetImg2ImgPipeline_finetune(
vae= local_vae,
text_encoder= local_te,
tokenizer=local_token,
unet=local_unet,
controlnet = control_net_model,
safety_checker= None,
scheduler = local_sche,
feature_extractor=local_feature,
requires_safety_checker = False,
).to(device)
else:
#pipe = StableDiffusionControlNetPipeline_finetune.from_pretrained(model,safety_checker = None,controlnet=control_net_model, torch_dtype=torch.float16).to(device)
pipe = StableDiffusionControlNetPipeline_finetune(
vae= local_vae,
text_encoder= local_te,
tokenizer=local_token,
unet=local_unet,
controlnet = control_net_model,
scheduler = local_sche,
safety_checker= None,
feature_extractor=local_feature,
requires_safety_checker = False,
).to(device)
else:
if mask_inpaiting and img_input:
pipe = StableDiffusionInpaintPipeline_finetune(
vae= local_vae,
text_encoder= local_te,
tokenizer=local_token,
unet=local_unet,
scheduler = local_sche,
safety_checker= None,
feature_extractor=local_feature,
requires_safety_checker = False,
).to(device)
elif img_input is not None:
#pipe = StableDiffusionImg2ImgPipeline_finetune.from_pretrained(model,safety_checker = None, torch_dtype=torch.float16).to(device)
pipe = StableDiffusionImg2ImgPipeline_finetune(
vae= local_vae,
text_encoder= local_te,
tokenizer=local_token,
unet=local_unet,
scheduler = local_sche,
safety_checker= None,
feature_extractor=local_feature,
requires_safety_checker = False,
).to(device)
else:
#pipe = StableDiffusionPipeline_finetune.from_pretrained(model,safety_checker = None, torch_dtype=torch.float16).to(device)
pipe = StableDiffusionPipeline_finetune(
vae= local_vae,
text_encoder= local_te,
tokenizer=local_token,
unet=local_unet,
scheduler = local_sche,
safety_checker= None,
feature_extractor=local_feature,
requires_safety_checker = False,
).to(device)
else:
#global pipe
#pipe.text_encoder, pipe.unet,pipe.scheduler,pipe.vae = local_te, local_unet,local_sche,local_vae
pipe = StableDiffusionPipeline(
text_encoder=local_te,
tokenizer=local_token,
unet=local_unet,
vae=local_vae,
scheduler=local_sche,
feature_extractor=local_feature,
).to(device)
#if lora_state is not None and lora_state != "":
if lora_group is not None and len(lora_group) > 0:
global lora_scale_dict
adapter_name_lst = []
adapter_weights_lst = []
for name, file in lora_group.items():
pipe.load_lora_weights(file, adapter_name = name)
adapter_name_lst.append(name)
adapter_weights_lst.append(lora_scale_dict[name])
pipe.set_adapters(adapter_name_lst, adapter_weights=adapter_weights_lst)
#pipe.fuse_lora(lora_scale=lora_scale_dict[name])
#pipe = load_lora_control_pipeline(pipe,lora_state,lora_scale,device)
pipe.unet.set_attn_processor(AttnProcessor())
if hasattr(F, "scaled_dot_product_attention"):
pipe.unet.set_attn_processor(AttnProcessor2_0())
if diffuser_pipeline == False:
pipe.setup_unet(pipe.unet)
pipe.tokenizer.prepare_for_tokenization = local_token.prepare_for_tokenization
#pipe.tokenizer.added_tokens_encoder = {}
#pipe.tokenizer.added_tokens_decoder = {}
#pipe.setup_text_encoder(clip_skip, local_te)
'''if lora_state is not None and lora_state != "":
local_lora.load(lora_state, lora_scale)
local_lora.to(local_unet.device, dtype=local_unet.dtype)
pipe.text_encoder, pipe.unet,pipe.scheduler,pipe.vae = local_te, local_unet,local_sche,local_vae
pipe.setup_unet(local_unet)
pipe.tokenizer.prepare_for_tokenization = local_token.prepare_for_tokenization
pipe.tokenizer.added_tokens_encoder = {}
pipe.tokenizer.added_tokens_decoder = {}
pipe.setup_text_encoder(clip_skip, local_te)'''
torch.cuda.empty_cache()
gc.collect()
return pipe
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def make_token_names(embs):
all_tokens = []
for name, vec in embs.items():
tokens = [f'emb-{name}-{i}' for i in range(len(vec))]
all_tokens.append(tokens)
return all_tokens
def setup_tokenizer(tokenizer, embs):
reg_match = [re.compile(fr"(?:^|(?<=\s|,)){k}(?=,|\s|$)") for k in embs.keys()]
clip_keywords = [' '.join(s) for s in make_token_names(embs)]
def parse_prompt(prompt: str):
for m, v in zip(reg_match, clip_keywords):
prompt = m.sub(v, prompt)
return prompt
def prepare_for_tokenization(self, text: str, is_split_into_words: bool = False, **kwargs):
text = parse_prompt(text)
r = original_prepare_for_tokenization(text, is_split_into_words, **kwargs)
return r
tokenizer.prepare_for_tokenization = prepare_for_tokenization.__get__(tokenizer, CLIPTokenizer)
return [t for sublist in make_token_names(embs) for t in sublist]
def convert_size(size_bytes):
if size_bytes == 0:
return "0B"
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, 2)
return "%s %s" % (s, size_name[i])
def load_lora_control_pipeline(pipeline_control,file_path,lora_scale,device):
state_dict = load_file(file_path,device=device)
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
alpha = lora_scale
visited = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if '.alpha' in key or key in visited:
continue
if 'text' in key:
layer_infos = key.split('.')[0].split(LORA_PREFIX_TEXT_ENCODER+'_')[-1].split('_')
curr_layer = pipeline_control.text_encoder
else:
layer_infos = key.split('.')[0].split(LORA_PREFIX_UNET+'_')[-1].split('_')
curr_layer = pipeline_control.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += '_'+layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# org_forward(x) + lora_up(lora_down(x)) * multiplier
pair_keys = []
if 'lora_down' in key:
pair_keys.append(key.replace('lora_down', 'lora_up'))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace('lora_up', 'lora_down'))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
torch.cuda.empty_cache()
gc.collect()
return pipeline_control
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
"""Converts a depth map to a color image.
Args:
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
Returns:
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
"""
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
# normalize
vmin = np.percentile(value[mask],2) if vmin is None else vmin
vmax = np.percentile(value[mask],85) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.
# squeeze last dim if it exists
# grey out the invalid values
value[invalid_mask] = np.nan
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
# value = value / value.max()
value = cmapper(value, bytes=True) # (nxmx4)
img = value[...]
img[invalid_mask] = background_color
if gamma_corrected:
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
return img
def adapter_preprocessing(model_adapter,img_control,low_threshold_adapter = None,high_threshold_adapter=None,has_body=False,has_hand=False,has_face=False,preprocessor_adapter=None,disable_preprocessing_adapter=False):
if disable_preprocessing_adapter == True :
return img_control.copy()
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
if model_adapter == 'Canny':
img_control = np.array(img_control)
img_control = cv2.Canny(img_control, low_threshold_adapter, high_threshold_adapter)
img_control = Image.fromarray(img_control)
elif model_adapter == 'Openpose':
#model_openpose = OpenposeDetector()
processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet').to(device)
img_control = processor(img_control, include_body=has_body, include_hand=has_hand, include_face=has_face)
#img_control = model_openpose(img_control, has_hand)[0]
elif model_adapter == 'Depth':
#model_midas = MidasDetector()
#img_control = model_midas(resize_image(img_control))[0]
if preprocessor_adapter == 'DPT':
processor = pipeline('depth-estimation')
img_control = processor(img_control)['depth']
img_control = np.array(img_control)
img_control = img_control[:, :, None]
img_control = np.concatenate([img_control, img_control, img_control], axis=2)
img_control = Image.fromarray(img_control)
else:
processor = MidasDetector.from_pretrained("lllyasviel/Annotators").to(device)
img_control = processor(img_control)
elif model_adapter == 'Semantic Segmentation':
img_control = preprocessing_segmentation(preprocessor_adapter,img_control)
elif model_adapter == 'Color':
img_control = img_control.resize((8, 8))
img_control = img_control.resize((512, 512), resample=Image.Resampling.NEAREST)
elif model_adapter == 'Zoedepth':
'''processor = torch.hub.load("isl-org/ZoeDepth", "ZoeD_N", pretrained=True).to(device)
img_control = processor.infer_pil(img_control)
img_control = Image.fromarray(colorize(img_control)).convert('RGB')'''
'''processor = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device)
img_control = processor(img_control)'''
processor = ZoeDetector.from_pretrained("valhalla/t2iadapter-aux-models", filename="zoed_nk.pth", model_type="zoedepth_nk").to(device)
img_control = processor(img_control, gamma_corrected=True)
else:
active_model = False
if model_adapter == 'Sketch':
active_model = True
if preprocessor_name == 'HED':
processor = HEDdetector.from_pretrained('lllyasviel/Annotators').to(device)
else:
processor = PidiNetDetector.from_pretrained('lllyasviel/Annotators').to(device)
img_control = processor(img_control,scribble=active_model)
#img_control = np.array(img_control)
#img = cv2.resize(img_control,(width, height))
#img_input = img_input.resize((width, height), Image.LANCZOS)
#img_control = img_control.resize((width, height), Image.LANCZOS)
if model_adapter != 'Canny' and model_adapter != 'Semantic Segmentation' and model_adapter != 'Color':
del processor
torch.cuda.empty_cache()
gc.collect()
return img_control
def control_net_preprocessing(control_net_model,img_control,low_threshold = None,high_threshold=None,has_body=False,has_hand=False,has_face=False,preprocessor_name=None,disable_preprocessing=False):
if disable_preprocessing == True or control_net_model == 'Instruct Pix2Pix':
return img_control.copy()
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
if control_net_model == 'Canny':
img_control = np.array(img_control)
img_control = cv2.Canny(img_control, low_threshold, high_threshold)
img_control = img_control[:, :, None]
img_control = np.concatenate([img_control, img_control, img_control], axis=2)
img_control = Image.fromarray(img_control)
elif control_net_model == 'Openpose':
#model_openpose = OpenposeDetector()
processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet').to(device)
img_control = processor(img_control, include_body=has_body, include_hand=has_hand, include_face=has_face)
#img_control = model_openpose(img_control, has_hand)[0]
elif control_net_model == 'Depth':
#model_midas = MidasDetector()
#img_control = model_midas(resize_image(img_control))[0]
if preprocessor_name == 'DPT':
processor = pipeline('depth-estimation')
img_control = processor(img_control)['depth']
img_control = np.array(img_control)
img_control = img_control[:, :, None]
img_control = np.concatenate([img_control, img_control, img_control], axis=2)
img_control = Image.fromarray(img_control)
else:
processor = MidasDetector.from_pretrained("lllyasviel/Annotators").to(device)
img_control = processor(img_control)
elif control_net_model == 'Lineart (anime)':
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators").to(device)
img_control = processor(img_control)
#img_control = np.array(img_control)
elif control_net_model == 'Lineart':
processor = LineartDetector.from_pretrained("lllyasviel/Annotators").to(device)
img_control = processor(img_control)
#img_control = np.array(img_control)
elif control_net_model == 'MLSD':
processor = MLSDdetector.from_pretrained("lllyasviel/ControlNet").to(device)
img_control = processor(img_control)
#img_control = np.array(img_control)
elif control_net_model == 'Semantic Segmentation':
img_control = preprocessing_segmentation(preprocessor_name,img_control)
elif control_net_model == 'Normal Map':
processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators").to(device)
img_control = processor(img_control)
elif control_net_model == 'Shuffle':
processor = ContentShuffleDetector()
img_control = processor(img_control)
else:
active_model = False
if control_net_model == 'Scribble':
active_model = True
if preprocessor_name == 'HED':
processor = HEDdetector.from_pretrained('lllyasviel/Annotators').to(device)
else:
processor = PidiNetDetector.from_pretrained('lllyasviel/Annotators').to(device)
img_control = processor(img_control,scribble=active_model)
#img_control = np.array(img_control)
#img = cv2.resize(img_control,(width, height))
#img_input = img_input.resize((width, height), Image.LANCZOS)
#img_control = img_control.resize((width, height), Image.LANCZOS)
if control_net_model != 'Canny' and control_net_model != 'Semantic Segmentation':
del processor
torch.cuda.empty_cache()
gc.collect()
return img_control
def add_embedding(pipe_model,embs):
tokenizer, text_encoder = pipe_model.tokenizer, pipe_model.text_encoder
if embs is not None and len(embs) > 0:
ti_embs = {}
for name, file in embs.items():
if str(file).endswith(".pt"):
loaded_learned_embeds = torch.load(file, map_location="cpu")
else:
loaded_learned_embeds = load_file(file, device="cpu")
loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"] if "string_to_param" in loaded_learned_embeds else loaded_learned_embeds
if isinstance(loaded_learned_embeds, dict):
#loaded_learned_embeds = list(loaded_learned_embeds.values())[-1]
ti_embs.update(loaded_learned_embeds)
else:
ti_embs[name] = loaded_learned_embeds
if len(ti_embs) > 0:
'''for key, value in ti_embs.items():
if isinstance(value, dict):
ti_embs.pop(key)
ti_embs.update(value)'''
tokens = setup_tokenizer(tokenizer, ti_embs)
added_tokens = tokenizer.add_tokens(tokens)
delta_weight = torch.cat([val for val in ti_embs.values()], dim=0)
assert added_tokens == delta_weight.shape[0]
text_encoder.resize_token_embeddings(len(tokenizer))
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[-delta_weight.shape[0]:] = delta_weight
torch.cuda.empty_cache()
gc.collect()
return pipe_model
def add_embedding_with_diffusers(pipe,embs):
if embs is not None and len(embs) > 0:
for name, file in embs.items():
pipe.load_textual_inversion(file)
torch.cuda.empty_cache()
gc.collect()
return pipe
def mask_region_apply_ip_adapter(mask,invert_ip_adapter_mask_mode):
if mask is None:
return None
#define black is region masked
if not isinstance(mask,List):
mask = [mask]
if len(mask) == 0:
return None
if invert_ip_adapter_mask_mode:
mask = [ImageOps.invert(i).convert('RGB') for i in mask]
processor = IPAdapterMaskProcessor()
masks = processor.preprocess(mask)
'''mask = mask.resize((width, height), Image.BICUBIC)
mask = np.array(mask).astype(np.float32) / 255.0
#If the region is black apply ( 0 = black)
mask = np.expand_dims(np.where(mask==0, 1,0)[:, :, 0], axis=0)
if mask.ndim == 3:
mask = mask[..., None]
mask = torch.from_numpy(mask.transpose(0, 3, 1, 2))
return mask[0]'''
return masks
def ip_adapter_face_id_embedding(lst_img_face_id_embed,device,dtype,guidance_scale,plus_faceid = False):
ref_images_embeds = []
ref_unc_images_embeds = []
ip_adapter_images = []
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
if not isinstance(lst_img_face_id_embed,list):
lst_img_face_id_embed = [lst_img_face_id_embed]
for im in lst_img_face_id_embed:
#im = load_image(im)
image = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB)
faces = app.get(image) #faces is a list
if len(faces) == 0:
raise ValueError(
"Can not find any faces in the image."
