duongve commited on
Commit
02d04ea
·
verified ·
1 Parent(s): 668457f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -15
app.py CHANGED
@@ -487,27 +487,27 @@ scheduler = DDIMScheduler.from_pretrained(
487
 
488
  vae = AutoencoderKL.from_pretrained(base_model,
489
  subfolder="vae",
490
- torch_dtype=torch.float16,
491
  )
492
  if vae is None:
493
  vae = AutoencoderKL.from_pretrained(
494
  "stabilityai/sd-vae-ft-mse",
495
- torch_dtype=torch.float16,
496
  )
497
  text_encoder = CLIPTextModel.from_pretrained(
498
  base_model,
499
  subfolder="text_encoder",
500
- torch_dtype=torch.float16,
501
  )
502
  tokenizer = CLIPTokenizer.from_pretrained(
503
  base_model,
504
  subfolder="tokenizer",
505
- torch_dtype=torch.float16,
506
  )
507
  unet = UNet2DConditionModel.from_pretrained(
508
  base_model,
509
  subfolder="unet",
510
- torch_dtype=torch.float16,
511
  )
512
  feature_extract = CLIPImageProcessor.from_pretrained(
513
  base_model,
@@ -604,24 +604,40 @@ def setup_model(name,clip_skip, lora_group=None,diffuser_pipeline = False ,contr
604
  if name not in unet_cache:
605
  if name not in models_single_file:
606
  try:
607
- vae_model = AutoencoderKL.from_pretrained(model,subfolder="vae",torch_dtype=torch.float16)
 
 
608
  except OSError:
609
- vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
 
 
610
 
611
  try:
612
- unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16)
 
 
613
  except OSError:
614
- unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet", torch_dtype=torch.float16)
 
 
615
 
616
  try:
617
- text_encoder = CLIPTextModel.from_pretrained(model, subfolder="text_encoder", torch_dtype=torch.float16)
 
 
618
  except OSError:
619
- text_encoder = CLIPTextModel.from_pretrained(base_model, subfolder="text_encoder", torch_dtype=torch.float16)
 
 
620
 
621
  try:
622
- tokenizer = CLIPTokenizer.from_pretrained(model,subfolder="tokenizer",torch_dtype=torch.float16)
 
 
623
  except OSError:
624
- tokenizer = CLIPTokenizer.from_pretrained(base_model,subfolder="tokenizer",torch_dtype=torch.float16)
 
 
625
 
626
  try:
627
  scheduler = DDIMScheduler.from_pretrained(model,subfolder="scheduler")
@@ -633,7 +649,9 @@ def setup_model(name,clip_skip, lora_group=None,diffuser_pipeline = False ,contr
633
  except OSError:
634
  feature_extract = CLIPImageProcessor.from_pretrained(base_model,subfolder="feature_extractor")
635
  else:
636
- pipe_get = StableDiffusionPipeline_finetune.from_single_file(model,safety_checker= None,requires_safety_checker = False,torch_dtype=torch.float16).to(device)
 
 
637
  vae_model = pipe_get.vae
638
  unet = pipe_get.unet
639
  text_encoder = pipe_get.text_encoder
@@ -2989,7 +3007,7 @@ with gr.Blocks(css=css) as demo:
2989
 
2990
  prompt = gr.Textbox(
2991
  label="Prompt",
2992
- value="loli cat girl, blue eyes, flat chest, solo, long messy silver hair, blue capelet, cat ears, cat tail, upper body",
2993
  show_label=True,
2994
  #max_lines=4,
2995
  placeholder="Enter prompt.",
 
487
 
488
  vae = AutoencoderKL.from_pretrained(base_model,
489
  subfolder="vae",
490
+ #torch_dtype=torch.float16,
491
  )
492
  if vae is None:
493
  vae = AutoencoderKL.from_pretrained(
494
  "stabilityai/sd-vae-ft-mse",
495
+ #torch_dtype=torch.float16,
496
  )
497
  text_encoder = CLIPTextModel.from_pretrained(
498
  base_model,
499
  subfolder="text_encoder",
500
+ #torch_dtype=torch.float16,
501
  )
502
  tokenizer = CLIPTokenizer.from_pretrained(
503
  base_model,
504
  subfolder="tokenizer",
505
+ #torch_dtype=torch.float16,
506
  )
507
  unet = UNet2DConditionModel.from_pretrained(
508
  base_model,
509
  subfolder="unet",
510
+ #torch_dtype=torch.float16,
511
  )
512
  feature_extract = CLIPImageProcessor.from_pretrained(
513
  base_model,
 
604
  if name not in unet_cache:
605
  if name not in models_single_file:
606
  try:
607
+ vae_model = AutoencoderKL.from_pretrained(model,subfolder="vae"
608
+ #,torch_dtype=torch.float16
609
+ )
610
  except OSError:
611
+ vae_model = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",
612
+ #torch_dtype=torch.float16
613
+ )
614
 
615
  try:
616
+ unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet",
617
+ #torch_dtype=torch.float16
618
+ )
619
  except OSError:
620
+ unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet",
621
+ #torch_dtype=torch.float16
622
+ )
623
 
624
  try:
625
+ text_encoder = CLIPTextModel.from_pretrained(model, subfolder="text_encoder",
626
+ #torch_dtype=torch.float16
627
+ )
628
  except OSError:
629
+ text_encoder = CLIPTextModel.from_pretrained(base_model, subfolder="text_encoder",
630
+ #torch_dtype=torch.float16
631
+ )
632
 
633
  try:
634
+ tokenizer = CLIPTokenizer.from_pretrained(model,subfolder="tokenizer",
635
+ #torch_dtype=torch.float16
636
+ )
637
  except OSError:
638
+ tokenizer = CLIPTokenizer.from_pretrained(base_model,subfolder="tokenizer",
639
+ #torch_dtype=torch.float16
640
+ )
641
 
642
  try:
643
  scheduler = DDIMScheduler.from_pretrained(model,subfolder="scheduler")
 
649
  except OSError:
650
  feature_extract = CLIPImageProcessor.from_pretrained(base_model,subfolder="feature_extractor")
651
  else:
652
+ pipe_get = StableDiffusionPipeline_finetune.from_single_file(model,safety_checker= None,requires_safety_checker = False,
653
+ #torch_dtype=torch.float16
654
+ ).to(device)
655
  vae_model = pipe_get.vae
656
  unet = pipe_get.unet
657
  text_encoder = pipe_get.text_encoder
 
3007
 
3008
  prompt = gr.Textbox(
3009
  label="Prompt",
3010
+ value="An adorable girl is sitting on the park",
3011
  show_label=True,
3012
  #max_lines=4,
3013
  placeholder="Enter prompt.",