Spaces:
Sleeping
Sleeping
Upload 24 files
Browse files- Dockerfile +16 -0
- README.md +6 -4
- app.py +0 -0
- modules/attention_modify.py +1044 -0
- modules/controlnetxs/controlnetxs.py +1017 -0
- modules/controlnetxs/pipeline_controlnet_xs.py +1022 -0
- modules/encode_region_map_function.py +168 -0
- modules/encoder_prompt_modify.py +831 -0
- modules/external_k_diffusion.py +182 -0
- modules/ip_adapter.py +343 -0
- modules/keypose/__init__.py +216 -0
- modules/keypose/faster_rcnn_r50_fpn_coco.py +182 -0
- modules/keypose/hrnet_w48_coco_256x192.py +169 -0
- modules/lora.py +187 -0
- modules/model_diffusers.py +0 -0
- modules/model_k_diffusion.py +1960 -0
- modules/preprocessing_segmentation.py +47 -0
- modules/prompt_parser.py +392 -0
- modules/safe.py +188 -0
- modules/samplers_extra_k_diffusion.py +176 -0
- modules/t2i_adapter.py +144 -0
- modules/u_net_condition_modify.py +1318 -0
- modules/u_net_modify.py +315 -0
- requirements.txt +16 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dockerfile Public T4
|
2 |
+
|
3 |
+
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
|
4 |
+
ENV DEBIAN_FRONTEND noninteractive
|
5 |
+
|
6 |
+
WORKDIR /content
|
7 |
+
RUN pip install numexpr einops transformers k_diffusion safetensors gradio diffusers xformers
|
8 |
+
|
9 |
+
ADD . .
|
10 |
+
RUN adduser --disabled-password --gecos '' user
|
11 |
+
RUN chown -R user:user /content
|
12 |
+
RUN chmod -R 777 /content
|
13 |
+
USER user
|
14 |
+
|
15 |
+
EXPOSE 7860
|
16 |
+
CMD python /content/app.py
|
README.md
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: docker
|
|
|
7 |
pinned: false
|
8 |
-
license:
|
|
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Sd Diffusers Webui
|
3 |
+
emoji: 🐳
|
4 |
+
colorFrom: purple
|
5 |
colorTo: gray
|
6 |
sdk: docker
|
7 |
+
sdk_version: 3.9
|
8 |
pinned: false
|
9 |
+
license: openrail
|
10 |
+
app_port: 7860
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules/attention_modify.py
ADDED
@@ -0,0 +1,1044 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers.utils import (
|
2 |
+
USE_PEFT_BACKEND,
|
3 |
+
_get_model_file,
|
4 |
+
delete_adapter_layers,
|
5 |
+
is_accelerate_available,
|
6 |
+
logging,
|
7 |
+
set_adapter_layers,
|
8 |
+
set_weights_and_activate_adapters,
|
9 |
+
)
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch.autograd.function import Function
|
14 |
+
import torch.nn as nn
|
15 |
+
from torch import einsum
|
16 |
+
import os
|
17 |
+
from collections import defaultdict
|
18 |
+
from contextlib import nullcontext
|
19 |
+
from typing import Callable, Dict, List, Optional, Union
|
20 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
21 |
+
from diffusers.models.embeddings import ImageProjection
|
22 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
from diffusers.image_processor import IPAdapterMaskProcessor
|
26 |
+
|
27 |
+
xformers_available = False
|
28 |
+
try:
|
29 |
+
import xformers
|
30 |
+
|
31 |
+
xformers_available = True
|
32 |
+
except ImportError:
|
33 |
+
pass
|
34 |
+
|
35 |
+
EPSILON = 1e-6
|
36 |
+
exists = lambda val: val is not None
|
37 |
+
default = lambda val, d: val if exists(val) else d
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
def get_attention_scores(attn, query, key, attention_mask=None):
|
40 |
+
|
41 |
+
if attn.upcast_attention:
|
42 |
+
query = query.float()
|
43 |
+
key = key.float()
|
44 |
+
if attention_mask is None:
|
45 |
+
baddbmm_input = torch.empty(
|
46 |
+
query.shape[0],
|
47 |
+
query.shape[1],
|
48 |
+
key.shape[1],
|
49 |
+
dtype=query.dtype,
|
50 |
+
device=query.device,
|
51 |
+
)
|
52 |
+
beta = 0
|
53 |
+
else:
|
54 |
+
baddbmm_input = attention_mask
|
55 |
+
beta = 1
|
56 |
+
|
57 |
+
attention_scores = torch.baddbmm(
|
58 |
+
baddbmm_input,
|
59 |
+
query,
|
60 |
+
key.transpose(-1, -2),
|
61 |
+
beta=beta,
|
62 |
+
alpha=attn.scale,
|
63 |
+
)
|
64 |
+
|
65 |
+
del baddbmm_input
|
66 |
+
|
67 |
+
if attn.upcast_softmax:
|
68 |
+
attention_scores = attention_scores.float()
|
69 |
+
|
70 |
+
return attention_scores.to(query.dtype)
|
71 |
+
|
72 |
+
|
73 |
+
# Get attention_score with this:
|
74 |
+
def scaled_dot_product_attention_regionstate(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None,weight_func =None, region_state = None, sigma = None) -> torch.Tensor:
|
75 |
+
# Efficient implementation equivalent to the following:
|
76 |
+
L, S = query.size(-2), key.size(-2)
|
77 |
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
78 |
+
attn_bias = torch.zeros(L, S, dtype=query.dtype,device = query.device)
|
79 |
+
if is_causal:
|
80 |
+
assert attn_mask is None
|
81 |
+
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
82 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
83 |
+
attn_bias.to(query.dtype)
|
84 |
+
|
85 |
+
if attn_mask is not None:
|
86 |
+
if attn_mask.dtype == torch.bool:
|
87 |
+
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
88 |
+
else:
|
89 |
+
attn_bias += attn_mask
|
90 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
91 |
+
attn_weight += attn_bias
|
92 |
+
|
93 |
+
batch_size, num_heads, sequence_length, embed_dim = attn_weight.shape
|
94 |
+
attn_weight = attn_weight.reshape((-1,sequence_length,embed_dim))
|
95 |
+
cross_attention_weight = weight_func(region_state, sigma, attn_weight)
|
96 |
+
repeat_time = attn_weight.shape[0]//cross_attention_weight.shape[0]
|
97 |
+
attn_weight += torch.repeat_interleave(
|
98 |
+
cross_attention_weight, repeats=repeat_time, dim=0
|
99 |
+
)
|
100 |
+
attn_weight = attn_weight.reshape((-1,num_heads,sequence_length,embed_dim))
|
101 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
102 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
103 |
+
return attn_weight @ value
|
104 |
+
|
105 |
+
class FlashAttentionFunction(Function):
|
106 |
+
@staticmethod
|
107 |
+
@torch.no_grad()
|
108 |
+
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
109 |
+
"""Algorithm 2 in the paper"""
|
110 |
+
|
111 |
+
device = q.device
|
112 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
113 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
114 |
+
|
115 |
+
o = torch.zeros_like(q)
|
116 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device)
|
117 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device)
|
118 |
+
|
119 |
+
scale = q.shape[-1] ** -0.5
|
120 |
+
|
121 |
+
if not exists(mask):
|
122 |
+
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
123 |
+
else:
|
124 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
125 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
126 |
+
|
127 |
+
row_splits = zip(
|
128 |
+
q.split(q_bucket_size, dim=-2),
|
129 |
+
o.split(q_bucket_size, dim=-2),
|
130 |
+
mask,
|
131 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
132 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
133 |
+
)
|
134 |
+
|
135 |
+
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
136 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
137 |
+
|
138 |
+
col_splits = zip(
|
139 |
+
k.split(k_bucket_size, dim=-2),
|
140 |
+
v.split(k_bucket_size, dim=-2),
|
141 |
+
)
|
142 |
+
|
143 |
+
for k_ind, (kc, vc) in enumerate(col_splits):
|
144 |
+
k_start_index = k_ind * k_bucket_size
|
145 |
+
|
146 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
147 |
+
|
148 |
+
if exists(row_mask):
|
149 |
+
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
150 |
+
|
151 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
152 |
+
causal_mask = torch.ones(
|
153 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
154 |
+
).triu(q_start_index - k_start_index + 1)
|
155 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
156 |
+
|
157 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
158 |
+
attn_weights -= block_row_maxes
|
159 |
+
exp_weights = torch.exp(attn_weights)
|
160 |
+
|
161 |
+
if exists(row_mask):
|
162 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
163 |
+
|
164 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
|
165 |
+
min=EPSILON
|
166 |