)
if plus_faceid:
ip_adapter_images.append(face_align.norm_crop(image, landmark=faces[0].kps, image_size=224)) #For plus faceid
image = torch.from_numpy(faces[0].normed_embedding)
image_embeds = image.unsqueeze(0)
uncond_image_embeds = torch.zeros_like(image_embeds)
ref_images_embeds.append(image_embeds)
ref_unc_images_embeds.append(uncond_image_embeds)
ref_images_embeds = torch.stack(ref_images_embeds, dim=0)
if guidance_scale > 1 :
ref_unc_images_embeds = torch.stack(ref_unc_images_embeds, dim=0)
single_image_embeds = torch.cat([ref_unc_images_embeds, ref_images_embeds], dim=0).to(device,dtype=dtype)
else:
single_image_embeds = ref_images_embeds.to(device,dtype=dtype)
return single_image_embeds,ip_adapter_images
lst_control = []
lst_adapter =[]
lst_ip_adapter = []
current_number_ip_adapter = 0
current_number_control = 0
current_number_adapter = 0
def inference(
prompt,
guidance,
steps,
width=512,
height=512,
clip_skip =2,
seed=0,
neg_prompt="",
state=None,
img_input=None,
i2i_scale=0.5,
hr_enabled=False,
hr_method="Latent",
hr_scale=1.5,
hr_denoise=0.8,
sampler="DPM++ 2M Karras",
embs=None,
model=None,
lora_group = None,
#lora_state=None,
#lora_scale=None,
formula_setting = None,
controlnet_enabled = False,
control_net_model = None,
low_threshold = None,
high_threshold = None,
has_body = False,
has_hand = False,
has_face = False,
img_control = None,
image_condition = None,
controlnet_scale = 0,
preprocessor_name = None,
diffuser_pipeline = False,
sampler_hires="DPM++ 2M Karras",
latent_processing = 0,
control_guidance_start = 0.0,
control_guidance_end = 1.0,
multi_controlnet = False,
disable_preprocessing = False,
region_condition = False,
hr_process_enabled = False,
ip_adapter = False,
model_ip_adapter = None,
inf_adapt_image = None,
inf_adapt_image_strength = 1.0,
hr_region_condition = False,
adapter_enabled = False,
model_adapter = None,
low_threshold_adapter = None,
high_threshold_adapter = None,
has_body_openpose_adapter = False,
has_hand_openpose_adapter = False,
has_face_openpose_adapter = False,
adapter_img = None,
image_condition_adapter = None,
preprocessor_adapter = None,
adapter_conditioning_scale = 0,
adapter_conditioning_factor = None,
multi_adapter = False,
disable_preprocessing_adapter = False,
ip_adapter_multi = False,
guidance_rescale = 0,
inf_control_adapt_image = None,
long_encode = 0,
inpaiting_mode = False,
invert_mask_mode = False,
mask_upload = None,
inf_image_inpaiting = None,
invert_ip_adapter_mask_mode = True,
vae_used = "Default",
):
global formula,controlnet_type,lst_control,lst_adapter,model_ip_adapter_type,adapter_type,lst_ip_adapter,current_number_ip_adapter,encoding_type
img_control_input = None
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
if region_condition == False:
state = None
mask_inpaiting = None
if inpaiting_mode and isinstance(inf_image_inpaiting,dict):
mask_inpaiting = inf_image_inpaiting["mask"]
img_input = inf_image_inpaiting["image"]
diff = ImageChops.difference(mask_inpaiting, img_input)
if diff.getbbox() is None:
mask_inpaiting = None
if inpaiting_mode and mask_upload:
mask_inpaiting = mask_upload
if mask_inpaiting and invert_mask_mode:
mask_inpaiting = ImageOps.invert(mask_inpaiting).convert('RGB')
if adapter_enabled:
if len(lst_adapter) > 0 and multi_adapter:
adapter_img = []
model_adapter = []
adapter_conditioning_scale = []
adapter_conditioning_factor = []
for i in range( len(lst_adapter)):
setting_processing = list(lst_adapter[i].items())
setting_processing = setting_processing[:-2]
setting_processing = dict(setting_processing)
image_sp_adapter = adapter_preprocessing(**setting_processing)
adapter_img.append(image_sp_adapter)
adapter_sp = adapter_type[lst_adapter[i]["model_adapter"]]
model_adapter.append(setup_adapter(adapter_sp,device))
adapter_conditioning_scale.append(float(lst_adapter[i]["adapter_conditioning_scale"]))
adapter_conditioning_factor.append(float(lst_adapter[i]["adapter_conditioning_factor"]))
adapter_conditioning_factor = adapter_conditioning_factor[-1]
torch.cuda.empty_cache()
gc.collect()
elif adapter_img is not None and multi_adapter ==False:
adapter_img = adapter_preprocessing(model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,disable_preprocessing_adapter)
model_adapter = adapter_type[model_adapter]
adapter_conditioning_scale = float(adapter_conditioning_scale)
adapter_conditioning_factor = float(adapter_conditioning_factor)
torch.cuda.empty_cache()
gc.collect()
model_adapter=setup_adapter(model_adapter,device)
torch.cuda.empty_cache()
gc.collect()
else:
model_adapter = None
adapter_img = None
else:
model_adapter = None
adapter_img = None
if controlnet_enabled:
if len(lst_control) > 0 and multi_controlnet:
img_control = []
control_net_model = []
controlnet_scale = []
control_guidance_start = []
control_guidance_end = []
for i in range( len(lst_control)):
setting_processing = list(lst_control[i].items())
setting_processing = setting_processing[:-3]
setting_processing = dict(setting_processing)
image_sp_control = control_net_preprocessing(**setting_processing)
img_control.append(image_sp_control)
conrol_net_sp = controlnet_type[lst_control[i]["control_net_model"]]
control_net_model.append(setup_controlnet(conrol_net_sp,device))
controlnet_scale.append(float(lst_control[i]["controlnet_scale"]))
control_guidance_start.append(float(lst_control[i]["control_guidance_start"]))
control_guidance_end.append(float(lst_control[i]["control_guidance_end"]))
torch.cuda.empty_cache()
gc.collect()
elif img_control is not None and multi_controlnet ==False:
img_control = control_net_preprocessing(control_net_model,img_control,low_threshold,high_threshold,has_body,has_hand,has_face,preprocessor_name,disable_preprocessing)
control_net_model = controlnet_type[control_net_model]
controlnet_scale = float(controlnet_scale)
control_guidance_start = float(control_guidance_start)
control_guidance_end = float(control_guidance_end)
torch.cuda.empty_cache()
gc.collect()
control_net_model=setup_controlnet(control_net_model,device)
torch.cuda.empty_cache()
gc.collect()
else:
control_net_model = None
img_control = None
else:
control_net_model = None
img_control = None
keys_f = [k[0] for k in formula]
formula_setting = formula[keys_f.index(formula_setting)][1]
if seed is None or seed < 0:
seed = random.randint(0, sys.maxsize)
#lora_state = lora_dict[lora_state]
pipe = setup_model(model,clip_skip, lora_group,diffuser_pipeline,control_net_model,img_input,device,mask_inpaiting,vae_used)
generator = torch.Generator(device).manual_seed(int(seed))
if formula_setting == 0:
weight_func = lambda w, sigma, qk: w * sigma * qk.std()
elif formula_setting == 1:
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
elif formula_setting == 2:
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.std()
else:
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma**2) * qk.std()
start_time = time.time()
sampler_name, sampler_opt = None, None
'''for label, funcname, options in samplers_k_diffusion:
if label == sampler_hires:
sampler_name_hires, sampler_opt_hires = funcname, options'''
#add_Textual Inversion or text embeddings
pipe = add_embedding(pipe,embs)
width_resize_mask_ipadapter = width
height_resize_mask_ipadapter = height
if img_input is not None:
width_resize_mask_ipadapter = img_input.width
height_resize_mask_ipadapter = img_input.height
setup_model_t2i_adapter(pipe,model_adapter)
cross_attention_kwargs = {}
#Get type encoding
long_encode = encoding_type[long_encode]
ip_adapter_image_embeds = None
faceid_plus_v2 = False
#clip_embeds = None #Support for faceid_plus
if ip_adapter == True:
#inf_adapt_image = None
ip_adapter_images_faceid_plus = []
if ip_adapter_multi and len(lst_ip_adapter) > 0:
ip_adapter_image_lst =[]
model_ip_adapter_lst = []
scale_ip_adapter_lst = []
region_aplly_lst = []
ip_adapter_image_vitg_lst =[]
model_ip_adapter_vitg_lst = []
scale_ip_adapter_vitg_lst = []
region_aplly_vitg_lst = []
ip_adapter_faceid_image_lst =[]
model_ip_adapter_faceid_lst = []
scale_ip_adapter_faceid_lst = []
region_aplly_lst_faceid = []
ip_adapter_faceid_plus_image_lst =[]
model_ip_adapter_faceid_plus_lst = []
scale_ip_adapter_faceid_plus_lst = []
region_aplly_lst_faceid_plus = []
#Support not marks
img_full_black = Image.new('RGB', (width, height), (0, 0, 0))
img_full_white = Image.new('RGB', (width, height), (255, 255, 255))
for i in lst_ip_adapter:
if 'VIT-G' in i["model"]:
ip_adapter_image_vitg_lst.append(i["image"])
model_ip_adapter_vitg_lst.append(model_ip_adapter_type[i["model"]])
scale_ip_adapter_vitg_lst.append(float(i["scale"]))
if i["region_apply"] is not None:
region_aplly_vitg_lst.append(i["region_apply"])
else:
if invert_ip_adapter_mask_mode:
region_aplly_vitg_lst.append(img_full_black)
else:
region_aplly_vitg_lst.append(img_full_white)
elif 'FaceID' not in i["model"]:
ip_adapter_image_lst.append(i["image"])
model_ip_adapter_lst.append(model_ip_adapter_type[i["model"]])
scale_ip_adapter_lst.append(float(i["scale"]))
if i["region_apply"] is not None:
region_aplly_lst.append(i["region_apply"])
else:
if invert_ip_adapter_mask_mode:
region_aplly_lst.append(img_full_black)
else:
region_aplly_lst.append(img_full_white)
elif 'Plus FaceID' in i["model"]:
if 'Plus FaceIDv2' in i["model"]:
faceid_plus_v2 = True
ip_adapter_faceid_plus_image_lst.append(i["image"])
model_ip_adapter_faceid_plus_lst.append(model_ip_adapter_type[i["model"]])
scale_ip_adapter_faceid_plus_lst.append(float(i["scale"]))
if i["region_apply"] is not None:
region_aplly_lst_faceid_plus.append(i["region_apply"])
else:
if invert_ip_adapter_mask_mode:
region_aplly_lst_faceid_plus.append(img_full_black)
else:
region_aplly_lst_faceid_plus.append(img_full_white)
else:
ip_adapter_faceid_image_lst.append(i["image"])
model_ip_adapter_faceid_lst.append(model_ip_adapter_type[i["model"]])
scale_ip_adapter_faceid_lst.append(float(i["scale"]))
if i["region_apply"] is not None:
region_aplly_lst_faceid.append(i["region_apply"])
else:
if invert_ip_adapter_mask_mode:
region_aplly_lst_faceid.append(img_full_black)
else:
region_aplly_lst_faceid.append(img_full_white)
#Concat faceid and ipadapter
none_img_encoder = False
# if len(model_ip_adapter_lst) == 0:
# only_face_id = 1
if len(ip_adapter_faceid_image_lst) > 0 or len(ip_adapter_image_vitg_lst) > 0 or len(ip_adapter_faceid_plus_image_lst) > 0:
#Image_encode vit-H
ip_adapter_embeds = []
ip_adapter_vitg_embeds = []
ip_adapter_image_embeds_faceid = []
ip_adapter_image_embeds_faceid_plus = []
if len(model_ip_adapter_lst) > 0:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter_lst)
pipe.set_ip_adapter_scale(scale_ip_adapter_lst)
ip_adapter_embeds = pipe.prepare_ip_adapter_image_embeds(ip_adapter_image_lst,None,device,1, guidance>1)
pipe.unload_ip_adapter()
if len(ip_adapter_faceid_image_lst) > 0:
ip_adapter_image_embeds_faceid,_ = ip_adapter_face_id_embedding(ip_adapter_faceid_image_lst,device,pipe.unet.dtype,guidance,False)
ip_adapter_image_embeds_faceid = [ip_adapter_image_embeds_faceid]
if len(ip_adapter_faceid_plus_image_lst) >0:
ip_adapter_image_embeds_faceid_plus,ip_adapter_images_faceid_plus = ip_adapter_face_id_embedding(ip_adapter_faceid_plus_image_lst,device,pipe.unet.dtype,guidance,True)
ip_adapter_image_embeds_faceid_plus = [ip_adapter_image_embeds_faceid_plus]
#Image encoder vit-G
if len(ip_adapter_image_vitg_lst) > 0:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter_vitg_lst,image_encoder_folder=None)
pipe.set_ip_adapter_scale(scale_ip_adapter_vitg_lst)
pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter", subfolder="sdxl_models/image_encoder",
).to(device, dtype=pipe.unet.dtype)
ip_adapter_vitg_embeds = pipe.prepare_ip_adapter_image_embeds(ip_adapter_image_vitg_lst,None,device,1, guidance>1)
pipe.unload_ip_adapter()
ip_adapter_image_embeds = ip_adapter_embeds + ip_adapter_image_embeds_faceid + ip_adapter_vitg_embeds + ip_adapter_image_embeds_faceid_plus
inf_adapt_image = None
none_img_encoder = True
if not isinstance(ip_adapter_image_embeds, list):
ip_adapter_image_embeds = [ip_adapter_image_embeds]
else:
inf_adapt_image = ip_adapter_image_lst
ip_adapter_image_embeds = None
region_aplly_lst = region_aplly_lst + region_aplly_lst_faceid + region_aplly_vitg_lst + region_aplly_lst_faceid_plus
load_model = ["h94/IP-Adapter"]*len(model_ip_adapter_lst) + ["h94/IP-Adapter-FaceID"]*len(model_ip_adapter_faceid_lst) + ["h94/IP-Adapter"]*len(model_ip_adapter_vitg_lst) + ["h94/IP-Adapter-FaceID"]*len(model_ip_adapter_faceid_plus_lst)
subfolder = ["models"]*len(model_ip_adapter_lst) + [None]*len(model_ip_adapter_faceid_lst) + ["models"] * len(model_ip_adapter_vitg_lst) + [None]*len(model_ip_adapter_faceid_plus_lst)
model_ip_adapter_lst = model_ip_adapter_lst + model_ip_adapter_faceid_lst + model_ip_adapter_vitg_lst + model_ip_adapter_faceid_plus_lst
scale_ip_adapter_lst = scale_ip_adapter_lst + scale_ip_adapter_faceid_lst + scale_ip_adapter_vitg_lst + scale_ip_adapter_faceid_plus_lst
clip_embeds = None
if len(ip_adapter_images_faceid_plus) > 0:
pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name=model_ip_adapter_faceid_plus_lst,image_encoder_folder=None)
pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
).to(device, dtype=pipe.unet.dtype)
# Extract CLIP embeddings
clip_embeds = pipe.prepare_ip_adapter_image_embeds([ip_adapter_images_faceid_plus], None, device, 1, guidance>1)[0] #num_images = 1
pipe.unload_ip_adapter()
if none_img_encoder:
pipe.load_ip_adapter(load_model, subfolder=subfolder, weight_name=model_ip_adapter_lst,image_encoder_folder=None)
else:
pipe.load_ip_adapter(load_model, subfolder=subfolder, weight_name=model_ip_adapter_lst)
pipe.set_ip_adapter_scale(scale_ip_adapter_lst)
if len(ip_adapter_images_faceid_plus) > 0:
pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
).to(device, dtype=pipe.unet.dtype)
# Set CLIP embeddings as class parameter
pipe.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=pipe.unet.dtype)
pipe.unet.encoder_hid_proj.image_projection_layers[0].shortcut = faceid_plus_v2
cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(region_aplly_lst,invert_ip_adapter_mask_mode)}
elif inf_adapt_image is not None and ip_adapter_multi == False:
if 'VIT-G' in model_ip_adapter:
model_ip_adapter = model_ip_adapter_type[model_ip_adapter]
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter,image_encoder_folder=None)
pipe.set_ip_adapter_scale(float(inf_adapt_image_strength))
pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter", subfolder="sdxl_models/image_encoder",
).to(device, dtype=pipe.unet.dtype)
cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)}
elif 'FaceID' not in model_ip_adapter:
model_ip_adapter = model_ip_adapter_type[model_ip_adapter]
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=model_ip_adapter)
pipe.set_ip_adapter_scale(float(inf_adapt_image_strength))
cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)}
elif 'Plus FaceID' in model_ip_adapter:
if 'Plus FaceIDv2' in model_ip_adapter:
faceid_plus_v2 = True
model_ip_adapter = model_ip_adapter_type[model_ip_adapter]
pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name=model_ip_adapter,image_encoder_folder=None)
pipe.set_ip_adapter_scale(float(inf_adapt_image_strength))
ip_adapter_image_embeds,ip_adapter_images_faceid_plus = ip_adapter_face_id_embedding([inf_adapt_image],device,pipe.unet.dtype,guidance,True)
if not isinstance(ip_adapter_image_embeds, list):
ip_adapter_image_embeds = [ip_adapter_image_embeds]
cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)}
if len(ip_adapter_images_faceid_plus) > 0:
pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
).to(device, dtype=pipe.unet.dtype)
# Extract CLIP embeddings
clip_embeds = pipe.prepare_ip_adapter_image_embeds([ip_adapter_images_faceid_plus], None, device, 1, guidance>1)[0] #num_images = 1
# Set CLIP embeddings as class parameter
pipe.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=pipe.unet.dtype)
pipe.unet.encoder_hid_proj.image_projection_layers[0].shortcut = faceid_plus_v2
#pipe.unload_ip_adapter()
inf_adapt_image = None
else:
model_ip_adapter = model_ip_adapter_type[model_ip_adapter]
pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder=None, weight_name=model_ip_adapter,image_encoder_folder=None)
pipe.set_ip_adapter_scale(float(inf_adapt_image_strength))
ip_adapter_image_embeds,_ = ip_adapter_face_id_embedding([inf_adapt_image],device,pipe.unet.dtype,guidance,False)
if not isinstance(ip_adapter_image_embeds, list):
ip_adapter_image_embeds = [ip_adapter_image_embeds]
cross_attention_kwargs = {"ip_adapter_masks":mask_region_apply_ip_adapter(inf_control_adapt_image,invert_ip_adapter_mask_mode)}
inf_adapt_image = None
else:
inf_adapt_image = None
else:
inf_adapt_image = None
if diffuser_pipeline:
for label, funcname, options in samplers_diffusers:
if label == sampler:
sampler_name, sampler_opt = funcname, options
if label == sampler_hires:
sampler_name_hires, sampler_opt_hires = funcname, options
pipe.scheduler = sampler_name(pipe.scheduler.config)
output_type = 'pil'
if hr_enabled and img_input is None:
output_type = 'latent'
#Need to reduce clip_skip by 1 because when using clip_skip the value will increase in the encode_prompt
config = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"num_inference_steps": int(steps),
"guidance_scale": guidance,
"generator": generator,
"region_map_state": state,
#"region_map_attn_weight": g_strength,
"latent_processing": latent_processing,
'weight_func':weight_func,
'clip_skip' :int(clip_skip),
"output_type" : output_type,
"image_t2i_adapter":adapter_img,
"adapter_conditioning_scale":adapter_conditioning_scale,
"adapter_conditioning_factor":adapter_conditioning_factor,
"guidance_rescale":guidance_rescale,
"long_encode" : int(long_encode),
"ip_adapter_image_embeds": ip_adapter_image_embeds,
"cross_attention_kwargs": cross_attention_kwargs
}
'''if ip_adapter == False:
inf_adapt_image = None'''
if mask_inpaiting and img_input and inpaiting_mode and control_net_model:
result = pipe(mask_image = mask_inpaiting,width=img_input.width,height=img_input.height, controlnet_conditioning_scale = controlnet_scale,inf_adapt_image=inf_adapt_image,image =img_input , control_image=img_control,strength = i2i_scale,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,**config)
elif control_net_model is not None and img_input is not None:
result = pipe(controlnet_conditioning_scale = controlnet_scale,inf_adapt_image=inf_adapt_image,image =img_input , control_image=img_control,strength = i2i_scale,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,**config)
elif control_net_model is not None:
result = pipe(width = width,height = height,controlnet_conditioning_scale = controlnet_scale, image=img_control,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,ip_adapter_image=inf_adapt_image,**config)
elif mask_inpaiting and img_input and inpaiting_mode:
result = pipe(image =img_input,ip_adapter_image=inf_adapt_image,mask_image = mask_inpaiting,strength=i2i_scale,width=img_input.width,height=img_input.height,**config)
elif img_input is not None:
result = pipe(image =img_input,strength = i2i_scale,ip_adapter_image=inf_adapt_image,**config)
else:
result = pipe(height = height, width = width,ip_adapter_image=inf_adapt_image,**config)
if hr_enabled and img_input is None:
del pipe
torch.cuda.empty_cache()
gc.collect()
pipe = setup_model(model,clip_skip, lora_group,diffuser_pipeline,control_net_model,True,device,vae_used)
#add_Textual Inversion or text embeddings
pipe = add_embedding(pipe,embs)
pipe.scheduler = sampler_name_hires(pipe.scheduler.config)
vae_scale_factor = 2 ** (len(pipe.vae.config.block_out_channels) - 1)
target_height = int(height * upscale_x // vae_scale_factor )* 8
target_width = int(width * upscale_x // vae_scale_factor)*8
latents = result[-1].unsqueeze(0)
#print(latents.shape)
latents = torch.nn.functional.interpolate(
latents,
size=(
int(target_height // vae_scale_factor),
int(target_width // vae_scale_factor),
),
mode=latent_upscale_modes[hr_method]["upscale_method"],
antialias=latent_upscale_modes[hr_method]["upscale_antialias"],
)
config = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"num_inference_steps": int(steps),
"guidance_scale": guidance,
"generator": generator,
"region_map_state": state,
#"region_map_attn_weight": g_strength,
"latent_processing": hr_process_enabled,
'weight_func':weight_func,
'clip_skip' :int(clip_skip),
"image_t2i_adapter":adapter_img,
"adapter_conditioning_scale":adapter_conditioning_scale,
"adapter_conditioning_factor":adapter_conditioning_factor,
"guidance_rescale":guidance_rescale,
"long_encode" : int(long_encode),
"ip_adapter_image_embeds": ip_adapter_image_embeds,
"cross_attention_kwargs":cross_attention_kwargs,
}
if control_net_model is not None:
upscale_result = pipe(width=int(target_width),height=int(target_height),controlnet_conditioning_scale = controlnet_scale,image = latents, control_image=img_control,strength = hr_denoise,control_guidance_start=control_guidance_start,control_guidance_end=control_guidance_end,**config)
else:
upscale_result = pipe(width=int(target_width),height=int(target_height),image = latents,strength = hr_denoise,**config)
#print(type(upscale_result[-1]))
#print(upscale_result)
result = result[:-1] + upscale_result
else:
for label, funcname, options in samplers_k_diffusion:
if label == sampler:
sampler_name, sampler_opt = funcname, options
if label == sampler_hires:
sampler_name_hires, sampler_opt_hires = funcname, options
config = {
"negative_prompt": neg_prompt,
"num_inference_steps": int(steps),
"guidance_scale": guidance,
"generator": generator,
"sampler_name": sampler_name,
"sampler_opt": sampler_opt,
"region_map_state": state,
#"region_map_attn_weight": g_strength,
"start_time": start_time,
"timeout": timeout,
"latent_processing": latent_processing,
'weight_func':weight_func,
'seed': int(seed),
'sampler_name_hires': sampler_name_hires,
'sampler_opt_hires': sampler_opt_hires,
"latent_upscale_processing": hr_process_enabled,
"ip_adapter_image":inf_adapt_image,
"controlnet_conditioning_scale":controlnet_scale,
"control_img": img_control,
"control_guidance_start":control_guidance_start,
"control_guidance_end":control_guidance_end,
"image_t2i_adapter":adapter_img,
"adapter_conditioning_scale":adapter_conditioning_scale,
"adapter_conditioning_factor":adapter_conditioning_factor,
"guidance_rescale":guidance_rescale,
'clip_skip' :int(clip_skip),
"long_encode" : int(long_encode),
"ip_adapter_image_embeds": ip_adapter_image_embeds,
"cross_attention_kwargs":cross_attention_kwargs,
}
#if control_net_model is not None:
pipe.setup_controlnet(control_net_model)
if mask_inpaiting and img_input and inpaiting_mode:
result = pipe.inpaiting(prompt, image=img_input,mask_image = mask_inpaiting,strength=i2i_scale,width=img_input.width,height=img_input.height, **config)
elif img_input is not None:
result = pipe.img2img(prompt, image=img_input, strength=i2i_scale,width=img_input.width,height=img_input.height, **config)
elif hr_enabled:
result = pipe.txt2img(
prompt,
width=width,
height=height,
upscale=True,
upscale_x=hr_scale,
upscale_denoising_strength=hr_denoise,
**config,
**latent_upscale_modes[hr_method],
)
else:
result = pipe.txt2img(prompt, width=width, height=height, **config)
end_time = time.time()
vram_free, vram_total = torch.cuda.mem_get_info()
if ip_adapter :
pipe.unload_ip_adapter()
if lora_group is not None and len(lora_group) > 0:
#pipe.unfuse_lora()#Unload lora
pipe.unload_lora_weights()
#if embs is not None and len(embs) > 0:
#pipe.unload_textual_inversion()
del pipe
torch.cuda.empty_cache()
gc.collect()
print(f"done: model={model}, res={result[-1].width}x{result[-1].height}, step={steps}, time={round(end_time-start_time, 2)}s, vram_alloc={convert_size(vram_total-vram_free)}/{convert_size(vram_total)}")
return gr.Image.update(result[-1], label=f"Initial Seed: {seed}"),result
color_list = []
def get_color(n):
for _ in range(n - len(color_list)):
color_list.append(tuple(np.random.random(size=3) * 256))
return color_list
def create_mixed_img(current, state, w=512, h=512):
w, h = int(w), int(h)
image_np = np.full([h, w, 4], 255)
if state is None:
state = {}
colors = get_color(len(state))
idx = 0
for key, item in state.items():
if item["map"] is not None:
m = item["map"] < 255
alpha = 150
if current == key:
alpha = 200
image_np[m] = colors[idx] + (alpha,)
idx += 1
return image_np
def apply_size_sketch(width,height,state,inf_image,inpaiting_mode,inf_image_inpaiting):
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
#update_img = gr.Image.update(value=create_mixed_img("", state, w_change, h_change))
#return state, update_img,gr.Image.update(width=w_change,height = h_change)
else:
w_change = int(width)
h_change = int(height)
if state is not None:
for key, item in state.items():
if item["map"] is not None:
#inverted_image = PIL.ImageOps.invert(item["map"].convert('RGB'))
item["map"] = resize(item["map"], w_change, h_change)
update_img = gr.Image.update(value=create_mixed_img("", state, w_change, h_change))
return state, update_img,gr.Image.update(width=w_change,height = h_change)
# width.change(apply_new_res, inputs=[width, height, global_stats], outputs=[global_stats, sp, rendered])
'''def apply_new_res(w, h, state,inf_image,rendered):
if inf_image is not None:
return state, rendered
w, h = int(w), int(h)
if state is not None:
for key, item in state.items():
if item["map"] is not None:
item["map"] = resize(item["map"], w, h)
update_img = gr.Image.update(value=create_mixed_img("", state, w, h))
return state, update_img'''
def detect_text(text, state, width, height,formula_button,inf_image,inpaiting_mode,inf_image_inpaiting):
global formula
if text is None or text == "":
return None, None, gr.Radio.update(value=None,visible = False), None,gr.Dropdown.update(value = formula_button)
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(width)
h_change = int(height)
t = text.split(",")
new_state = {}
for item in t:
item = item.strip()
if item == "":
continue
if state is not None and item in state:
new_state[item] = {
"map": state[item]["map"],
"weight": state[item]["weight"],
"mask_outsides": state[item]["mask_outsides"],
}
else:
new_state[item] = {
"map": None,
"weight": 0.5,
"mask_outsides": 0
}
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None,visible = True)
update_img = gr.update(value=create_mixed_img("", new_state, w_change, h_change))
update_sketch = gr.update(value=None, interactive=False)
return new_state, update_sketch, update, update_img,gr.Dropdown.update(value = formula_button)
def detect_text1(text, state, width, height,formula_button,inf_image,inpaiting_mode,inf_image_inpaiting):
global formula
if text is None or text == "":
return None, None, gr.Radio.update(value=None,visible = False), None,gr.Dropdown.update(value = formula_button)
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(width)
h_change = int(height)
t = text.split(",")
new_state = {}
for item in t:
item = item.strip()
if item == "":
continue
if state is not None and item in state:
new_state[item] = {
"map": state[item]["map"],
"weight": state[item]["weight"],