+
)
|
167 |
+
|
168 |
+
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
169 |
+
|
170 |
+
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
171 |
+
|
172 |
+
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
173 |
+
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
174 |
+
|
175 |
+
new_row_sums = (
|
176 |
+
exp_row_max_diff * row_sums
|
177 |
+
+ exp_block_row_max_diff * block_row_sums
|
178 |
+
)
|
179 |
+
|
180 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
|
181 |
+
(exp_block_row_max_diff / new_row_sums) * exp_values
|
182 |
+
)
|
183 |
+
|
184 |
+
row_maxes.copy_(new_row_maxes)
|
185 |
+
row_sums.copy_(new_row_sums)
|
186 |
+
|
187 |
+
lse = all_row_sums.log() + all_row_maxes
|
188 |
+
|
189 |
+
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
190 |
+
ctx.save_for_backward(q, k, v, o, lse)
|
191 |
+
|
192 |
+
return o
|
193 |
+
|
194 |
+
@staticmethod
|
195 |
+
@torch.no_grad()
|
196 |
+
def backward(ctx, do):
|
197 |
+
"""Algorithm 4 in the paper"""
|
198 |
+
|
199 |
+
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
200 |
+
q, k, v, o, lse = ctx.saved_tensors
|
201 |
+
|
202 |
+
device = q.device
|
203 |
+
|
204 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
205 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
206 |
+
|
207 |
+
dq = torch.zeros_like(q)
|
208 |
+
dk = torch.zeros_like(k)
|
209 |
+
dv = torch.zeros_like(v)
|
210 |
+
|
211 |
+
row_splits = zip(
|
212 |
+
q.split(q_bucket_size, dim=-2),
|
213 |
+
o.split(q_bucket_size, dim=-2),
|
214 |
+
do.split(q_bucket_size, dim=-2),
|
215 |
+
mask,
|
216 |
+
lse.split(q_bucket_size, dim=-2),
|
217 |
+
dq.split(q_bucket_size, dim=-2),
|
218 |
+
)
|
219 |
+
|
220 |
+
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
221 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
222 |
+
|
223 |
+
col_splits = zip(
|
224 |
+
k.split(k_bucket_size, dim=-2),
|
225 |
+
v.split(k_bucket_size, dim=-2),
|
226 |
+
dk.split(k_bucket_size, dim=-2),
|
227 |
+
dv.split(k_bucket_size, dim=-2),
|
228 |
+
)
|
229 |
+
|
230 |
+
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
231 |
+
k_start_index = k_ind * k_bucket_size
|
232 |
+
|
233 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
234 |
+
|
235 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
236 |
+
causal_mask = torch.ones(
|
237 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
238 |
+
).triu(q_start_index - k_start_index + 1)
|
239 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
240 |
+
|
241 |
+
p = torch.exp(attn_weights - lsec)
|
242 |
+
|
243 |
+
if exists(row_mask):
|
244 |
+
p.masked_fill_(~row_mask, 0.0)
|
245 |
+
|
246 |
+
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
|
247 |
+
dp = einsum("... i d, ... j d -> ... i j", doc, vc)
|
248 |
+
|
249 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
250 |
+
ds = p * scale * (dp - D)
|
251 |
+
|
252 |
+
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
|
253 |
+
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)
|
254 |
+
|
255 |
+
dqc.add_(dq_chunk)
|
256 |
+
dkc.add_(dk_chunk)
|
257 |
+
dvc.add_(dv_chunk)
|
258 |
+
|
259 |
+
return dq, dk, dv, None, None, None, None
|
260 |
+
|
261 |
+
class AttnProcessor(nn.Module):
|
262 |
+
def __call__(
|
263 |
+
self,
|
264 |
+
attn,
|
265 |
+
hidden_states,
|
266 |
+
encoder_hidden_states=None,
|
267 |
+
attention_mask=None,
|
268 |
+
temb: Optional[torch.Tensor] = None,
|
269 |
+
region_prompt = None,
|
270 |
+
ip_adapter_masks = None,
|
271 |
+
*args,
|
272 |
+
**kwargs,
|
273 |
+
):
|
274 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
275 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
276 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
277 |
+
|
278 |
+
residual = hidden_states
|
279 |
+
|
280 |
+
|
281 |
+
#_,img_sequence_length,_ = hidden_states.shape
|
282 |
+
img_sequence_length = hidden_states.shape[1]
|
283 |
+
|
284 |
+
if attn.spatial_norm is not None:
|
285 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
286 |
+
|
287 |
+
input_ndim = hidden_states.ndim
|
288 |
+
|
289 |
+
if input_ndim == 4:
|
290 |
+
batch_size, channel, height, width = hidden_states.shape
|
291 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
292 |
+
|
293 |
+
|
294 |
+
is_xattn = False
|
295 |
+
if encoder_hidden_states is not None and region_prompt is not None:
|
296 |
+
is_xattn = True
|
297 |
+
region_state = region_prompt["region_state"]
|
298 |
+
weight_func = region_prompt["weight_func"]
|
299 |
+
sigma = region_prompt["sigma"]
|
300 |
+
|
301 |
+
batch_size, sequence_length, _ = (
|
302 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
303 |
+
)
|
304 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length,batch_size)
|
305 |
+
|
306 |
+
if attn.group_norm is not None:
|
307 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
308 |
+
|
309 |
+
query = attn.to_q(hidden_states)
|
310 |
+
|
311 |
+
if encoder_hidden_states is None:
|
312 |
+
encoder_hidden_states = hidden_states
|
313 |
+
elif attn.norm_cross:
|
314 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
315 |
+
|
316 |
+
|
317 |
+
key = attn.to_k(encoder_hidden_states)
|
318 |
+
value = attn.to_v(encoder_hidden_states)
|
319 |
+
|
320 |
+
query = attn.head_to_batch_dim(query)
|
321 |
+
key = attn.head_to_batch_dim(key)
|
322 |
+
value = attn.head_to_batch_dim(value)
|
323 |
+
|
324 |
+
if is_xattn and isinstance(region_state, dict):
|
325 |
+
# use torch.baddbmm method (slow)
|
326 |
+
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
327 |
+
cross_attention_weight = weight_func(region_state[img_sequence_length].to(query.device), sigma, attention_scores)
|
328 |
+
attention_scores += torch.repeat_interleave(
|
329 |
+
cross_attention_weight, repeats=attention_scores.shape[0] // cross_attention_weight.shape[0], dim=0
|
330 |
+
)
|
331 |
+
|
332 |
+
# calc probs
|
333 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
334 |
+
attention_probs = attention_probs.to(query.dtype)
|
335 |
+
hidden_states = torch.bmm(attention_probs, value)
|
336 |
+
|
337 |
+
elif xformers_available:
|
338 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
339 |
+
query.contiguous(),
|
340 |
+
key.contiguous(),
|
341 |
+
value.contiguous(),
|
342 |
+
attn_bias=attention_mask,
|
343 |
+
)
|
344 |
+
hidden_states = hidden_states.to(query.dtype)
|
345 |
+
|
346 |
+
else:
|
347 |
+
'''q_bucket_size = 512
|
348 |
+
k_bucket_size = 1024
|
349 |
+
|
350 |
+
# use flash-attention
|
351 |
+
hidden_states = FlashAttentionFunction.apply(
|
352 |
+
query.contiguous(),
|
353 |
+
key.contiguous(),
|
354 |
+
value.contiguous(),
|
355 |
+
attention_mask,
|
356 |
+
False,
|
357 |
+
q_bucket_size,
|
358 |
+
k_bucket_size,
|
359 |
+
)'''
|
360 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
361 |
+
hidden_states = torch.bmm(attention_probs, value)
|
362 |
+
hidden_states = hidden_states.to(query.dtype)
|
363 |
+
|
364 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
365 |
+
|
366 |
+
# linear proj
|
367 |
+
hidden_states = attn.to_out[0](hidden_states)
|
368 |
+
|
369 |
+
# dropout
|
370 |
+
hidden_states = attn.to_out[1](hidden_states)
|
371 |
+
|
372 |
+
if input_ndim == 4:
|
373 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
374 |
+
|
375 |
+
if attn.residual_connection:
|
376 |
+
hidden_states = hidden_states + residual
|
377 |
+
|
378 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
379 |
+
|
380 |
+
return hidden_states
|
381 |
+
class IPAdapterAttnProcessor(nn.Module):
|
382 |
+
r"""
|
383 |
+
Attention processor for Multiple IP-Adapters.
|
384 |
+
|
385 |
+
Args:
|
386 |
+
hidden_size (`int`):
|
387 |
+
The hidden size of the attention layer.
|
388 |
+
cross_attention_dim (`int`):
|
389 |
+
The number of channels in the `encoder_hidden_states`.
|
390 |
+
num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
|
391 |
+
The context length of the image features.
|
392 |
+
scale (`float` or List[`float`], defaults to 1.0):
|
393 |
+
the weight scale of image prompt.