"mask_outsides": state[item]["mask_outsides"],
}
else:
new_state[item] = {
"map": None,
"weight": 0.5,
"mask_outsides": False
}
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None,visible = True)
update_img = gr.update(value=create_mixed_img("", new_state, w_change, h_change))
return new_state, update, update_img,gr.Dropdown.update(value = formula_button)
def resize(img, w, h):
trs = transforms.Compose(
[
transforms.ToPILImage(),
#transforms.Resize(min(h, w)),
transforms.Resize((h, w),interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop((h, w)),
]
)
result = np.array(trs(img), dtype=np.uint8)
return result
def switch_canvas(entry, state, width, height,inf_image,inpaiting_mode,inf_image_inpaiting):
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(width)
h_change = int(height)
if entry is None or state is None:
return None, 0.5, False, create_mixed_img("", state, w_change, h_change)
return (
gr.update(value=None, interactive=True),
gr.update(value=state[entry]["weight"] if entry in state else 0.5),
gr.update(value=state[entry]["mask_outsides"] if entry in state else False),
create_mixed_img(entry, state, w_change, h_change),
)
def apply_canvas(selected, draw, state, w, h,inf_image,inpaiting_mode,inf_image_inpaiting):
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(w)
h_change = int(h)
if state is not None and selected in state and draw is not None:
w, h = int(w_change), int(h_change)
state[selected]["map"] = resize(draw, w, h)
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
def apply_weight(selected, weight, state):
if state is not None and selected in state:
state[selected]["weight"] = weight
return state
def apply_option(selected, mask, state):
if state is not None and selected in state:
state[selected]["mask_outsides"] = mask
return state
clustering_image =[]
number_clustering = 0
def is_image_black(image):
average_intensity = image.mean()
if average_intensity < 10:
return True
else:
return False
def change_diferent_black_to_white(image):
width, height = image.size
for x in range(width):
for y in range(height):
r, g, b = image.getpixel((x, y))
if r != 0 and g != 0 and b != 0:
image.putpixel((x, y), (255, 255, 255))
return image
def change_black_to_other_color(image,color_list):
width, height = image.size
new_pixel = (random.randrange(1,256), random.randrange(1,256), random.randrange(1,256))
while new_pixel in color_list:
new_pixel = (random.randrange(1,256), random.randrange(1,256), random.randrange(1,256))
for x in range(width):
for y in range(height):
pixel = image.getpixel((x, y))
if pixel == (0, 0, 0):
image.putpixel((x, y), new_pixel)
return image
def get_color_mask(color, image, threshold=30):
"""
Returns a color mask for the given color in the given image.
"""
img_array = np.array(image, dtype=np.uint8)
color_diff = np.sum((img_array - color) ** 2, axis=-1)
img_array[color_diff > threshold] = img_array[color_diff > threshold] * 0
return Image.fromarray(img_array)
def unique_colors(image, threshold=0.01):
colors = image.getcolors(image.size[0] * image.size[1])
total_pixels = image.size[0] * image.size[1]
unique_colors = []
for count, color in colors:
if count / total_pixels > threshold:
unique_colors.append(color)
return unique_colors
def extract_color_textboxes(color_map_image,MAX_NUM_COLORS):
#color_map_image = Image.open(color_map_image)
#color_map_image = cv2.imread(color_map_image)
color_map_image= Image.fromarray(color_map_image.astype('uint8'), 'RGB')
# Get unique colors in color_map_image
colors = unique_colors(color_map_image)
color_map_image = change_black_to_other_color(color_map_image,colors)
colors = unique_colors(color_map_image)
color_masks = [get_color_mask(color, color_map_image) for color in colors]
# Append white blocks to color_masks to fill up to MAX_NUM_COLORS
num_missing_masks = MAX_NUM_COLORS - len(color_masks)
white_mask = Image.new("RGB", color_map_image.size, color=(32, 32, 32))
color_masks += [white_mask] * num_missing_masks
color_output =[]
for i in range(0,len(color_masks)) :
#color_masks[i] = color_masks[i].convert('L')
color_masks[i] = change_diferent_black_to_white(color_masks[i])
color_masks[i] = np.array(color_masks[i])
color_masks[i] = cv2.cvtColor(color_masks[i], cv2.COLOR_RGB2GRAY)
color_masks[i] = 255.0 - color_masks[i]
if is_image_black(color_masks[i]) == False:
color_masks[i] = color_masks[i].astype(np.uint8)
color_output.append(color_masks[i])
return color_output
def apply_image_clustering(image, selected, w, h, strength, mask, state,inf_image,inpaiting_mode,inf_image_inpaiting):
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(w)
h_change = int(h)
if state is not None and selected in state:
state[selected] = {
"map": resize(image, w_change, h_change),
"weight": strength,
"mask_outsides": mask
}
return state, gr.Image.update(value=create_mixed_img(selected, state, w_change, h_change))
# sp2, radio, width, height, global_stats
def apply_image(image, selected, w, h, strength, mask, state,inf_image,inpaiting_mode,inf_image_inpaiting):
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(w)
h_change = int(h)
if state is not None and selected in state:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
state[selected] = {
"map": resize(image, w_change, h_change),
"weight": strength,
"mask_outsides": mask
}
elif state is not None:
key_state = list(state.keys())
global number_clustering,clustering_image
number_clustering = 0
clustering_image = []
clustering_image = extract_color_textboxes(image,len(state)+1)
number_clustering = len(clustering_image)
if len(state) > len(clustering_image):
amount_add = len(clustering_image)
else:
amount_add = len(state)
for i in range(0,amount_add):
state[key_state[i]] = {
"map": resize(clustering_image[i], w_change, h_change),
"weight": strength,
"mask_outsides": mask
}
return state, gr.Image.update(value=create_mixed_img(selected, state, w_change, h_change))
#rendered, apply_style, apply_clustering_style,Previous,Next,Completed,sp2,sp3
def apply_base_on_color(sp2,state, width, height,inf_image,inpaiting_mode,inf_image_inpaiting):
global number_clustering,clustering_image
if inpaiting_mode and inf_image_inpaiting:
w_change = inf_image_inpaiting["image"].width
h_change = inf_image_inpaiting["image"].height
elif inf_image is not None:
w_change = inf_image.width
h_change = inf_image.height
else:
w_change = int(width)
h_change = int(height)
number_clustering = 0
clustering_image = []
clustering_image = extract_color_textboxes(sp2,len(state)+1)
new_state = {}
for i in state:
new_state[i] = {
"map": None,
"weight": 0.5,
"mask_outsides": False
}
return gr.Image.update(value = create_mixed_img("", new_state, w_change, h_change)),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Image.update(visible = False),gr.Image.update(value=clustering_image[0],visible = True),gr.Button.update(visible = True),new_state
def completing_clustering(sp2):
return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Image.update(visible = True),gr.Image.update(visible = False),gr.Button.update(visible = False)
def previous_image_page(sp3):
global clustering_image,number_clustering
number_clustering = number_clustering - 1
if number_clustering < 0:
number_clustering = len(clustering_image)-1
return gr.Image.update(value = clustering_image[number_clustering])
def next_image_page(sp3):
global clustering_image,number_clustering
number_clustering = number_clustering + 1
if number_clustering >= len(clustering_image):
number_clustering = 0
return gr.Image.update(value = clustering_image[number_clustering])
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
def get_file_link_sp(link):
import requests
import os
from urllib.parse import unquote
file_name = None
absolute_path = None
try:
response = requests.get(link)
response.raise_for_status()
except requests.exceptions.HTTPError as err:
print(f"There was an error downloading: {err}")
else:
content_disposition = response.headers.get("content-disposition")
if content_disposition:
file_name = content_disposition.split("filename=")[1]
file_name = unquote(file_name)
# remove quotation marks
file_name = file_name.strip('"')
else:
file_name = "downloaded_file"
with open(file_name, "wb") as f:
f.write(response.content)
#Get absolute_path
absolute_path = os.path.abspath(file_name)
#Change format file_name
file_name = file_name.split('.')[0]
file_name = file_name.replace('_',' ')
file_name = file_name.replace('-',' ')
file_name = file_name.title()
return absolute_path, file_name
def get_file_link(link):
import requests
import os
from urllib.parse import unquote
file_name = None
absolute_path = None
try:
with requests.get(link, stream=True) as response:
response.raise_for_status()
# Get file size from headers
total_size = int(response.headers.get('content-length', 0))
content_disposition = response.headers.get("content-disposition")
if content_disposition:
file_name = content_disposition.split("filename=")[1]
file_name = unquote(file_name)
# remove quotation marks
file_name = file_name.strip('"')
else:
file_name = "downloaded_file"
# Stream download and write to file
chunk_size = 1024
downloaded_size = 0
with open(file_name, "wb") as f:
for chunk in response.iter_content(chunk_size=chunk_size):
if chunk:
f.write(chunk)
downloaded_size += len(chunk)
# Print download progress
progress = (downloaded_size / total_size) * 100
if progress%10 == 0:
print(f"Download progress: {progress:.2f}% ({downloaded_size / 1024:.2f} KB / {total_size / 1024:.2f} KB)")
# Get absolute_path
absolute_path = os.path.abspath(file_name)
# Change format file_name
file_name = file_name.split('.')[0]
file_name = file_name.replace('_', ' ')
file_name = file_name.replace('-', ' ')
file_name = file_name.title()
except requests.exceptions.HTTPError as err:
print(f"There was an error downloading: {err}")
return absolute_path, file_name
def add_net(files,link_download):
global lora_scale_dict, lora_lst, lora_dict, embeddings_dict
if files is None and (link_download is None or link_download == ''):
return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys())),gr.CheckboxGroup.update(choices=list(lora_dict.keys())),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],),gr.File.update(value=None),gr.Textbox.update(value = ''),
if link_download is not None and link_download != '':
path_file, file_name_download = get_file_link(link_download)
if file_name_download:
items_dl = Path(path_file)
if items_dl.suffix == ".pt":
state_dict = torch.load(path_file, map_location="cpu")
else:
state_dict = load_file(path_file, device="cpu")
if any("lora" in k for k in state_dict.keys()):
#lora_state = file.name
if file_name_download not in lora_dict:
lora_lst.append(file_name_download)
lora_dict[file_name_download] = path_file
lora_scale_dict[file_name_download] = 1.0
else:
if file_name_download not in embeddings_dict:
embeddings_dict[file_name_download] = path_file
if files is not None:
for file in files:
item = Path(file.name)
stripedname = str(item.stem).strip()
stripedname = stripedname.replace('_',' ')
stripedname = stripedname.replace('-',' ')
stripedname = stripedname.title()
if item.suffix == ".pt":
state_dict = torch.load(file.name, map_location="cpu")
else:
state_dict = load_file(file.name, device="cpu")
if any("lora" in k for k in state_dict.keys()):
#lora_state = file.name
if stripedname not in lora_dict:
lora_lst.append(stripedname)
lora_dict[stripedname] = file.name
lora_scale_dict[stripedname] = 1.0
else:
#ti_state[stripedname] = file.name
if stripedname not in embeddings_dict:
embeddings_dict[stripedname] = file.name
return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys())), gr.CheckboxGroup.update(choices=list(lora_dict.keys())),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],),gr.File.update(value=None),gr.Textbox.update(value = ''),
def change_lora_value(lora_vals):
global lora_scale_dict
if len(lora_scale_dict) == 0 or lora_vals == 'Not using Lora':
return gr.Slider.update(value = 1.0)
return gr.Slider.update(value = lora_scale_dict[lora_vals])
def update_lora_value(lora_scale,lora_vals):
global lora_scale_dict
if len(lora_scale_dict) and lora_vals != 'Not using Lora':
lora_scale_dict[lora_vals] = float(lora_scale)
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
def clean_states(ti_state,lora_group):
global lora_dict,embeddings_dict,lora_lst,lora_scale_dict
delete_lora = list(lora_dict.values())
for i in delete_lora:
os.remove(i)
delete_embed_lst = list(embeddings_dict.values())
for i in delete_embed_lst:
os.remove(i)
embeddings_dict = dict()
lora_dict = dict()
lora_scale_dict = dict()
lora_lst = ['Not using Lora']
return dict(),dict(),gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None),gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],),gr.File.update(value=None),gr.Text.update(f""),gr.Text.update(f""),gr.Textbox.update(value = ''),
def add_model(insert_model):
global models,keep_vram,models_single_file
insert_model=insert_model.replace(" ", "")
if len(insert_model) == 0:
return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '')
if 'https' in insert_model:
path_file, file_name_download = get_file_link(insert_model)
for i in models:
if file_name_download in i:
return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '')
models.append((file_name_download,path_file))
keep_vram.append(path_file)
models_single_file.append(file_name_download)
else:
author,name = insert_model.split('/')
name = name.replace('_',' ')
name = name.replace('-',' ')
name = name.title()
for i in models:
if name in i or insert_model in i:
return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '')
models.append((name,insert_model))
keep_vram.append(insert_model)
return gr.Dropdown.update(choices=[k[0] for k in get_model_list()],value=base_name),gr.Textbox.update(value = '')
def add_vae(insert_vae,single_load_file):
global vae_link,vae_single_file,vae_lst
insert_vae=insert_vae.replace(" ", "")
if len(insert_vae) == 0:
return gr.Dropdown.update(choices=[k for k in vae_lst],value=vae_lst[0]),gr.Textbox.update(value = ''),gr.Checkbox.update(value = False),
if 'https' in insert_vae:
path_file, file_name_download = get_file_link(insert_vae)
if file_name_download not in vae_lst:
vae_lst.append(file_name_download)
vae_link[file_name_download] = path_file
vae_single_file[file_name_download] = True
else:
name = insert_vae.split('/')[-1]
name = name.split('.')[0]
name = name.replace('_',' ')
name = name.replace('-',' ')
name = name.title()
if name not in vae_lst:
vae_lst.append(name)
vae_link[name] = insert_vae
vae_single_file[name] = single_load_file
return gr.Dropdown.update(choices=[k for k in vae_lst],value=vae_lst[0]),gr.Textbox.update(value = ''),gr.Checkbox.update(value = False),
def reset_model_button(insert_model):
return gr.Textbox.update(value = '')
def choose_tistate(ti_vals):
if len(ti_vals) == 0:
return dict(),gr.Text.update(""),gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None)
dict_copy = dict()
for key, value in embeddings_dict.items():
if key in ti_vals:
dict_copy[key] = value
lst_key = [key for key in dict_copy.keys()]
lst_key = '; '.join(map(str, lst_key))
return dict_copy,gr.Text.update(lst_key),gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None)
def choose_lora_function(lora_list):
global lora_dict
if len(lora_list) == 0:
return dict(),gr.Text.update(""),gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],)
dict_copy = dict()
for key, value in lora_dict.items():
if key in lora_list:
dict_copy[key] = value
lst_key = [key for key in dict_copy.keys()]
lst_key = '; '.join(map(str, lst_key))
return dict_copy,gr.Text.update(lst_key),gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],)
def delete_embed(ti_vals,ti_state,embs_choose):
if len(ti_vals) == 0:
return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys())),ti_state,gr.Text.update(embs_choose)
for key in ti_vals:
if key in ti_state:
ti_state.pop(key)
if key in embeddings_dict:
os.remove(embeddings_dict[key])
embeddings_dict.pop(key)
if len(ti_state) >= 1:
lst_key = [key for key in ti_state.keys()]
lst_key = '; '.join(map(str, lst_key))
else:
lst_key =""
return gr.CheckboxGroup.update(choices=list(embeddings_dict.keys()),value = None),ti_state,gr.Text.update(lst_key)
def delete_lora_function(lora_list,lora_group,lora_choose):
global lora_dict,lora_lst,lora_scale_dict
if len(lora_list) == 0:
return gr.CheckboxGroup.update(choices=list(lora_dict.keys())),lora_group,gr.Text.update(lora_choose),gr.Dropdown.update()
for key in lora_list:
if key in lora_group:
lora_group.pop(key)
if key in lora_scale_dict:
lora_scale_dict.pop(key)
if key in lora_dict:
os.remove(lora_dict[key])
lora_dict.pop(key)
if len(lora_group) >= 1:
lst_key = [key for key in lora_group.keys()]
lst_key = '; '.join(map(str, lst_key))
else:
lst_key =""
lora_lst = ["Not using Lora"]+[key for key in lora_dict.keys()]
return gr.CheckboxGroup.update(choices=list(lora_dict.keys()),value = None),lora_group,gr.Text.update(lst_key),gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],)
def lora_delete(lora_vals):
global lora_dict
global lora_lst
if lora_vals == 'Not using Lora':
return gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],)
os.remove(lora_dict[lora_vals])
lora_dict.pop(lora_vals)
lora_lst.remove(lora_vals)
return gr.Dropdown.update(choices=[k for k in lora_lst],value=lora_lst[0],)
#diffuser_pipeline,sampler,gallery,hr_enabled
def mode_diffuser_pipeline( controlnet_enabled):
if controlnet_enabled == True:
return gr.Checkbox.update(value = True),gr.Checkbox.update()
return gr.Checkbox.update(value = False),gr.Checkbox.update(value = False)
'''def mode_diffuser_pipeline1(diffuser_pipeline, controlnet_enabled):
assert diffuser_pipeline == False, "Please enable diffusers pipeline to use this option"
return gr.Checkbox.update(value = True)'''
def res_cap(g, w, h, x):
if g:
return f"Enable upscaler: {w}x{h} to {int(w*x)//8 *8}x{int(h*x)//8 *8}"
else:
return "Enable upscaler"
#diffuser_pipeline,hr_enabled,sampler,gallery,controlnet_enabled
def mode_upscale(diffuser_pipeline, hr_scale, width, height,hr_enabled):
if hr_enabled == True:
return gr.Checkbox.update(value = False),gr.Checkbox.update(value = True,label=res_cap(True, width, height, hr_scale)),gr.Dropdown.update(value="DPM++ 2M Karras",choices=[s[0] for s in samplers_k_diffusion]),gr.Checkbox.update(value = False)
return gr.Checkbox.update(value = False),gr.Checkbox.update(value = False,label=res_cap(False, width, height, hr_scale)),gr.Dropdown.update(value="DPM++ 2M Karras",choices=[s[0] for s in samplers_k_diffusion]),gr.Checkbox.update()
def change_control_net(model_control_net, low_threshold, high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose):
if model_control_net == 'Canny':
return gr.Slider.update(visible = True),gr.Slider.update(visible = True),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = False)
if model_control_net == 'Depth':
return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = True,choices=["Midas","DPT"])
if model_control_net == 'Openpose':
return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = True),gr.Checkbox.update(visible = True),gr.Checkbox.update(visible = True),gr.Radio.update(visible = False)
if model_control_net == 'Semantic Segmentation':
return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = True,choices=["Convnet tiny","Convnet small","Convnet base","Convnet large","Convnet xlarge","Swin tiny","Swin small","Swin base","Swin large"])
if model_control_net =='Soft Edge' or model_control_net == 'Scribble' or model_control_net == 'Sketch':
return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = True,choices=["HED","PidiNet"])
return gr.Slider.update(visible = False),gr.Slider.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Checkbox.update(visible = False),gr.Radio.update(visible = False)
previous_sampler = 'DPM++ 2M Karras'
previous_sampler_hires = 'DPM++ 2M Karras'
#sampler,gallery,hr_enabled,controlnet_enabled
def mode_diffuser_pipeline_sampler(diffuser_pipeline, sampler,sampler_hires):
global previous_sampler, previous_sampler_hires
sample_now = previous_sampler
sampler_hires_now = previous_sampler_hires
previous_sampler = sampler
previous_sampler_hires = sampler_hires
if diffuser_pipeline == False:
return gr.Checkbox.update(value = False), gr.Dropdown.update(value=sample_now,choices=[s[0] for s in samplers_k_diffusion]),gr.Dropdown.update(value=sampler_hires_now,choices=[s[0] for s in samplers_k_diffusion])
return gr.Checkbox.update(value = True),gr.Dropdown.update(value=sample_now,choices=[s[0] for s in samplers_diffusers]),gr.Dropdown.update(value=sampler_hires_now,choices=[s[0] for s in samplers_diffusers])
def change_gallery(latent_processing,hr_process_enabled):
if latent_processing or hr_process_enabled:
return gr.Gallery.update(visible = True)
return gr.Gallery.update(visible = False)
in_edit_mode = False
in_edit_mode_adapter = False
def preview_image(model_control_net,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,img_control,preprocessor_name,multi_controlnet,disable_preprocessing):
global in_edit_mode
if multi_controlnet == True and in_edit_mode == True:
global lst_control,current_number_control
if model_control_net == lst_control[current_number_control]["control_net_model"]:
setting_processing = list(lst_control[current_number_control].items())
setting_processing = setting_processing[:-3]
setting_processing = dict(setting_processing)
else:
setting_processing = {
"control_net_model": model_control_net,
"img_control": img_control,
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"has_body": has_body_openpose,
"has_face": has_face_openpose,
"has_hand": has_hand_openpose,
"preprocessor_name": preprocessor_name,
"disable_preprocessing":disable_preprocessing,
}
image_sp_control = control_net_preprocessing(**setting_processing)
return gr.Image.update(image_sp_control)
elif img_control is not None:
image_show = control_net_preprocessing(model_control_net,img_control,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,disable_preprocessing)
return gr.Image.update(image_show)
return gr.Image.update(value = None)
def change_image_condition(image_condition):
if image_condition is None:
return gr.Image.update()
return gr.Image.update(value= None)
#control_net_model,img_control,low_threshold = None,high_threshold=None,has_hand=None,preprocessor_name=None
def control_net_muti(control_net_model,img_control,low_threshold ,high_threshold,has_body,has_hand,has_face,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing):
global lst_control
if img_control is not None:
config = {
"control_net_model": control_net_model,
"img_control": img_control,
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"has_body": has_body,
"has_face": has_face,
"has_hand": has_hand,
"preprocessor_name": preprocessor_name,
"disable_preprocessing":disable_preprocessing,
"controlnet_scale": controlnet_scale,
"control_guidance_start": control_guidance_start,
"control_guidance_end": control_guidance_end,
}
lst_control.append(config)
return gr.Image.update(value = None)
def previous_view_control():
global lst_control,current_number_control
if current_number_control <= 0:
current_number_control = len(lst_control)-1
else:
current_number_control -= 1
return gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"])
def next_view_control():
global lst_control,current_number_control
if current_number_control >= len(lst_control)-1:
current_number_control = 0
else:
current_number_control += 1
return gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"])
def apply_edit_control_net(control_net_model,img_control,low_threshold ,high_threshold,has_body,has_hand,has_face,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing):
global lst_control,current_number_control,in_edit_mode
if img_control is not None:
config = {
"control_net_model": control_net_model,
"img_control": img_control,
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"has_body": has_body,
"has_face": has_face,
"has_hand": has_hand,
"preprocessor_name": preprocessor_name,
"disable_preprocessing":disable_preprocessing,
"controlnet_scale": controlnet_scale,
"control_guidance_start": control_guidance_start,
"control_guidance_end": control_guidance_end,
}
lst_control[current_number_control] = config
return gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update()
else:
lst_control.pop(current_number_control)
current_number_control -=1
if current_number_control == -1:
current_number_control = len(lst_control)-1
if len(lst_control) == 0:
in_edit_mode = False
return gr.Dropdown.update(),gr.Image.update(value = None),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(value = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Slider.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update()
return gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"])
def complete_edit_multi():
global current_number_control,in_edit_mode
current_number_control = 0
in_edit_mode = False
return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Image.update(value= None),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False)
def multi_controlnet_function(multi_controlnet):
if multi_controlnet:
return gr.Checkbox.update(value = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update()
return gr.Checkbox.update(),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False)
def edit_multi_control_image_function():
global lst_control,current_number_control,in_edit_mode
if len(lst_control) > 0:
in_edit_mode = True
return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Dropdown.update(value = lst_control[current_number_control]["control_net_model"]),gr.Image.update(value = lst_control[current_number_control]["img_control"]),gr.Slider.update(value = lst_control[current_number_control]["low_threshold"]),gr.Slider.update(value = lst_control[current_number_control]["high_threshold"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_body"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_hand"]),gr.Checkbox.update(value = lst_control[current_number_control]["has_face"]),gr.Radio.update(value = lst_control[current_number_control]["preprocessor_name"]),gr.Slider.update(value= lst_control[current_number_control]["controlnet_scale"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_start"]),gr.Slider.update(value= lst_control[current_number_control]["control_guidance_end"]),gr.Checkbox.update(value = lst_control[current_number_control]["disable_preprocessing"])
in_edit_mode = False
return gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Slider.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update()
def ip_adapter_work(ip_adapter):
if ip_adapter:
return gr.Checkbox.update(value = True)
return gr.Checkbox.update()
def preview_image_adapter(model_adapter,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,img_control,preprocessor_adapter,multi_adapter,disable_preprocessing_adapter):
global in_edit_mode_adapter
if multi_adapter == True and in_edit_mode_adapter == True:
global lst_adapter,current_number_adapter
if model_adapter == lst_adapter[current_number_adapter]["model_adapter"]:
setting_processing = list(lst_adapter[current_number_adapter].items())