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
|
397 |
+
super().__init__()
|
398 |
+
|
399 |
+
self.hidden_size = hidden_size
|
400 |
+
self.cross_attention_dim = cross_attention_dim
|
401 |
+
|
402 |
+
if not isinstance(num_tokens, (tuple, list)):
|
403 |
+
num_tokens = [num_tokens]
|
404 |
+
self.num_tokens = num_tokens
|
405 |
+
|
406 |
+
if not isinstance(scale, list):
|
407 |
+
scale = [scale] * len(num_tokens)
|
408 |
+
if len(scale) != len(num_tokens):
|
409 |
+
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
|
410 |
+
self.scale = scale
|
411 |
+
|
412 |
+
self.to_k_ip = nn.ModuleList(
|
413 |
+
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
|
414 |
+
)
|
415 |
+
self.to_v_ip = nn.ModuleList(
|
416 |
+
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
|
417 |
+
)
|
418 |
+
|
419 |
+
def __call__(
|
420 |
+
self,
|
421 |
+
attn,
|
422 |
+
hidden_states,
|
423 |
+
encoder_hidden_states=None,
|
424 |
+
attention_mask=None,
|
425 |
+
temb=None,
|
426 |
+
scale=1.0,
|
427 |
+
region_prompt = None,
|
428 |
+
ip_adapter_masks = None,
|
429 |
+
):
|
430 |
+
|
431 |
+
#_,img_sequence_length,_ = hidden_states.shape
|
432 |
+
img_sequence_length= hidden_states.shape[1]
|
433 |
+
residual = hidden_states
|
434 |
+
|
435 |
+
is_xattn = False
|
436 |
+
if encoder_hidden_states is not None and region_prompt is not None:
|
437 |
+
is_xattn = True
|
438 |
+
region_state = region_prompt["region_state"]
|
439 |
+
weight_func = region_prompt["weight_func"]
|
440 |
+
sigma = region_prompt["sigma"]
|
441 |
+
|
442 |
+
# separate ip_hidden_states from encoder_hidden_states
|
443 |
+
if encoder_hidden_states is not None:
|
444 |
+
if isinstance(encoder_hidden_states, tuple):
|
445 |
+
encoder_hidden_states, ip_hidden_states = encoder_hidden_states
|
446 |
+
else:
|
447 |
+
deprecation_message = (
|
448 |
+
"You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
|
449 |
+
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
|
450 |
+
)
|
451 |
+
deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
|
452 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
|
453 |
+
encoder_hidden_states, ip_hidden_states = (
|
454 |
+
encoder_hidden_states[:, :end_pos, :],
|
455 |
+
[encoder_hidden_states[:, end_pos:, :]],
|
456 |
+
)
|
457 |
+
|
458 |
+
|
459 |
+
if attn.spatial_norm is not None:
|
460 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
461 |
+
|
462 |
+
input_ndim = hidden_states.ndim
|
463 |
+
|
464 |
+
if input_ndim == 4:
|
465 |
+
batch_size, channel, height, width = hidden_states.shape
|
466 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
batch_size, sequence_length, _ = (
|
471 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
472 |
+
)
|
473 |
+
|
474 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
475 |
+
|
476 |
+
if attn.group_norm is not None:
|
477 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
478 |
+
|
479 |
+
query = attn.to_q(hidden_states)
|
480 |
+
|
481 |
+
if encoder_hidden_states is None:
|
482 |
+
encoder_hidden_states = hidden_states
|
483 |
+
elif attn.norm_cross:
|
484 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
485 |
+
|
486 |
+
key = attn.to_k(encoder_hidden_states)
|
487 |
+
value = attn.to_v(encoder_hidden_states)
|
488 |
+
|
489 |
+
|
490 |
+
query = attn.head_to_batch_dim(query)
|
491 |
+
key = attn.head_to_batch_dim(key)
|
492 |
+
value = attn.head_to_batch_dim(value)
|
493 |
+
|
494 |
+
if is_xattn and isinstance(region_state, dict):
|
495 |
+
# use torch.baddbmm method (slow)
|
496 |
+
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
497 |
+
cross_attention_weight = weight_func(region_state[img_sequence_length].to(query.device), sigma, attention_scores)
|
498 |
+
attention_scores += torch.repeat_interleave(
|
499 |
+
cross_attention_weight, repeats=attention_scores.shape[0] // cross_attention_weight.shape[0], dim=0
|
500 |
+
)
|
501 |
+
|
502 |
+
# calc probs
|
503 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
504 |
+
attention_probs = attention_probs.to(query.dtype)
|
505 |
+
hidden_states = torch.bmm(attention_probs, value)
|
506 |
+
|
507 |
+
elif xformers_available:
|
508 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
509 |
+
query.contiguous(),
|
510 |
+
key.contiguous(),
|
511 |
+
value.contiguous(),
|
512 |
+
attn_bias=attention_mask,
|
513 |
+
)
|
514 |
+
hidden_states = hidden_states.to(query.dtype)
|
515 |
+
|
516 |
+
else:
|
517 |
+
'''q_bucket_size = 512
|
518 |
+
k_bucket_size = 1024
|
519 |
+
|
520 |
+
# use flash-attention
|
521 |
+
hidden_states = FlashAttentionFunction.apply(
|
522 |
+
query.contiguous(),
|
523 |
+
key.contiguous(),
|
524 |
+
value.contiguous(),
|
525 |
+
attention_mask,
|
526 |
+
False,
|
527 |
+
q_bucket_size,
|
528 |
+
k_bucket_size,
|
529 |
+
)'''
|
530 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
531 |
+
hidden_states = torch.bmm(attention_probs, value)
|
532 |
+
hidden_states = hidden_states.to(query.dtype)
|
533 |
+
|
534 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
535 |
+
|
536 |
+
|
537 |
+
'''# for ip-adapter
|
538 |
+
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
|
539 |
+
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
|
540 |
+
):
|
541 |
+
ip_key = to_k_ip(current_ip_hidden_states)
|
542 |
+
ip_value = to_v_ip(current_ip_hidden_states)
|
543 |
+
|
544 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
545 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
546 |
+
|
547 |
+
if xformers_available:
|
548 |
+
current_ip_hidden_states = xformers.ops.memory_efficient_attention(
|
549 |
+
query.contiguous(),
|
550 |
+
ip_key.contiguous(),
|
551 |
+
ip_value.contiguous(),
|
552 |
+
attn_bias=None,
|
553 |
+
)
|
554 |
+
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
|
555 |
+
else:
|
556 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
557 |
+
current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
558 |
+
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
|
559 |
+
|
560 |
+
current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
|
561 |
+
hidden_states = hidden_states + scale * current_ip_hidden_states'''
|
562 |
+
|
563 |
+
#control region apply ip-adapter
|
564 |
+
if ip_adapter_masks is not None:
|
565 |
+
if not isinstance(ip_adapter_masks, List):
|
566 |
+
# for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
|
567 |
+
ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
|
568 |
+
if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
|
569 |
+
raise ValueError(
|
570 |
+
f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
|
571 |
+
f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
|
572 |
+
f"({len(ip_hidden_states)})"
|
573 |
+
)
|
574 |
+
else:
|
575 |
+
for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
|
576 |
+
if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
|
577 |
+
raise ValueError(
|
578 |
+
"Each element of the ip_adapter_masks array should be a tensor with shape "
|
579 |
+
"[1, num_images_for_ip_adapter, height, width]."