setting_processing = setting_processing[:-3]
setting_processing = dict(setting_processing)
else:
setting_processing = {
"model_adapter": model_adapter,
"img_control": img_control,
"low_threshold_adapter": low_threshold_adapter,
"high_threshold_adapter": high_threshold_adapter,
"has_body": has_body_openpose_adapter,
"has_face": has_face_openpose_adapter,
"has_hand": has_hand_openpose_adapter,
"preprocessor_adapter": preprocessor_adapter,
"disable_preprocessing_adapter":disable_preprocessing_adapter,
}
image_sp_control = adapter_preprocessing(**setting_processing)
return gr.Image.update(image_sp_control)
elif img_control is not None:
image_show = adapter_preprocessing(model_adapter,img_control,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,disable_preprocessing_adapter)
return gr.Image.update(image_show)
return gr.Image.update(value = None)
def change_image_condition_adapter(image_condition_adapter):
if image_condition_adapter is None:
return gr.Image.update()
return gr.Image.update(value= None)
#control_net_model,img_control,low_threshold_adapter = None,high_threshold_adapter=None,has_hand=None,preprocessor_adapter=None
def adapter_muti(model_adapter,img_control,low_threshold_adapter ,high_threshold_adapter,has_body,has_hand,has_face,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter):
global lst_adapter
if img_control is not None:
config = {
"model_adapter": model_adapter,
"img_control": img_control,
"low_threshold_adapter": low_threshold_adapter,
"high_threshold_adapter": high_threshold_adapter,
"has_body": has_body,
"has_face": has_face,
"has_hand": has_hand,
"preprocessor_adapter": preprocessor_adapter,
"disable_preprocessing_adapter":disable_preprocessing_adapter,
"adapter_conditioning_scale": adapter_conditioning_scale,
"adapter_conditioning_factor": adapter_conditioning_factor,
}
lst_adapter.append(config)
return gr.Image.update(value = None)
def previous_view_adapter():
global lst_adapter,current_number_adapter
if current_number_adapter <= 0:
current_number_adapter = len(lst_adapter)-1
else:
current_number_adapter -= 1
return gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"])
def next_view_adapter():
global lst_adapter,current_number_adapter
if current_number_adapter >= len(lst_adapter)-1:
current_number_adapter = 0
else:
current_number_adapter += 1
return gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"])
def apply_edit_adapter(model_adapter,img_control,low_threshold_adapter ,high_threshold_adapter,has_body,has_hand,has_face,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter):
global lst_adapter,current_number_adapter,in_edit_mode_adapter
if img_control is not None:
config = {
"model_adapter": model_adapter,
"img_control": img_control,
"low_threshold_adapter": low_threshold_adapter,
"high_threshold_adapter": high_threshold_adapter,
"has_body": has_body,
"has_face": has_face,
"has_hand": has_hand,
"preprocessor_adapter": preprocessor_adapter,
"disable_preprocessing_adapter":disable_preprocessing_adapter,
"adapter_conditioning_scale": adapter_conditioning_scale,
"adapter_conditioning_factor": adapter_conditioning_factor,
}
lst_adapter[current_number_adapter] = config
return gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update()
else:
lst_adapter.pop(current_number_adapter)
current_number_adapter -=1
if current_number_adapter == -1:
current_number_adapter = len(lst_adapter)-1
if len(lst_adapter) == 0:
in_edit_mode_adapter = False
return gr.Dropdown.update(),gr.Image.update(value = None),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Checkbox.update(value = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update()
return gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Checkbox.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"])
def complete_edit_multi_adapter():
global current_number_adapter,in_edit_mode_adapter
current_number_adapter = 0
in_edit_mode_adapter = False
return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Image.update(value= None),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False)
def multi_adapter_function(multi_adapter):
if multi_adapter:
return gr.Checkbox.update(value = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update()
return gr.Checkbox.update(),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False)
def edit_multi_adapter_image_function():
global lst_adapter,current_number_adapter,in_edit_mode_adapter
if len(lst_adapter) > 0:
in_edit_mode_adapter = True
return gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = False),gr.Button.update(visible = False),gr.Dropdown.update(value = lst_adapter[current_number_adapter]["model_adapter"]),gr.Image.update(value = lst_adapter[current_number_adapter]["img_control"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["low_threshold_adapter"]),gr.Slider.update(value = lst_adapter[current_number_adapter]["high_threshold_adapter"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_body"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_hand"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["has_face"]),gr.Radio.update(value = lst_adapter[current_number_adapter]["preprocessor_adapter"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_scale"]),gr.Slider.update(value= lst_adapter[current_number_adapter]["adapter_conditioning_factor"]),gr.Checkbox.update(value = lst_adapter[current_number_adapter]["disable_preprocessing_adapter"])
in_edit_mode_adapter = False
return gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Button.update(),gr.Dropdown.update(),gr.Image.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Checkbox.update(),gr.Radio.update(),gr.Slider.update(),gr.Slider.update(),gr.Checkbox.update()
def ip_adpater_function(ip_adapter):
if ip_adapter:
return gr.Checkbox.update()
return gr.Checkbox.update(value = False)
#ip_adapter,inf_adapt_image,inf_adapt_image_multi,inf_adapt_image_strength,inf_adapt_image_strength_multi,edit_ip_adapter_setting,apply_ip_adapter_setting
def ip_adpater_multi_function(ip_adapter_multi):
if ip_adapter_multi:
return gr.Dropdown.update(choices=[k for k in model_ip_adapter_lst[:-2]],value=model_ip_adapter_lst[0]),gr.Checkbox.update(value = True), gr.Image.update(visible = False), gr.Image.update(visible = True), gr.Slider.update(visible = False), gr.Slider.update(visible = True),gr.Button.update(visible = True),gr.Button.update(visible = True), gr.Image.update(visible = False), gr.Image.update(visible = True)
return gr.Dropdown.update(choices=[k for k in model_ip_adapter_lst],value=model_ip_adapter_lst[0]),gr.Checkbox.update(), gr.Image.update(visible = True), gr.Image.update(visible = False), gr.Slider.update(visible = True), gr.Slider.update(visible = False),gr.Button.update(visible = False),gr.Button.update(visible = False), gr.Image.update(visible = True), gr.Image.update(visible = False)
def apply_ip_adapter_setting_function(model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi):
global lst_ip_adapter,current_number_ip_adapter
if inf_adapt_image_multi is not None:
config ={
"model" : model_ip_adapter,
"image" : inf_adapt_image_multi,
"region_apply": inf_control_adapt_image_multi,
"scale" : float(inf_adapt_image_strength_multi),
}
lst_ip_adapter.append(config)
return gr.Image.update(value = None),gr.Image.update(value = None)
return gr.Image.update(value = None),gr.Image.update(value = None)
#model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,previous_ip_adapter_setting,next_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting
def edit_ip_adapter_setting_function():
global lst_ip_adapter,current_number_ip_adapter
if len(lst_ip_adapter) == 0:
return (
gr.Dropdown.update(),
gr.Image.update(),
gr.Slider.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Image.update(),
)
return (
gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]),
gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]),
gr.Button.update(visible = True),
gr.Button.update(visible = True),
gr.Button.update(visible = True),
gr.Button.update(visible = True),
gr.Button.update(visible = False),
gr.Button.update(visible = False),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]),
)
def previous_ip_adapter_setting_function():
global lst_ip_adapter,current_number_ip_adapter
current_number_ip_adapter -= 1
if current_number_ip_adapter < 0:
current_number_ip_adapter = len(lst_ip_adapter) -1
return (
gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]),
gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]),
)
def next_ip_adapter_setting_function():
global lst_ip_adapter,current_number_ip_adapter
current_number_ip_adapter += 1
if current_number_ip_adapter == len(lst_ip_adapter):
current_number_ip_adapter = 0
return (
gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]),
gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]),
)
#inf_adapt_image_multi,previous_ip_adapter_setting,next_ip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting
def complete_cip_adapter_setting_function():
return (
gr.Image.update(value = None),
gr.Button.update(visible = False),
gr.Button.update(visible = False),
gr.Button.update(visible = True),
gr.Button.update(visible = True),
gr.Button.update(visible = False),
gr.Button.update(visible = False),
gr.Image.update(value = None),
)
#model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,previous_ip_adapter_setting,next_ip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting
def apply_edit_ip_adapter_setting_function(model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi):
global lst_ip_adapter,current_number_ip_adapter
if inf_adapt_image_multi is not None:
config_change = lst_ip_adapter[current_number_ip_adapter]
config_change["model"] = model_ip_adapter
config_change["image"] = inf_adapt_image_multi
config_change["scale"] = float(inf_adapt_image_strength_multi)
config_change["region_apply"] = inf_control_adapt_image_multi
return (
gr.Dropdown.update(),
gr.Image.update(),
gr.Slider.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Image.update(),
)
#Delete
lst_ip_adapter.pop(current_number_ip_adapter)
current_number_ip_adapter -= 1
if len(lst_ip_adapter) == 0:
return (
gr.Dropdown.update(),
gr.Image.update(value = None),
gr.Slider.update(),
gr.Button.update(visible = False),
gr.Button.update(visible = False),
gr.Button.update(visible = True),
gr.Button.update(visible = True),
gr.Button.update(visible = False),
gr.Button.update(visible = False),
gr.Image.update(value = None),
)
if current_number_ip_adapter == -1:
current_number_ip_adapter = len(lst_ip_adapter)-1
return (
gr.Dropdown.update(value = lst_ip_adapter[current_number_ip_adapter]["model"]),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["image"]),
gr.Slider.update(value = lst_ip_adapter[current_number_ip_adapter]["scale"]),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Button.update(),
gr.Image.update(value = lst_ip_adapter[current_number_ip_adapter]["region_apply"]),
)
def inpaiting_mode_fuction(inpaiting_mode):
if inpaiting_mode:
return gr.Image.update(visible = False),gr.Image.update(visible = True), gr.Image.update(visible = True),gr.Checkbox.update(visible = True),gr.Button.update(visible = True),gr.Slider.update(value = 1.0)
return gr.Image.update(visible = True),gr.Image.update(visible = False), gr.Image.update(visible = False),gr.Checkbox.update(visible = False),gr.Button.update(visible = False),gr.Slider.update(value = 0.5)
def get_mask_fuction(inf_image_inpaiting):
img_mask = None
if isinstance(inf_image_inpaiting,dict):
img_mask = inf_image_inpaiting["mask"].copy()
return gr.Image.update(img_mask)
latent_upscale_modes = {
"Latent (bilinear)": {"upscale_method": "bilinear", "upscale_antialias": False},
"Latent (bilinear antialiased)": {"upscale_method": "bilinear", "upscale_antialias": True},
"Latent (bicubic)": {"upscale_method": "bicubic", "upscale_antialias": False},
"Latent (bicubic antialiased)": {
"upscale_method": "bicubic",
"upscale_antialias": True,
},
"Latent (nearest)": {"upscale_method": "nearest", "upscale_antialias": False},
"Latent (nearest-exact)": {
"upscale_method": "nearest-exact",
"upscale_antialias": False,
},
#"Latent (linear)": {"upscale_method": "linear", "upscale_antialias": False},
#"Latent (trilinear)": {"upscale_method": "trilinear", "upscale_antialias": False},
"Latent (area)": {"upscale_method": "area", "upscale_antialias": False},
}
css = """
.finetuned-diffusion-div div{
display:inline-flex;
align-items:center;
gap:.8rem;
font-size:1.75rem;
padding-top:2rem;
}
.finetuned-diffusion-div div h1{
font-weight:900;
margin-bottom:7px
}
.finetuned-diffusion-div p{
margin-bottom:10px;
font-size:94%
}
.box {
float: left;
height: 20px;
width: 20px;
margin-bottom: 15px;
border: 1px solid black;
clear: both;
}
a{
text-decoration:underline
}
.tabs{
margin-top:0;
margin-bottom:0
}
#gallery{
min-height:20rem
}
.no-border {
border: none !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Demo for diffusion models</h1>
</div>
<p>Running on CPU 🥶 This demo does not work on CPU.</p>
</div>
"""
)
global_stats = gr.State(value={})
with gr.Row():
with gr.Column(scale=55):
model = gr.Dropdown(
choices=[k[0] for k in get_model_list()],
label="Model",
value=base_name,
)
with gr.Row():
image_out = gr.Image()
gallery = gr.Gallery(label="Generated images", show_label=True, elem_id="gallery",visible = False).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Group():
with gr.Row():
with gr.Column(scale=70):
prompt = gr.Textbox(
label="Prompt",
value="An adorable girl is sitting on the park",
show_label=True,