|
580 |
+
" Please use `IPAdapterMaskProcessor` to preprocess your mask"
|
581 |
+
)
|
582 |
+
if mask.shape[1] != ip_state.shape[1]:
|
583 |
+
raise ValueError(
|
584 |
+
f"Number of masks ({mask.shape[1]}) does not match "
|
585 |
+
f"number of ip images ({ip_state.shape[1]}) at index {index}"
|
586 |
+
)
|
587 |
+
if isinstance(scale, list) and not len(scale) == mask.shape[1]:
|
588 |
+
raise ValueError(
|
589 |
+
f"Number of masks ({mask.shape[1]}) does not match "
|
590 |
+
f"number of scales ({len(scale)}) at index {index}"
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
ip_adapter_masks = [None] * len(self.scale)
|
594 |
+
|
595 |
+
# for ip-adapter
|
596 |
+
for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
|
597 |
+
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
|
598 |
+
):
|
599 |
+
skip = False
|
600 |
+
if isinstance(scale, list):
|
601 |
+
if all(s == 0 for s in scale):
|
602 |
+
skip = True
|
603 |
+
elif scale == 0:
|
604 |
+
skip = True
|
605 |
+
if not skip:
|
606 |
+
if mask is not None:
|
607 |
+
if not isinstance(scale, list):
|
608 |
+
scale = [scale] * mask.shape[1]
|
609 |
+
|
610 |
+
current_num_images = mask.shape[1]
|
611 |
+
for i in range(current_num_images):
|
612 |
+
ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
|
613 |
+
ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
|
614 |
+
|
615 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
616 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
617 |
+
|
618 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
619 |
+
_current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
620 |
+
_current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)
|
621 |
+
|
622 |
+
mask_downsample = IPAdapterMaskProcessor.downsample(
|
623 |
+
mask[:, i, :, :],
|
624 |
+
batch_size,
|
625 |
+
_current_ip_hidden_states.shape[1],
|
626 |
+
_current_ip_hidden_states.shape[2],
|
627 |
+
)
|
628 |
+
|
629 |
+
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
|
630 |
+
|
631 |
+
hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
|
632 |
+
else:
|
633 |
+
ip_key = to_k_ip(current_ip_hidden_states)
|
634 |
+
ip_value = to_v_ip(current_ip_hidden_states)
|
635 |
+
|
636 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
637 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
638 |
+
|
639 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
640 |
+
current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
641 |
+
current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
|
642 |
+
|
643 |
+
hidden_states = hidden_states + scale * current_ip_hidden_states
|
644 |
+
|
645 |
+
# linear proj
|
646 |
+
hidden_states = attn.to_out[0](hidden_states)
|
647 |
+
|
648 |
+
# dropout
|
649 |
+
hidden_states = attn.to_out[1](hidden_states)
|
650 |
+
|
651 |
+
if input_ndim == 4:
|
652 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
653 |
+
|
654 |
+
if attn.residual_connection:
|
655 |
+
hidden_states = hidden_states + residual
|
656 |
+
|
657 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
658 |
+
|
659 |
+
return hidden_states
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
class AttnProcessor2_0:
|
664 |
+
r"""
|
665 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
666 |
+
"""
|
667 |
+
|
668 |
+
def __init__(self):
|
669 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
670 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
671 |
+
|
672 |
+
def __call__(
|
673 |
+
self,
|
674 |
+
attn,
|
675 |
+
hidden_states: torch.Tensor,
|
676 |
+
encoder_hidden_states = None,
|
677 |
+
attention_mask: Optional[torch.Tensor] = None,
|
678 |
+
temb: Optional[torch.Tensor] = None,
|
679 |
+
region_prompt = None,
|
680 |
+
ip_adapter_masks = None,
|
681 |
+
*args,
|
682 |
+
**kwargs,
|
683 |
+
) -> torch.Tensor:
|
684 |
+
|
685 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
686 |
+
|
687 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
688 |
+
|
689 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
690 |
+
|
691 |
+
residual = hidden_states
|
692 |
+
|
693 |
+
#_,img_sequence_length,_ = hidden_states.shape
|
694 |
+
img_sequence_length= hidden_states.shape[1]
|
695 |
+
if attn.spatial_norm is not None:
|
696 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
697 |
+
|
698 |
+
input_ndim = hidden_states.ndim
|
699 |
+
|
700 |
+
if input_ndim == 4:
|
701 |
+
batch_size, channel, height, width = hidden_states.shape
|
702 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
703 |
+
|
704 |
+
is_xattn = False
|
705 |
+
if encoder_hidden_states is not None and region_prompt is not None:
|
706 |
+
is_xattn = True
|
707 |
+
region_state = region_prompt["region_state"]
|
708 |
+
weight_func = region_prompt["weight_func"]
|
709 |
+
sigma = region_prompt["sigma"]
|
710 |
+
|
711 |
+
batch_size, sequence_length, _ = (
|
712 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
713 |
+
)
|
714 |
+
|
715 |
+
if attention_mask is not None:
|
716 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
717 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
718 |
+
# (batch, heads, source_length, target_length)
|
719 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
720 |
+
|
721 |
+
if attn.group_norm is not None:
|
722 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
723 |
+
|
724 |
+
query = attn.to_q(hidden_states)
|
725 |
+
|
726 |
+
if encoder_hidden_states is None:
|
727 |
+
encoder_hidden_states = hidden_states
|
728 |
+
elif attn.norm_cross:
|
729 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
730 |
+
|
731 |
+
key = attn.to_k(encoder_hidden_states)
|
732 |
+
value = attn.to_v(encoder_hidden_states)
|
733 |
+
|
734 |
+
inner_dim = key.shape[-1]
|
735 |
+
head_dim = inner_dim // attn.heads
|
736 |
+
|
737 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
738 |
+
|
739 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
740 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
741 |
+
|
742 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
743 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
744 |
+
|
745 |
+
if is_xattn and isinstance(region_state, dict):
|
746 |
+
#w = attn.head_to_batch_dim(w,out_dim = 4).transpose(1, 2)
|
747 |
+
hidden_states = scaled_dot_product_attention_regionstate(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,weight_func = weight_func,region_state=region_state[img_sequence_length].to(query.device),sigma = sigma)
|
748 |
+
else:
|
749 |
+
hidden_states = F.scaled_dot_product_attention(
|
750 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
751 |
+
)
|
752 |
+
|
753 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
754 |
+
hidden_states = hidden_states.to(query.dtype)
|
755 |
+
|
756 |
+
# linear proj
|
757 |
+
hidden_states = attn.to_out[0](hidden_states)
|
758 |
+
# dropout
|
759 |
+
hidden_states = attn.to_out[1](hidden_states)
|
760 |
+
|
761 |
+
if input_ndim == 4:
|
762 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
763 |
+
|
764 |
+
if attn.residual_connection:
|
765 |
+
hidden_states = hidden_states + residual
|
766 |
+
|
767 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
768 |
+
|
769 |
+
return hidden_states
|
770 |
+
|
771 |
+
|
772 |
+
class IPAdapterAttnProcessor2_0(torch.nn.Module):
|
773 |
+
r"""
|
774 |
+
Attention processor for IP-Adapter for PyTorch 2.0.
|
775 |
+
|
776 |
+
Args:
|
777 |
+
hidden_size (`int`):
|
778 |
+
The hidden size of the attention layer.
|
779 |
+
cross_attention_dim (`int`):
|
780 |
+
The number of channels in the `encoder_hidden_states`.
|
781 |
+
num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
|
782 |
+
The context length of the image features.
|
783 |
+
scale (`float` or `List[float]`, defaults to 1.0):
|
784 |
+
the weight scale of image prompt.
|
785 |
+
"""
|
786 |
+
|
787 |
+
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
|
788 |
+
super().__init__()
|
789 |
+
|
790 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
791 |
+
raise ImportError(
|
792 |
+
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
793 |
+
)
|
794 |
+
|
795 |
+
self.hidden_size = hidden_size
|
796 |
+
self.cross_attention_dim = cross_attention_dim
|
797 |
+
|
798 |
+
if not isinstance(num_tokens, (tuple, list)):
|
799 |
+
num_tokens = [num_tokens]
|
800 |
+
self.num_tokens = num_tokens
|
801 |
+
|
802 |
+
if not isinstance(scale, list):
|
803 |
+
scale = [scale] * len(num_tokens)
|
804 |
+
if len(scale) != len(num_tokens):
|
805 |
+
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
|
806 |
+
self.scale = scale
|
807 |
+
|
808 |
+
self.to_k_ip = nn.ModuleList(
|
809 |
+
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
|
810 |
+
)
|
811 |
+
self.to_v_ip = nn.ModuleList(
|
812 |
+
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
|
813 |
+
)
|
814 |
+
|
815 |
+
def __call__(
|
816 |
+
self,
|
817 |
+
attn,
|
818 |
+
hidden_states,
|
819 |
+
encoder_hidden_states=None,
|
820 |
+
attention_mask=None,
|
821 |
+
temb=None,
|
822 |
+
scale=1.0,
|
823 |
+
region_prompt = None,
|
824 |
+
ip_adapter_masks = None,
|
825 |
+
):
|
826 |
+
residual = hidden_states
|
827 |
+
|
828 |
+
#_,img_sequence_length,_ = hidden_states.shape
|
829 |
+
img_sequence_length= hidden_states.shape[1]
|
830 |
+
|
831 |
+
is_xattn = False
|
832 |
+
if encoder_hidden_states is not None and region_prompt is not None:
|
833 |
+
is_xattn = True
|
834 |
+
region_state = region_prompt["region_state"]
|
835 |
+
weight_func = region_prompt["weight_func"]
|
836 |
+
sigma = region_prompt["sigma"]
|
837 |
+
|
838 |
+
# separate ip_hidden_states from encoder_hidden_states
|
839 |
+
if encoder_hidden_states is not None:
|
840 |
+
if isinstance(encoder_hidden_states, tuple):
|
841 |
+
encoder_hidden_states, ip_hidden_states = encoder_hidden_states
|
842 |
+
else:
|
843 |
+
deprecation_message = (
|
844 |
+
"You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
|
845 |
+
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
|
846 |
+
)
|
847 |
+
deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
|
848 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
|
849 |
+
encoder_hidden_states, ip_hidden_states = (
|
850 |
+
encoder_hidden_states[:, :end_pos, :],
|
851 |
+
[encoder_hidden_states[:, end_pos:, :]],
|
852 |
+
)
|
853 |
+
|
854 |
+
if attn.spatial_norm is not None:
|
855 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
856 |
+
|
857 |
+
input_ndim = hidden_states.ndim
|
858 |
+
|
859 |
+
if input_ndim == 4:
|
860 |
+
batch_size, channel, height, width = hidden_states.shape
|
861 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
862 |
+
|
863 |
+
|
864 |
+
|
865 |
+
|
866 |
+
batch_size, sequence_length, _ = (
|
867 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
868 |
+
)
|
869 |
+
|
870 |
+
if attention_mask is not None:
|
871 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
872 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
873 |
+
# (batch, heads, source_length, target_length)
|
874 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
875 |
+
|
876 |
+
if attn.group_norm is not None:
|
877 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
878 |
+
|
879 |
+
query = attn.to_q(hidden_states)
|
880 |
+
|
881 |
+
if encoder_hidden_states is None:
|
882 |
+
encoder_hidden_states = hidden_states
|
883 |
+
elif attn.norm_cross:
|
884 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
885 |
+
|
886 |
+
|
887 |
+
key = attn.to_k(encoder_hidden_states)
|
888 |
+
value = attn.to_v(encoder_hidden_states)
|
889 |
+
|
890 |
+
inner_dim = key.shape[-1]
|
891 |
+
head_dim = inner_dim // attn.heads
|
892 |
+
|
893 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
894 |
+
|
895 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
896 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
897 |
+
|
898 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
899 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
900 |
+
|
901 |
+
if is_xattn and isinstance(region_state, dict):
|
902 |
+
#w = attn.head_to_batch_dim(w,out_dim = 4).transpose(1, 2)
|
903 |
+
hidden_states = scaled_dot_product_attention_regionstate(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,weight_func = weight_func,region_state=region_state[img_sequence_length].to(query.device),sigma = sigma)
|
904 |
+
else:
|
905 |
+
hidden_states = F.scaled_dot_product_attention(
|
906 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
907 |
+
)
|
908 |
+
|
909 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
910 |
+
hidden_states = hidden_states.to(query.dtype)
|
911 |
+
|
912 |
+
''''# for ip-adapter
|
913 |
+
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
|
914 |
+
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
|
915 |
+
):
|
916 |
+
ip_key = to_k_ip(current_ip_hidden_states)
|
917 |
+
ip_value = to_v_ip(current_ip_hidden_states)
|
918 |
+
|
919 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
920 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
921 |
+
|
922 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
923 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
924 |
+
current_ip_hidden_states = F.scaled_dot_product_attention(
|
925 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
926 |
+
)
|
927 |
+
|
928 |
+
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
|
929 |
+
batch_size, -1, attn.heads * head_dim
|
930 |
+
)
|
931 |
+
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
|
932 |
+
|
933 |
+
hidden_states = hidden_states + scale * current_ip_hidden_states'''
|
934 |
+
|
935 |
+
|
936 |
+
if ip_adapter_masks is not None:
|
937 |
+
if not isinstance(ip_adapter_masks, List):
|
938 |
+
# for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
|
939 |
+
ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
|
940 |
+
if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
|
941 |
+
raise ValueError(
|
942 |
+
f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
|
943 |
+
f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
|
944 |
+
f"({len(ip_hidden_states)})"
|
945 |
+
)
|
946 |
+
else:
|
947 |
+
for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
|
948 |
+
if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
|
949 |
+
raise ValueError(
|
950 |
+
"Each element of the ip_adapter_masks array should be a tensor with shape "
|
951 |
+
"[1, num_images_for_ip_adapter, height, width]."
|
952 |
+
" Please use `IPAdapterMaskProcessor` to preprocess your mask"
|
953 |
+
)
|
954 |
+
if mask.shape[1] != ip_state.shape[1]:
|
955 |
+
raise ValueError(
|
956 |
+
f"Number of masks ({mask.shape[1]}) does not match "
|
957 |
+
f"number of ip images ({ip_state.shape[1]}) at index {index}"
|
958 |
+
)
|
959 |
+
if isinstance(scale, list) and not len(scale) == mask.shape[1]:
|
960 |
+
raise ValueError(
|
961 |
+
f"Number of masks ({mask.shape[1]}) does not match "
|
962 |
+
f"number of scales ({len(scale)}) at index {index}"
|
963 |
+
)
|
964 |
+
else:
|
965 |
+
ip_adapter_masks = [None] * len(self.scale)
|
966 |
+
|
967 |
+
# for ip-adapter
|
968 |
+
for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
|
969 |
+
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
|
970 |
+
):
|
971 |
+
skip = False
|
972 |
+
if isinstance(scale, list):
|
973 |
+
if all(s == 0 for s in scale):
|
974 |
+
skip = True
|
975 |
+
elif scale == 0:
|
976 |
+
skip = True
|
977 |
+
if not skip:
|
978 |
+
if mask is not None:
|
979 |
+
if not isinstance(scale, list):
|
980 |
+
scale = [scale] * mask.shape[1]
|
981 |
+
|
982 |
+
current_num_images = mask.shape[1]
|
983 |
+
for i in range(current_num_images):
|
984 |
+
ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
|
985 |
+
ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
|
986 |
+
|
987 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
988 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
989 |
+
|
990 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
991 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
992 |
+
_current_ip_hidden_states = F.scaled_dot_product_attention(
|
993 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
994 |
+
)
|
995 |
+
|
996 |
+
_current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape(
|
997 |
+
batch_size, -1, attn.heads * head_dim
|
998 |
+
)
|
999 |
+
_current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
|
1000 |
+
|
1001 |
+
mask_downsample = IPAdapterMaskProcessor.downsample(
|
1002 |
+
mask[:, i, :, :],
|
1003 |
+
batch_size,
|
1004 |
+
_current_ip_hidden_states.shape[1],
|
1005 |
+
_current_ip_hidden_states.shape[2],
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
|
1009 |
+
hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
|
1010 |
+
else:
|
1011 |
+
ip_key = to_k_ip(current_ip_hidden_states)
|
1012 |
+
ip_value = to_v_ip(current_ip_hidden_states)
|
1013 |
+
|
1014 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1015 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1016 |
+
|
1017 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1018 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1019 |
+
current_ip_hidden_states = F.scaled_dot_product_attention(
|
1020 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
|
1024 |
+
batch_size, -1, attn.heads * head_dim
|
1025 |
+
)
|
1026 |
+
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
|
1027 |
+
|
1028 |
+
hidden_states = hidden_states + scale * current_ip_hidden_states
|
1029 |
+
|
1030 |
+
# linear proj
|
1031 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1032 |
+
# dropout
|
1033 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1034 |
+
|
1035 |
+
if input_ndim == 4:
|
1036 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1037 |
+
|
1038 |
+
if attn.residual_connection:
|
1039 |
+
hidden_states = hidden_states + residual
|
1040 |
+
|
1041 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1042 |
+
|
1043 |
+
return hidden_states
|
1044 |
+
|
modules/controlnetxs/controlnetxs.py
ADDED
@@ -0,0 +1,1017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch import nn
|
21 |
+
from torch.nn import functional as F
|
22 |
+
from torch.nn.modules.normalization import GroupNorm
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.models.attention_processor import USE_PEFT_BACKEND, AttentionProcessor
|
26 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.models.unet_2d_blocks import (
|
30 |
+
CrossAttnDownBlock2D,
|
31 |
+
CrossAttnUpBlock2D,
|
32 |
+
DownBlock2D,
|
33 |
+
Downsample2D,
|
34 |
+
ResnetBlock2D,
|
35 |
+
Transformer2DModel,
|
36 |
+
UpBlock2D,
|
37 |
+
Upsample2D,
|
38 |
+
)
|
39 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
40 |
+
from diffusers.utils import BaseOutput, logging
|
41 |
+
from modules.attention_modify import CrossAttnProcessor,IPAdapterAttnProcessor
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class ControlNetXSOutput(BaseOutput):
|
49 |
+
"""
|
50 |
+
The output of [`ControlNetXSModel`].
|
51 |
+
|
52 |
+
Args:
|
53 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
54 |
+
The output of the `ControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model
|
55 |
+
output, but is already the final output.
|
56 |
+
"""
|
57 |
+
|
58 |
+
sample: torch.FloatTensor = None
|
59 |
+
|
60 |
+
|
61 |
+
# copied from diffusers.models.controlnet.ControlNetConditioningEmbedding
|
62 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
63 |
+
"""
|
64 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
65 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
66 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
67 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
68 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
69 |
+
model) to encode image-space conditions ... into feature maps ..."
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
conditioning_embedding_channels: int,
|
75 |
+
conditioning_channels: int = 3,
|
76 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
81 |
+
|
82 |
+
self.blocks = nn.ModuleList([])
|
83 |
+
|
84 |
+
for i in range(len(block_out_channels) - 1):
|
85 |
+
channel_in = block_out_channels[i]
|
86 |
+
channel_out = block_out_channels[i + 1]
|
87 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
88 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
89 |
+
|
90 |
+
self.conv_out = zero_module(
|
91 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
92 |
+
)
|
93 |
+
|
94 |
+
def forward(self, conditioning):
|
95 |
+
embedding = self.conv_in(conditioning)
|
96 |
+
embedding = F.silu(embedding)
|
97 |
+
|
98 |
+
for block in self.blocks:
|
99 |
+
embedding = block(embedding)
|
100 |
+
embedding = F.silu(embedding)
|
101 |
+
|
102 |
+
embedding = self.conv_out(embedding)
|
103 |
+
|
104 |
+
return embedding
|
105 |
+
|
106 |
+
|
107 |
+
class ControlNetXSModel(ModelMixin, ConfigMixin):
|
108 |
+
r"""
|
109 |
+
A ControlNet-XS model
|
110 |
+
|
111 |
+
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
|
112 |
+
methods implemented for all models (such as downloading or saving).