#max_lines=4,
placeholder="Enter prompt.",
)
neg_prompt = gr.Textbox(
label="Negative Prompt",
value="bad quality, low quality, jpeg artifact, cropped",
show_label=True,
#max_lines=4,
placeholder="Enter negative prompt.",
)
generate = gr.Button(value="Generate").style(
rounded=(False, True, True, False)
)
with gr.Tab("Options"):
with gr.Group():
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
diffuser_pipeline = gr.Checkbox(label="Using diffusers pipeline", value=False)
latent_processing = gr.Checkbox(label="Show processing", value=False)
region_condition = gr.Checkbox(label="Enable region condition", value=False)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, maximum=20
)
guidance_rescale = gr.Slider(
label="Guidance rescale", value=0, maximum=20
)
with gr.Row():
width = gr.Slider(
label="Width", value=512, minimum=64, maximum=1920, step=8
)
height = gr.Slider(
label="Height", value=512, minimum=64, maximum=1920, step=8
)
with gr.Row():
clip_skip = gr.Slider(
label="Clip Skip", value=2, minimum=1, maximum=12, step=1
)
steps = gr.Slider(
label="Steps", value=25, minimum=2, maximum=100, step=1
)
with gr.Row():
long_encode = sampler = gr.Dropdown(
value="Automatic111 Encoding",
label="Encoding prompt type",
choices=[s for s in encoding_type],
)
sampler = gr.Dropdown(
value="DPM++ 2M Karras",
label="Sampler",
choices=[s[0] for s in samplers_k_diffusion],
)
with gr.Row():
seed = gr.Number(label="Seed (Lower than 0 = random)", value=-1)
Insert_model = gr.Textbox(
label="Insert model",
show_label=True,
placeholder="Enter a model's link.",
)
insert_model = gr.Button(value="Insert")
#reset_model = gr.Button(value="Reset")
insert_model.click(
add_model,
inputs=[Insert_model],
outputs=[model, Insert_model],
queue=False,
)
with gr.Tab("Image to image/Inpaiting"):
with gr.Group():
with gr.Row():
inpaiting_mode = gr.Checkbox(label="Inpaiting", value=False)
invert_mask_mode = gr.Checkbox(label="Black areas are used", value=False,visible = False)
with gr.Row():
inf_image = gr.Image(
label="Image", source="upload", type="pil",
)
inf_image_inpaiting = gr.Image(
label="Image", source="upload", type="pil", tool="sketch",visible = False
)
mask_upload = gr.Image(
label="Mask", source="upload", type="pil",image_mode='L',visible = False,
)
inf_strength = gr.Slider(
label="Transformation strength",
minimum=0,
maximum=1,
step=0.01,
value=0.5,
)
get_mask = gr.Button(value="Get mask",visible = False)
inpaiting_mode.change(
inpaiting_mode_fuction,
inputs=[inpaiting_mode],
outputs=[inf_image,inf_image_inpaiting,mask_upload,invert_mask_mode,get_mask,inf_strength],
queue=False,
)
get_mask.click(
get_mask_fuction,
inputs=[inf_image_inpaiting],
outputs=[mask_upload],
queue=False,
)
with gr.Tab("Hires fix"):
with gr.Group():
with gr.Row():
hr_enabled = gr.Checkbox(label="Enable upscaler", value=False)
hr_process_enabled = gr.Checkbox(label="Show processing upscaler", value=False)
hr_region_condition = gr.Checkbox(label="Enable region condition upscaler", value=False)
with gr.Row():
hr_method = gr.Dropdown(
[key for key in latent_upscale_modes.keys()],
value="Latent (bilinear)",
label="Upscale method",
)
sampler_hires = gr.Dropdown(
value="DPM++ 2M Karras",
label="Sampler",
choices=[s[0] for s in samplers_k_diffusion],
)
hr_scale = gr.Slider(
label="Upscale factor",
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.2,
)
hr_denoise = gr.Slider(
label="Denoising strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
)
hr_scale.change(
lambda g, x, w, h: gr.Checkbox.update(
label=res_cap(g, w, h, x)
),
inputs=[hr_enabled, hr_scale, width, height],
outputs=hr_enabled,
queue=False,
)
hr_process_enabled.change(
change_gallery,
inputs=[latent_processing,hr_process_enabled],
outputs=[gallery],
queue=False,
)
latent_processing.change(
change_gallery,
inputs=[latent_processing,hr_process_enabled],
outputs=[gallery],
queue=False,
)
with gr.Tab("IP-Adapter"):
with gr.Group():
with gr.Row():
ip_adapter = gr.Checkbox(label="Using IP-Adapter", value=False)
ip_adapter_multi = gr.Checkbox(label="Using Multi IP-Adapter", value=False)
invert_ip_adapter_mask_mode = gr.Checkbox(label="Black areas are used", value=True)
model_ip_adapter = gr.Dropdown(
choices=[k for k in model_ip_adapter_lst],
label="Model IP-Adapter",
value=model_ip_adapter_lst[0],
)
with gr.Row():
inf_adapt_image = gr.Image(
label="IP-Adapter", source="upload", type="pil"
)
inf_control_adapt_image = gr.Image(
label="Region apply", source="upload", type="pil",image_mode='L'
)
inf_adapt_image_multi = gr.Image(
label="IP-Adapter", source="upload", type="pil",visible= False
)
inf_control_adapt_image_multi = gr.Image(
label="Region apply", source="upload", type="pil",image_mode='L',visible= False
)
inf_adapt_image_strength = gr.Slider(
label="IP-Adapter scale",
minimum=0,
maximum=2,
step=0.01,
value=1,
)
inf_adapt_image_strength_multi = gr.Slider(
label="IP-Adapter scale",
minimum=0,
maximum=2,
step=0.01,
value=1,
visible= False,
)
with gr.Row():
previous_ip_adapter_setting = gr.Button(value="Previous setting",visible = False)
next_ip_adapter_setting = gr.Button(value="Next setting",visible = False)
with gr.Row():
edit_ip_adapter_setting = gr.Button(value="Edit previous setting",visible = False)
apply_ip_adapter_setting = gr.Button(value="Apply setting",visible = False)
with gr.Row():
apply_edit_ip_adapter_setting = gr.Button(value="Apply change",visible = False)
complete_cip_adapter_setting = gr.Button(value="Complete change",visible = False)
ip_adapter.change(
ip_adpater_function,
inputs=[ip_adapter],
outputs=[ip_adapter_multi],
queue=False,
)
ip_adapter_multi.change(
ip_adpater_multi_function,
inputs=[ip_adapter_multi],
outputs=[model_ip_adapter,ip_adapter,inf_adapt_image,inf_adapt_image_multi,inf_adapt_image_strength,inf_adapt_image_strength_multi,edit_ip_adapter_setting,apply_ip_adapter_setting,inf_control_adapt_image,inf_control_adapt_image_multi],
queue=False,
)
apply_ip_adapter_setting.click(
apply_ip_adapter_setting_function,
inputs = [model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi],
outputs = [inf_adapt_image_multi,inf_control_adapt_image_multi],
)
edit_ip_adapter_setting.click(
edit_ip_adapter_setting_function,
inputs = [],
outputs =[model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,previous_ip_adapter_setting,next_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,inf_control_adapt_image_multi],
queue =False,
)
previous_ip_adapter_setting.click(
previous_ip_adapter_setting_function,
inputs = [],
outputs = [model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi],
queue = False,
)
next_ip_adapter_setting.click(
next_ip_adapter_setting_function,
inputs = [],
outputs = [model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi],
queue = False,
)
apply_edit_ip_adapter_setting.click(
apply_edit_ip_adapter_setting_function,
inputs = [model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,inf_control_adapt_image_multi],
outputs =[model_ip_adapter,inf_adapt_image_multi,inf_adapt_image_strength_multi,previous_ip_adapter_setting,next_ip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting,inf_control_adapt_image_multi],
queue = False,
)
complete_cip_adapter_setting.click(
complete_cip_adapter_setting_function,
inputs = [],
outputs = [inf_adapt_image_multi,previous_ip_adapter_setting,next_ip_adapter_setting,edit_ip_adapter_setting,apply_ip_adapter_setting,apply_edit_ip_adapter_setting,complete_cip_adapter_setting,inf_control_adapt_image_multi],
queue = False,
)
with gr.Tab("Controlnet"):
with gr.Group():
with gr.Row():
controlnet_enabled = gr.Checkbox(label="Enable Controlnet", value=False)
disable_preprocessing = gr.Checkbox(label="Disable preprocessing", value=False)
multi_controlnet = gr.Checkbox(label="Enable Multi Controlnet", value=False)
#sketch_enabled = gr.Checkbox(label="Sketch image", value=False)
model_control_net = gr.Dropdown(
choices=[k for k in controlnet_lst],
label="Model Controlnet",
value=controlnet_lst[0],
)
with gr.Row():
low_threshold = gr.Slider(
label="Canny low threshold", value=100, minimum=1, maximum=255, step=1
)
high_threshold = gr.Slider(
label="Canny high threshold", value=200, minimum=1, maximum=255, step=1
)
with gr.Row():
has_body_openpose = gr.Checkbox(label="Has body", value=True,visible= False)
has_hand_openpose = gr.Checkbox(label="Has hand", value=False,visible= False)
has_face_openpose = gr.Checkbox(label="Has face", value=False,visible= False)
preprocessor_name = gr.Radio(
label="Preprocessor",
type="value",
visible= False,
)
with gr.Row():
control_guidance_start = gr.Slider(
label="Control guidance start", value=0, minimum=0, maximum=1, step=0.01
)
control_guidance_end = gr.Slider(
label="Control guidance end", value=1, minimum=0, maximum=1, step=0.01
)
controlnet_scale = gr.Slider(
label="Controlnet scale", value=1, minimum=0, maximum=2, step=0.01
)
with gr.Row():
controlnet_img = gr.Image(
image_mode="RGB",
source="upload",
label = "Image",
type = 'pil',
)
image_condition = gr.Image(interactive=False,image_mode="RGB",label = "Preprocessor Preview",type = 'pil')
control_image_click = gr.Button(value="Preview")
with gr.Row():
previous_multi_control_image = gr.Button(value="Previous control setting",visible = False)
next_multi_control_image = gr.Button(value="Next control setting",visible = False)
with gr.Row():
edit_multi_control_image = gr.Button(value="Edit previous setting",visible = False)
apply_multi_control_image = gr.Button(value="Apply setting",visible = False)
with gr.Row():
apply_edit_multi = gr.Button(value="Apply change",visible = False)
complete_change_multi = gr.Button(value="Complete change",visible = False)
control_image_click.click(
preview_image,
inputs=[model_control_net,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,controlnet_img,preprocessor_name,multi_controlnet,disable_preprocessing],
outputs=[image_condition],
queue=False,
)
multi_controlnet.change(
multi_controlnet_function,
inputs=[multi_controlnet],
outputs=[controlnet_enabled,edit_multi_control_image,apply_multi_control_image,previous_multi_control_image,next_multi_control_image,apply_edit_multi,complete_change_multi],
queue=False,
)
edit_multi_control_image.click(
edit_multi_control_image_function,
inputs=[],
outputs=[previous_multi_control_image,next_multi_control_image,apply_edit_multi,complete_change_multi,edit_multi_control_image,apply_multi_control_image,model_control_net,controlnet_img,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing],
queue=False,
)
previous_multi_control_image.click(
previous_view_control,
inputs=[],
outputs=[model_control_net,controlnet_img,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing],
queue=False,
)
next_multi_control_image.click(
next_view_control,
inputs=[],
outputs=[model_control_net,controlnet_img,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing],
queue=False,
)
apply_multi_control_image.click(
control_net_muti,
inputs=[model_control_net,controlnet_img,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing],
outputs=[controlnet_img],
queue=False,
)
apply_edit_multi.click(
apply_edit_control_net,
inputs=[model_control_net,controlnet_img,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing],
outputs=[model_control_net,controlnet_img,low_threshold,high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name,multi_controlnet,previous_multi_control_image,next_multi_control_image,apply_edit_multi,complete_change_multi,controlnet_scale,control_guidance_start,control_guidance_end,disable_preprocessing],
queue=False,
)
complete_change_multi.click(
complete_edit_multi,
inputs=[],
outputs=[edit_multi_control_image,apply_multi_control_image,controlnet_img,apply_edit_multi,complete_change_multi,next_multi_control_image,previous_multi_control_image],
queue=False,
)
controlnet_img.change(
change_image_condition,
inputs=[image_condition],
outputs=[image_condition],
queue=False,
)
model_control_net.change(
change_control_net,
inputs=[model_control_net, low_threshold, high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose],
outputs=[low_threshold, high_threshold,has_body_openpose,has_hand_openpose,has_face_openpose,preprocessor_name],
queue=False,
)
with gr.Tab("T2I Adapter"):
with gr.Group():
with gr.Row():
adapter_enabled = gr.Checkbox(label="Enable T2I Adapter", value=False)
disable_preprocessing_adapter = gr.Checkbox(label="Disable preprocessing", value=False)
multi_adapter = gr.Checkbox(label="Enable Multi T2I Adapter", value=False)
#sketch_enabled = gr.Checkbox(label="Sketch image", value=False)
model_adapter = gr.Dropdown(
choices=[k for k in adapter_lst],
label="Model Controlnet",
value=adapter_lst[0],
)
with gr.Row():
low_threshold_adapter = gr.Slider(
label="Canny low threshold", value=100, minimum=1, maximum=255, step=1
)
high_threshold_adapter = gr.Slider(
label="Canny high threshold", value=200, minimum=1, maximum=255, step=1
)
with gr.Row():
has_body_openpose_adapter = gr.Checkbox(label="Has body", value=True,visible= False)
has_hand_openpose_adapter = gr.Checkbox(label="Has hand", value=False,visible= False)
has_face_openpose_adapter = gr.Checkbox(label="Has face", value=False,visible= False)
preprocessor_adapter = gr.Radio(
label="Preprocessor",
type="value",
visible= False,
)
with gr.Row():
adapter_conditioning_scale = gr.Slider(
label="Conditioning scale", value=1, minimum=0, maximum=2, step=0.01
)
adapter_conditioning_factor = gr.Slider(
label="Conditioning factor", value=1, minimum=0, maximum=1, step=0.01
)
'''controlnet_scale = gr.Slider(
label="Controlnet scale", value=1, minimum=0, maximum=2, step=0.01