|
113 |
+
|
114 |
+
Most of parameters for this model are passed into the [`UNet2DConditionModel`] it creates. Check the documentation
|
115 |
+
of [`UNet2DConditionModel`] for them.
|
116 |
+
|
117 |
+
Parameters:
|
118 |
+
conditioning_channels (`int`, defaults to 3):
|
119 |
+
Number of channels of conditioning input (e.g. an image)
|
120 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
121 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
122 |
+
conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
123 |
+
The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
|
124 |
+
time_embedding_input_dim (`int`, defaults to 320):
|
125 |
+
Dimension of input into time embedding. Needs to be same as in the base model.
|
126 |
+
time_embedding_dim (`int`, defaults to 1280):
|
127 |
+
Dimension of output from time embedding. Needs to be same as in the base model.
|
128 |
+
learn_embedding (`bool`, defaults to `False`):
|
129 |
+
Whether to use time embedding of the control model. If yes, the time embedding is a linear interpolation of
|
130 |
+
the time embeddings of the control and base model with interpolation parameter `time_embedding_mix**3`.
|
131 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
132 |
+
Linear interpolation parameter used if `learn_embedding` is `True`. A value of 1.0 means only the
|
133 |
+
control model's time embedding will be used. A value of 0.0 means only the base model's time embedding will be used.
|
134 |
+
base_model_channel_sizes (`Dict[str, List[Tuple[int]]]`):
|
135 |
+
Channel sizes of each subblock of base model. Use `gather_subblock_sizes` on your base model to compute it.
|
136 |
+
"""
|
137 |
+
|
138 |
+
@classmethod
|
139 |
+
def init_original(cls, base_model: UNet2DConditionModel, is_sdxl=True):
|
140 |
+
"""
|
141 |
+
Create a ControlNetXS model with the same parameters as in the original paper (https://github.com/vislearn/ControlNet-XS).
|
142 |
+
|
143 |
+
Parameters:
|
144 |
+
base_model (`UNet2DConditionModel`):
|
145 |
+
Base UNet model. Needs to be either StableDiffusion or StableDiffusion-XL.
|
146 |
+
is_sdxl (`bool`, defaults to `True`):
|
147 |
+
Whether passed `base_model` is a StableDiffusion-XL model.
|
148 |
+
"""
|
149 |
+
|
150 |
+
def get_dim_attn_heads(base_model: UNet2DConditionModel, size_ratio: float, num_attn_heads: int):
|
151 |
+
"""
|
152 |
+
Currently, diffusers can only set the dimension of attention heads (see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why).
|
153 |
+
The original ControlNet-XS model, however, define the number of attention heads.
|
154 |
+
That's why compute the dimensions needed to get the correct number of attention heads.
|
155 |
+
"""
|
156 |
+
block_out_channels = [int(size_ratio * c) for c in base_model.config.block_out_channels]
|
157 |
+
dim_attn_heads = [math.ceil(c / num_attn_heads) for c in block_out_channels]
|
158 |
+
return dim_attn_heads
|
159 |
+
|
160 |
+
if is_sdxl:
|
161 |
+
return ControlNetXSModel.from_unet(
|
162 |
+
base_model,
|
163 |
+
time_embedding_mix=0.95,
|
164 |
+
learn_embedding=True,
|
165 |
+
size_ratio=0.1,
|
166 |
+
conditioning_embedding_out_channels=(16, 32, 96, 256),
|
167 |
+
num_attention_heads=get_dim_attn_heads(base_model, 0.1, 64),
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
return ControlNetXSModel.from_unet(
|
171 |
+
base_model,
|
172 |
+
time_embedding_mix=1.0,
|
173 |
+
learn_embedding=True,
|
174 |
+
size_ratio=0.0125,
|
175 |
+
conditioning_embedding_out_channels=(16, 32, 96, 256),
|
176 |
+
num_attention_heads=get_dim_attn_heads(base_model, 0.0125, 8),
|
177 |
+
)
|
178 |
+
|
179 |
+
@classmethod
|
180 |
+
def _gather_subblock_sizes(cls, unet: UNet2DConditionModel, base_or_control: str):
|
181 |
+
"""To create correctly sized connections between base and control model, we need to know
|
182 |
+
the input and output channels of each subblock.
|
183 |
+
|
184 |
+
Parameters:
|
185 |
+
unet (`UNet2DConditionModel`):
|
186 |
+
Unet of which the subblock channels sizes are to be gathered.
|
187 |
+
base_or_control (`str`):
|
188 |
+
Needs to be either "base" or "control". If "base", decoder is also considered.
|
189 |
+
"""
|
190 |
+
if base_or_control not in ["base", "control"]:
|
191 |
+
raise ValueError("`base_or_control` needs to be either `base` or `control`")
|
192 |
+
|
193 |
+
channel_sizes = {"down": [], "mid": [], "up": []}
|
194 |
+
|
195 |
+
# input convolution
|
196 |
+
channel_sizes["down"].append((unet.conv_in.in_channels, unet.conv_in.out_channels))
|
197 |
+
|
198 |
+
# encoder blocks
|
199 |
+
for module in unet.down_blocks:
|
200 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
201 |
+
for r in module.resnets:
|
202 |
+
channel_sizes["down"].append((r.in_channels, r.out_channels))
|
203 |
+
if module.downsamplers:
|
204 |
+
channel_sizes["down"].append(
|
205 |
+
(module.downsamplers[0].channels, module.downsamplers[0].out_channels)
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
raise ValueError(f"Encountered unknown module of type {type(module)} while creating ControlNet-XS.")
|
209 |
+
|
210 |
+
# middle block
|
211 |
+
channel_sizes["mid"].append((unet.mid_block.resnets[0].in_channels, unet.mid_block.resnets[0].out_channels))
|
212 |
+
|
213 |
+
# decoder blocks
|
214 |
+
if base_or_control == "base":
|
215 |
+
for module in unet.up_blocks:
|
216 |
+
if isinstance(module, (CrossAttnUpBlock2D, UpBlock2D)):
|
217 |
+
for r in module.resnets:
|
218 |
+
channel_sizes["up"].append((r.in_channels, r.out_channels))
|
219 |
+
else:
|
220 |
+
raise ValueError(
|
221 |
+
f"Encountered unknown module of type {type(module)} while creating ControlNet-XS."
|
222 |
+
)
|
223 |
+
|
224 |
+
return channel_sizes
|
225 |
+
|
226 |
+
@register_to_config
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
conditioning_channels: int = 3,
|
230 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
231 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
232 |
+
time_embedding_input_dim: int = 320,
|
233 |
+
time_embedding_dim: int = 1280,
|
234 |
+
time_embedding_mix: float = 1.0,
|
235 |
+
learn_embedding: bool = False,
|
236 |
+
base_model_channel_sizes: Dict[str, List[Tuple[int]]] = {
|
237 |
+
"down": [
|
238 |
+
(4, 320),
|
239 |
+
(320, 320),
|
240 |
+
(320, 320),
|
241 |
+
(320, 320),
|
242 |
+
(320, 640),
|
243 |
+
(640, 640),
|
244 |
+
(640, 640),
|
245 |
+
(640, 1280),
|
246 |
+
(1280, 1280),
|
247 |
+
],
|
248 |
+
"mid": [(1280, 1280)],
|
249 |
+
"up": [
|
250 |
+
(2560, 1280),
|
251 |
+
(2560, 1280),
|
252 |
+
(1920, 1280),
|
253 |
+
(1920, 640),
|
254 |
+
(1280, 640),
|
255 |
+
(960, 640),
|
256 |
+
(960, 320),
|
257 |
+
(640, 320),
|
258 |
+
(640, 320),
|
259 |
+
],
|
260 |
+
},
|
261 |
+
sample_size: Optional[int] = None,
|
262 |
+
down_block_types: Tuple[str] = (
|
263 |
+
"CrossAttnDownBlock2D",
|
264 |
+
"CrossAttnDownBlock2D",
|
265 |
+
"CrossAttnDownBlock2D",
|
266 |
+
"DownBlock2D",
|
267 |
+
),
|
268 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
269 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
270 |
+
norm_num_groups: Optional[int] = 32,
|
271 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
272 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
273 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = 8,
|
274 |
+
upcast_attention: bool = False,
|
275 |
+
):
|
276 |
+
super().__init__()
|
277 |
+
|
278 |
+
# 1 - Create control unet
|
279 |
+
self.control_model = UNet2DConditionModel(
|
280 |
+
sample_size=sample_size,
|
281 |
+
down_block_types=down_block_types,
|
282 |
+
up_block_types=up_block_types,
|
283 |
+
block_out_channels=block_out_channels,
|
284 |
+
norm_num_groups=norm_num_groups,
|
285 |
+
cross_attention_dim=cross_attention_dim,
|
286 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
287 |
+
attention_head_dim=num_attention_heads,
|
288 |
+
use_linear_projection=True,
|
289 |
+
upcast_attention=upcast_attention,
|
290 |
+
time_embedding_dim=time_embedding_dim,
|
291 |
+
)
|
292 |
+
|
293 |
+
# 2 - Do model surgery on control model
|
294 |
+
# 2.1 - Allow to use the same time information as the base model
|
295 |
+
adjust_time_dims(self.control_model, time_embedding_input_dim, time_embedding_dim)
|
296 |
+
|
297 |
+
# 2.2 - Allow for information infusion from base model
|
298 |
+
|
299 |
+
# We concat the output of each base encoder subblocks to the input of the next control encoder subblock
|
300 |
+
# (We ignore the 1st element, as it represents the `conv_in`.)
|
301 |
+
extra_input_channels = [input_channels for input_channels, _ in base_model_channel_sizes["down"][1:]]
|
302 |
+
it_extra_input_channels = iter(extra_input_channels)
|
303 |
+
|
304 |
+
for b, block in enumerate(self.control_model.down_blocks):
|
305 |
+
for r in range(len(block.resnets)):
|
306 |
+
increase_block_input_in_encoder_resnet(
|
307 |
+
self.control_model, block_no=b, resnet_idx=r, by=next(it_extra_input_channels)
|
308 |
+
)
|
309 |
+
|
310 |
+
if block.downsamplers:
|
311 |
+
increase_block_input_in_encoder_downsampler(
|
312 |
+
self.control_model, block_no=b, by=next(it_extra_input_channels)
|
313 |
+
)
|
314 |
+
|
315 |
+
increase_block_input_in_mid_resnet(self.control_model, by=extra_input_channels[-1])
|
316 |
+
|
317 |
+
# 2.3 - Make group norms work with modified channel sizes
|
318 |
+
adjust_group_norms(self.control_model)
|
319 |
+
|
320 |
+
# 3 - Gather Channel Sizes
|
321 |
+
self.ch_inout_ctrl = ControlNetXSModel._gather_subblock_sizes(self.control_model, base_or_control="control")
|
322 |
+
self.ch_inout_base = base_model_channel_sizes
|
323 |
+
|
324 |
+
# 4 - Build connections between base and control model
|
325 |
+
self.down_zero_convs_out = nn.ModuleList([])
|
326 |
+
self.down_zero_convs_in = nn.ModuleList([])
|
327 |
+
self.middle_block_out = nn.ModuleList([])
|
328 |
+
self.middle_block_in = nn.ModuleList([])
|
329 |
+
self.up_zero_convs_out = nn.ModuleList([])
|
330 |
+
self.up_zero_convs_in = nn.ModuleList([])
|
331 |
+
|
332 |
+
for ch_io_base in self.ch_inout_base["down"]:
|
333 |
+
self.down_zero_convs_in.append(self._make_zero_conv(in_channels=ch_io_base[1], out_channels=ch_io_base[1]))
|
334 |
+
for i in range(len(self.ch_inout_ctrl["down"])):
|
335 |
+
self.down_zero_convs_out.append(
|
336 |
+
self._make_zero_conv(self.ch_inout_ctrl["down"][i][1], self.ch_inout_base["down"][i][1])
|
337 |
+
)
|
338 |
+
|
339 |
+
self.middle_block_out = self._make_zero_conv(
|
340 |
+
self.ch_inout_ctrl["mid"][-1][1], self.ch_inout_base["mid"][-1][1]
|
341 |
+
)
|
342 |
+
|
343 |
+
self.up_zero_convs_out.append(
|
344 |
+
self._make_zero_conv(self.ch_inout_ctrl["down"][-1][1], self.ch_inout_base["mid"][-1][1])
|
345 |
+
)
|
346 |
+
for i in range(1, len(self.ch_inout_ctrl["down"])):
|
347 |
+
self.up_zero_convs_out.append(
|
348 |
+
self._make_zero_conv(self.ch_inout_ctrl["down"][-(i + 1)][1], self.ch_inout_base["up"][i - 1][1])
|
349 |
+
)
|
350 |
+
|
351 |
+
# 5 - Create conditioning hint embedding
|
352 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
353 |
+
conditioning_embedding_channels=block_out_channels[0],
|
354 |
+
block_out_channels=conditioning_embedding_out_channels,
|
355 |
+
conditioning_channels=conditioning_channels,
|
356 |
+
)
|
357 |
+
|
358 |
+
# In the mininal implementation setting, we only need the control model up to the mid block
|
359 |
+
del self.control_model.up_blocks
|
360 |
+
del self.control_model.conv_norm_out
|
361 |
+
del self.control_model.conv_out
|
362 |
+
|
363 |
+
@classmethod
|
364 |
+
def from_unet(
|
365 |
+
cls,
|
366 |
+
unet: UNet2DConditionModel,
|
367 |
+
conditioning_channels: int = 3,
|
368 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
369 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
370 |
+
learn_embedding: bool = False,
|
371 |
+
time_embedding_mix: float = 1.0,
|
372 |
+
block_out_channels: Optional[Tuple[int]] = None,
|
373 |
+
size_ratio: Optional[float] = None,
|
374 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = 8,
|
375 |
+
norm_num_groups: Optional[int] = None,
|
376 |
+
):
|
377 |
+
r"""
|
378 |
+
Instantiate a [`ControlNetXSModel`] from [`UNet2DConditionModel`].
|
379 |
+
|
380 |
+
Parameters:
|
381 |
+
unet (`UNet2DConditionModel`):
|
382 |
+
The UNet model we want to control. The dimensions of the ControlNetXSModel will be adapted to it.
|
383 |
+
conditioning_channels (`int`, defaults to 3):
|
384 |
+
Number of channels of conditioning input (e.g. an image)
|
385 |
+
conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
386 |
+
The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
|
387 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
388 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
389 |
+
learn_embedding (`bool`, defaults to `False`):
|
390 |
+
Wether to use time embedding of the control model. If yes, the time embedding is a linear interpolation
|
391 |
+
of the time embeddings of the control and base model with interpolation parameter
|
392 |
+
`time_embedding_mix**3`.
|
393 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
394 |
+
Linear interpolation parameter used if `learn_embedding` is `True`.
|
395 |
+
block_out_channels (`Tuple[int]`, *optional*):
|
396 |
+
Down blocks output channels in control model. Either this or `size_ratio` must be given.
|
397 |
+
size_ratio (float, *optional*):
|
398 |
+
When given, block_out_channels is set to a relative fraction of the base model's block_out_channels.
|
399 |
+
Either this or `block_out_channels` must be given.
|
400 |
+
num_attention_heads (`Union[int, Tuple[int]]`, *optional*):
|
401 |
+
The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
402 |
+
norm_num_groups (int, *optional*, defaults to `None`):
|
403 |
+
The number of groups to use for the normalization of the control unet. If `None`,
|
404 |
+
`int(unet.config.norm_num_groups * size_ratio)` is taken.
|
405 |
+
"""
|
406 |
+
|
407 |
+
# Check input
|
408 |
+
fixed_size = block_out_channels is not None
|
409 |
+
relative_size = size_ratio is not None
|
410 |
+
if not (fixed_size ^ relative_size):
|
411 |
+
raise ValueError(
|
412 |
+
"Pass exactly one of `block_out_channels` (for absolute sizing) or `control_model_ratio` (for relative sizing)."
|
413 |
+
)
|
414 |
+
|
415 |
+
# Create model
|
416 |
+
if block_out_channels is None:
|
417 |
+
block_out_channels = [int(size_ratio * c) for c in unet.config.block_out_channels]
|
418 |
+
|
419 |
+
# Check that attention heads and group norms match channel sizes
|
420 |
+
# - attention heads
|
421 |
+
def attn_heads_match_channel_sizes(attn_heads, channel_sizes):
|
422 |
+
if isinstance(attn_heads, (tuple, list)):
|
423 |
+
return all(c % a == 0 for a, c in zip(attn_heads, channel_sizes))
|
424 |
+
else:
|
425 |
+
return all(c % attn_heads == 0 for c in channel_sizes)
|
426 |
+
|
427 |
+
num_attention_heads = num_attention_heads or unet.config.attention_head_dim
|
428 |
+
if not attn_heads_match_channel_sizes(num_attention_heads, block_out_channels):
|
429 |
+
raise ValueError(
|
430 |
+
f"The dimension of attention heads ({num_attention_heads}) must divide `block_out_channels` ({block_out_channels}). If you didn't set `num_attention_heads` the default settings don't match your model. Set `num_attention_heads` manually."
|
431 |
+
)
|
432 |
+
|
433 |
+
# - group norms
|
434 |
+
def group_norms_match_channel_sizes(num_groups, channel_sizes):
|
435 |
+
return all(c % num_groups == 0 for c in channel_sizes)
|
436 |
+
|
437 |
+
if norm_num_groups is None:
|
438 |
+
if group_norms_match_channel_sizes(unet.config.norm_num_groups, block_out_channels):
|
439 |
+
norm_num_groups = unet.config.norm_num_groups
|
440 |
+
else:
|
441 |
+
norm_num_groups = min(block_out_channels)
|
442 |
+
|
443 |
+
if group_norms_match_channel_sizes(norm_num_groups, block_out_channels):
|
444 |
+
print(
|
445 |
+
f"`norm_num_groups` was set to `min(block_out_channels)` (={norm_num_groups}) so it divides all block_out_channels` ({block_out_channels}). Set it explicitly to remove this information."