)'''
with gr.Row():
adapter_img = gr.Image(
image_mode="RGB",
source="upload",
label = "Image",
type = 'pil',
)
image_condition_adapter = gr.Image(interactive=False,image_mode="RGB",label = "Preprocessor Preview",type = 'pil')
adapter_image_click = gr.Button(value="Preview")
with gr.Row():
previous_multi_adapter_image = gr.Button(value="Previous adapter setting",visible = False)
next_multi_adapter_image = gr.Button(value="Next adapter setting",visible = False)
with gr.Row():
edit_multi_adapter_image = gr.Button(value="Edit previous setting",visible = False)
apply_multi_adapter_image = gr.Button(value="Apply setting",visible = False)
with gr.Row():
apply_edit_multi_adapter = gr.Button(value="Apply change",visible = False)
complete_change_multi_adapter = gr.Button(value="Complete change",visible = False)
adapter_image_click.click(
preview_image_adapter,
inputs=[model_adapter,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,adapter_img,preprocessor_adapter,multi_adapter,disable_preprocessing_adapter],
outputs=[image_condition_adapter],
queue=False,
)
multi_adapter.change(
multi_adapter_function,
inputs=[multi_adapter],
outputs=[adapter_enabled,edit_multi_adapter_image,apply_multi_adapter_image,previous_multi_adapter_image,next_multi_adapter_image,apply_edit_multi_adapter,complete_change_multi_adapter],
queue=False,
)
edit_multi_adapter_image.click(
edit_multi_adapter_image_function,
inputs=[],
outputs=[previous_multi_adapter_image,next_multi_adapter_image,apply_edit_multi_adapter,complete_change_multi_adapter,edit_multi_adapter_image,apply_multi_adapter_image,model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter],
queue=False,
)
previous_multi_adapter_image.click(
previous_view_adapter,
inputs=[],
outputs=[model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter],
queue=False,
)
next_multi_adapter_image.click(
next_view_adapter,
inputs=[],
outputs=[model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter],
queue=False,
)
apply_multi_adapter_image.click(
adapter_muti,
inputs=[model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter],
outputs=[adapter_img],
queue=False,
)
apply_edit_multi_adapter.click(
apply_edit_adapter,
inputs=[model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter],
outputs=[model_adapter,adapter_img,low_threshold_adapter,high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter,multi_adapter,previous_multi_adapter_image,next_multi_adapter_image,apply_edit_multi_adapter,complete_change_multi_adapter,adapter_conditioning_scale,adapter_conditioning_factor,disable_preprocessing_adapter],
queue=False,
)
complete_change_multi_adapter.click(
complete_edit_multi_adapter,
inputs=[],
outputs=[edit_multi_adapter_image,apply_multi_adapter_image,adapter_img,apply_edit_multi_adapter,complete_change_multi_adapter,next_multi_adapter_image,previous_multi_adapter_image],
queue=False,
)
adapter_img.change(
change_image_condition_adapter,
inputs=[image_condition_adapter],
outputs=[image_condition_adapter],
queue=False,
)
model_adapter.change(
change_control_net,
inputs=[model_adapter, low_threshold_adapter, high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter],
outputs=[low_threshold_adapter, high_threshold_adapter,has_body_openpose_adapter,has_hand_openpose_adapter,has_face_openpose_adapter,preprocessor_adapter],
queue=False,
)
diffuser_pipeline.change(
mode_diffuser_pipeline_sampler,
inputs=[diffuser_pipeline, sampler,sampler_hires],
outputs=[diffuser_pipeline,sampler,sampler_hires],
queue=False,
)
hr_enabled.change(
lambda g, x, w, h: gr.Checkbox.update(
label=res_cap(g, w, h, x)
),
inputs=[hr_enabled, hr_scale, width, height],
outputs=hr_enabled,
queue=False,
)
adapter_enabled.change(
mode_diffuser_pipeline,
inputs=[adapter_enabled],
outputs=[adapter_enabled,multi_adapter],
queue=False,
)
controlnet_enabled.change(
mode_diffuser_pipeline,
inputs=[controlnet_enabled],
outputs=[controlnet_enabled,multi_controlnet],
queue=False,
)
'''controlnet_enabled.change(
mode_diffuser_pipeline1,
inputs=[diffuser_pipeline, controlnet_enabled],
outputs=[controlnet_enabled],
queue=False,
)'''
with gr.Tab("Vae Setting"):
with gr.Group():
vae_used = gr.Dropdown(
choices=[k for k in vae_lst],
label="Chosing Vae",
value=vae_lst[0],
)
with gr.Row():
with gr.Column():
Insert_vae = gr.Textbox(
label="Insert Vae's link",
show_label=True,
placeholder="Enter a Vae's link.",
)
single_load_file = gr.Checkbox(label="Is Single File", value=False)
insert_vae = gr.Button(value="Insert")
insert_vae.click(
add_vae,
inputs=[Insert_vae,single_load_file],
outputs=[vae_used, Insert_vae,single_load_file],
queue=False,
)
with gr.Tab("Embeddings/Loras"):
ti_state = gr.State(dict())
lora_group = gr.State(dict())
with gr.Group():
with gr.Row():
with gr.Column():
ti_vals = gr.CheckboxGroup(label="Chosing embeddings")
embs_choose = gr.Text(label="Embeddings chosen")
with gr.Row():
choose_em = gr.Button(value="Select Embeddings")
delete_em = gr.Button(value="Delete Embeddings")
choose_em.click(choose_tistate,inputs=[ti_vals],outputs=[ti_state,embs_choose,ti_vals],queue=False,)
delete_em.click(delete_embed,inputs=[ti_vals,ti_state,embs_choose],outputs=[ti_vals,ti_state,embs_choose],queue=False,)
with gr.Row():
with gr.Column():
lora_list = gr.CheckboxGroup(label="Chosing Loras")
lora_choose = gr.Text(label="Loras chosen")
with gr.Row():
choose_lora = gr.Button(value="Select Loras")
delete_lora = gr.Button(value="Delete Loras")
lora_vals = gr.Dropdown(choices=[k for k in lora_lst],label="Loras Scale",value=lora_lst[0],)
choose_lora.click(choose_lora_function,inputs=[lora_list],outputs=[lora_group,lora_choose,lora_list,lora_vals],queue=False,)
delete_lora.click(delete_lora_function,inputs=[lora_list,lora_group,lora_choose],outputs=[lora_list,lora_group,lora_choose,lora_vals],queue=False,)
# delete_lora_but = gr.Button(value="Delete Lora")
link_download = gr.Textbox(
label="Insert lora's/embedding's link",
show_label=True,
placeholder="Enter a link download.",
)
#delete_lora_but.click(lora_delete,inputs=[lora_vals],outputs=[lora_vals],queue=False,)
with gr.Row():
uploads = gr.Files(label="Upload new embeddings/lora")
with gr.Column():
lora_scale = gr.Slider(
label="Lora scale",
minimum=0,
maximum=2,
step=0.01,
value=1.0,
)
btn = gr.Button(value="Upload/Download")
btn_del = gr.Button(value="Reset")
lora_vals.change(
change_lora_value,
inputs=[lora_vals],
outputs=[lora_scale],
queue=False,
)
lora_scale.change(
update_lora_value,
inputs=[lora_scale,lora_vals],
outputs=[],
queue=False,
)
btn.click(
add_net,
inputs=[uploads,link_download],
outputs=[ti_vals,lora_list, lora_vals, uploads,link_download],
queue=False,
)
btn_del.click(
clean_states,
inputs=[ti_state,lora_group],
outputs=[ti_state,lora_group, ti_vals,lora_list, lora_vals, uploads,embs_choose,lora_choose,link_download],
queue=False,
)
# error_output = gr.Markdown()
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Define the object's region.</h1>
</div>
<p>
Using the following formula as default: w = scale * token_weight_martix * sigma * std(qk).
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
formula_button = gr.Dropdown(
choices=[k[0] for k in formula],
label="Formual",
value=formula[0][0],
)
rendered = gr.Image(
invert_colors=True,
source="canvas",
interactive=False,
image_mode="RGBA",
)
with gr.Column(scale=45):
with gr.Group():
with gr.Row():
with gr.Column(scale=70):
# g_strength = gr.Slider(
# label="Compliance rate",
# minimum=0,
# maximum=2,
# step=0.01,
# value=0.4,
# )
text = gr.Textbox(
lines=2,
interactive=True,
label="Token to Draw: (Separate by comma)",
)
radio = gr.Radio([], label="Tokens",visible = False)
sk_update = gr.Button(value="Update").style(
rounded=(False, True, True, False)
)
# g_strength.change(lambda b: gr.update(f"Scaled additional attn: $w = {b} \log (1 + \sigma) \std (Q^T K)$."), inputs=g_strength, outputs=[g_output])
with gr.Tab("SketchPad"):
sp = gr.Image(
width = 512,
height = 512,
image_mode="L",
tool="sketch",
source="canvas",
interactive=False
)
'''mask_outsides = gr.Checkbox(
label="Mask other areas",
value=False
)'''
with gr.Row():
mask_outsides = gr.Slider(
label="Decrease unmarked region weight",
minimum=0,
maximum=3,
step=0.01,
value=0,
)
strength = gr.Slider(
label="Token-Region strength",
minimum=0,
maximum=3,
step=0.01,
value=0.5,
)
width.change(
apply_size_sketch,
inputs=[width, height,global_stats,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats, rendered,sp],
queue=False,
)
height.change(
apply_size_sketch,
inputs=[width, height,global_stats,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats, rendered,sp],
queue=False,
)
inf_image.change(
apply_size_sketch,
inputs=[width, height,global_stats,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats, rendered,sp],
queue=False,
)
sk_update.click(
detect_text,
inputs=[text, global_stats, width, height,formula_button,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats, sp, radio, rendered,formula_button],
queue=False,
)
radio.change(
switch_canvas,
inputs=[radio, global_stats, width, height,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[sp, strength, mask_outsides, rendered],
queue=False,
)
sp.edit(
apply_canvas,
inputs=[radio, sp, global_stats, width, height,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats, rendered],
queue=False,
)
strength.change(
apply_weight,
inputs=[radio, strength, global_stats],
outputs=[global_stats],
queue=False,
)
mask_outsides.change(
apply_option,
inputs=[radio, mask_outsides, global_stats],
outputs=[global_stats],
queue=False,
)
with gr.Tab("UploadFile"):
sp2 = gr.Image(
image_mode="RGB",
source="upload",
)
sp3 = gr.Image(
image_mode="L",
source="canvas",
visible = False,
interactive = False,
)
with gr.Row():
previous_page = gr.Button(value="Previous",visible = False,)
next_page = gr.Button(value="Next",visible = False,)
'''mask_outsides2 = gr.Checkbox(
label="Mask other areas",
value=False,
)'''
with gr.Row():
mask_outsides2 = gr.Slider(
label="Decrease unmarked region weight",
minimum=0,
maximum=3,
step=0.01,
value=0,
)
strength2 = gr.Slider(
label="Token-Region strength",
minimum=0,
maximum=3,
step=0.01,
value=0.5,
)
'''sk_update.click(
detect_text1,
inputs=[text, global_stats, width, height,formula_button,inf_image],
outputs=[global_stats, radio, rendered,formula_button],
queue=False,
)'''
with gr.Row():
apply_style = gr.Button(value="Apply")
apply_clustering_style = gr.Button(value="Extracting color regions")
with gr.Row():
add_style = gr.Button(value="Apply",visible = False)
complete_clustering = gr.Button(value="Complete",visible = False)
apply_style.click(
apply_image,
inputs=[sp2, radio, width, height, strength2, mask_outsides2, global_stats,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats, rendered],
queue=False,
)
apply_clustering_style.click(
apply_base_on_color,
inputs=[sp2,global_stats,width, height,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[rendered,apply_style,apply_clustering_style,previous_page,next_page,complete_clustering,sp2,sp3,add_style,global_stats],
queue=False,
)
previous_page.click(
previous_image_page,
inputs=[sp3],
outputs=[sp3],
queue=False,
)
next_page.click(
next_image_page,
inputs=[sp3],
outputs=[sp3],
queue=False,
)
add_style.click(
apply_image_clustering,
inputs=[sp3, radio, width, height, strength2, mask_outsides2, global_stats,inf_image,inpaiting_mode,inf_image_inpaiting],
outputs=[global_stats,rendered],
queue=False,
)
complete_clustering.click(
completing_clustering,
inputs=[sp2],
outputs=[apply_style,apply_clustering_style,previous_page,next_page,complete_clustering,sp2,sp3,add_style],
queue=False,
)
'''width.change(
apply_new_res,
inputs=[width, height, global_stats,inf_image,rendered],
outputs=[global_stats, rendered],
queue=False,
)
height.change(
apply_new_res,
inputs=[width, height, global_stats,inf_image,rendered],
outputs=[global_stats, rendered],
queue=False,
)'''
# color_stats = gr.State(value={})
# text.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
# sp.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
inputs = [
prompt,
guidance,
steps,
width,
height,
clip_skip,
seed,
neg_prompt,
global_stats,
#g_strength,
inf_image,
inf_strength,
hr_enabled,
hr_method,
hr_scale,
hr_denoise,
sampler,
ti_state,
model,
lora_group,
#lora_vals,
#lora_scale,
formula_button,
controlnet_enabled,
model_control_net,
low_threshold,
high_threshold,
has_body_openpose,
has_hand_openpose,
has_face_openpose,
controlnet_img,
image_condition,
controlnet_scale,
preprocessor_name,
diffuser_pipeline,
sampler_hires,
latent_processing,
control_guidance_start,
control_guidance_end,
multi_controlnet,
disable_preprocessing,
region_condition,
hr_process_enabled,
ip_adapter,
model_ip_adapter,
inf_adapt_image,
inf_adapt_image_strength,
hr_region_condition,
adapter_enabled,
model_adapter,
low_threshold_adapter,
high_threshold_adapter,
has_body_openpose_adapter,
has_hand_openpose_adapter,
has_face_openpose_adapter,
adapter_img,
image_condition_adapter,
preprocessor_adapter,
adapter_conditioning_scale,
adapter_conditioning_factor,
multi_adapter,
disable_preprocessing_adapter,
ip_adapter_multi,
guidance_rescale,
inf_control_adapt_image,
long_encode,
inpaiting_mode,
invert_mask_mode,
mask_upload,
inf_image_inpaiting,
invert_ip_adapter_mask_mode,
vae_used,
]
outputs = [image_out,gallery]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
print(f"Space built in {time.time() - start_time:.2f} seconds")
#demo.queue().launch(share=True,debug=True)
demo.launch(enable_queue=True, server_name="0.0.0.0", server_port=7860)
|