|
446 |
+
)
|
447 |
+
else:
|
448 |
+
raise ValueError(
|
449 |
+
f"`block_out_channels` ({block_out_channels}) don't match the base models `norm_num_groups` ({unet.config.norm_num_groups}). Setting `norm_num_groups` to `min(block_out_channels)` ({norm_num_groups}) didn't fix this. Pass `norm_num_groups` explicitly so it divides all block_out_channels."
|
450 |
+
)
|
451 |
+
|
452 |
+
def get_time_emb_input_dim(unet: UNet2DConditionModel):
|
453 |
+
return unet.time_embedding.linear_1.in_features
|
454 |
+
|
455 |
+
def get_time_emb_dim(unet: UNet2DConditionModel):
|
456 |
+
return unet.time_embedding.linear_2.out_features
|
457 |
+
|
458 |
+
# Clone params from base unet if
|
459 |
+
# (i) it's required to build SD or SDXL, and
|
460 |
+
# (ii) it's not used for the time embedding (as time embedding of control model is never used), and
|
461 |
+
# (iii) it's not set further below anyway
|
462 |
+
to_keep = [
|
463 |
+
"cross_attention_dim",
|
464 |
+
"down_block_types",
|
465 |
+
"sample_size",
|
466 |
+
"transformer_layers_per_block",
|
467 |
+
"up_block_types",
|
468 |
+
"upcast_attention",
|
469 |
+
]
|
470 |
+
kwargs = {k: v for k, v in dict(unet.config).items() if k in to_keep}
|
471 |
+
kwargs.update(block_out_channels=block_out_channels)
|
472 |
+
kwargs.update(num_attention_heads=num_attention_heads)
|
473 |
+
kwargs.update(norm_num_groups=norm_num_groups)
|
474 |
+
|
475 |
+
# Add controlnetxs-specific params
|
476 |
+
kwargs.update(
|
477 |
+
conditioning_channels=conditioning_channels,
|
478 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
479 |
+
time_embedding_input_dim=get_time_emb_input_dim(unet),
|
480 |
+
time_embedding_dim=get_time_emb_dim(unet),
|
481 |
+
time_embedding_mix=time_embedding_mix,
|
482 |
+
learn_embedding=learn_embedding,
|
483 |
+
base_model_channel_sizes=ControlNetXSModel._gather_subblock_sizes(unet, base_or_control="base"),
|
484 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
485 |
+
)
|
486 |
+
|
487 |
+
return cls(**kwargs)
|
488 |
+
|
489 |
+
@property
|
490 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
491 |
+
r"""
|
492 |
+
Returns:
|
493 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
494 |
+
indexed by its weight name.
|
495 |
+
"""
|
496 |
+
return self.control_model.attn_processors
|
497 |
+
|
498 |
+
def set_attn_processor(
|
499 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
500 |
+
):
|
501 |
+
r"""
|
502 |
+
Sets the attention processor to use to compute attention.
|
503 |
+
|
504 |
+
Parameters:
|
505 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
506 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
507 |
+
for **all** `Attention` layers.
|
508 |
+
|
509 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
510 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
511 |
+
|
512 |
+
"""
|
513 |
+
self.control_model.set_attn_processor(processor, _remove_lora)
|
514 |
+
|
515 |
+
def set_default_attn_processor(self):
|
516 |
+
"""
|
517 |
+
Disables custom attention processors and sets the default attention implementation.
|
518 |
+
"""
|
519 |
+
self.control_model.set_default_attn_processor()
|
520 |
+
|
521 |
+
def set_attention_slice(self, slice_size):
|
522 |
+
r"""
|
523 |
+
Enable sliced attention computation.
|
524 |
+
|
525 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
526 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
527 |
+
|
528 |
+
Args:
|
529 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
530 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
531 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
532 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
533 |
+
must be a multiple of `slice_size`.
|
534 |
+
"""
|
535 |
+
self.control_model.set_attention_slice(slice_size)
|
536 |
+
|
537 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
538 |
+
if isinstance(module, (UNet2DConditionModel)):
|
539 |
+
if value:
|
540 |
+
module.enable_gradient_checkpointing()
|
541 |
+
else:
|
542 |
+
module.disable_gradient_checkpointing()
|
543 |
+
|
544 |
+
def forward(
|
545 |
+
self,
|
546 |
+
base_model: UNet2DConditionModel,
|
547 |
+
sample: torch.FloatTensor,
|
548 |
+
timestep: Union[torch.Tensor, float, int],
|
549 |
+
encoder_hidden_states: Dict,
|
550 |
+
controlnet_cond: torch.Tensor,
|
551 |
+
conditioning_scale: float = 1.0,
|
552 |
+
class_labels: Optional[torch.Tensor] = None,
|
553 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
554 |
+
attention_mask: Optional[torch.Tensor] = None,
|
555 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
556 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
557 |
+
return_dict: bool = True,
|
558 |
+
) -> Union[ControlNetXSOutput, Tuple]:
|
559 |
+
"""
|
560 |
+
The [`ControlNetModel`] forward method.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
base_model (`UNet2DConditionModel`):
|
564 |
+
The base unet model we want to control.
|
565 |
+
sample (`torch.FloatTensor`):
|
566 |
+
The noisy input tensor.
|
567 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
568 |
+
The number of timesteps to denoise an input.
|
569 |
+
encoder_hidden_states (`torch.Tensor`):
|
570 |
+
The encoder hidden states.
|
571 |
+
controlnet_cond (`torch.FloatTensor`):
|
572 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
573 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
574 |
+
How much the control model affects the base model outputs.
|
575 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
576 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
577 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
578 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
579 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
580 |
+
embeddings.
|
581 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
582 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
583 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
584 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
585 |
+
added_cond_kwargs (`dict`):
|
586 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
587 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
588 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
589 |
+
return_dict (`bool`, defaults to `True`):
|
590 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
591 |
+
|
592 |
+
Returns:
|
593 |
+
[`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
|
594 |
+
If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
|
595 |
+
tuple is returned where the first element is the sample tensor.
|
596 |
+
"""
|
597 |
+
# check channel order
|
598 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
599 |
+
|
600 |
+
if channel_order == "rgb":
|
601 |
+
# in rgb order by default
|
602 |
+
...
|
603 |
+
elif channel_order == "bgr":
|
604 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
605 |
+
else:
|
606 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
607 |
+
|
608 |
+
# scale control strength
|
609 |
+
n_connections = len(self.down_zero_convs_out) + 1 + len(self.up_zero_convs_out)
|
610 |
+
scale_list = torch.full((n_connections,), conditioning_scale)
|
611 |
+
|
612 |
+
# prepare attention_mask
|
613 |
+
if attention_mask is not None:
|
614 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
615 |
+
attention_mask = attention_mask.unsqueeze(1)
|
616 |
+
|
617 |
+
# 1. time
|
618 |
+
timesteps = timestep
|
619 |
+
if not torch.is_tensor(timesteps):
|
620 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
621 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
622 |
+
is_mps = sample.device.type == "mps"
|
623 |
+
if isinstance(timestep, float):
|
624 |
+
dtype = torch.float32 if is_mps else torch.float64
|
625 |
+
else:
|
626 |
+
dtype = torch.int32 if is_mps else torch.int64
|
627 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
628 |
+
elif len(timesteps.shape) == 0:
|
629 |
+
timesteps = timesteps[None].to(sample.device)
|
630 |
+
|
631 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
632 |
+
timesteps = timesteps.expand(sample.shape[0])
|
633 |
+
|
634 |
+
t_emb = base_model.time_proj(timesteps)
|
635 |
+
|
636 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
637 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
638 |
+
# there might be better ways to encapsulate this.
|
639 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
640 |
+
|
641 |
+
if self.config.learn_embedding:
|
642 |
+
ctrl_temb = self.control_model.time_embedding(t_emb, timestep_cond)
|
643 |
+
base_temb = base_model.time_embedding(t_emb, timestep_cond)
|
644 |
+
interpolation_param = self.config.time_embedding_mix**0.3
|
645 |
+
|
646 |
+
temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
|
647 |
+
else:
|
648 |
+
temb = base_model.time_embedding(t_emb)
|
649 |
+
|
650 |
+
# added time & text embeddings
|
651 |
+
aug_emb = None
|
652 |
+
|
653 |
+
if base_model.class_embedding is not None:
|
654 |
+
if class_labels is None:
|
655 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
656 |
+
|
657 |
+
if base_model.config.class_embed_type == "timestep":
|
658 |
+
class_labels = base_model.time_proj(class_labels)
|
659 |
+
|
660 |
+
class_emb = base_model.class_embedding(class_labels).to(dtype=self.dtype)
|
661 |
+
temb = temb + class_emb
|
662 |
+
|
663 |
+
if base_model.config.addition_embed_type is not None:
|
664 |
+
if base_model.config.addition_embed_type == "text":
|
665 |
+
aug_emb = base_model.add_embedding(encoder_hidden_states["states"])
|
666 |
+
elif base_model.config.addition_embed_type == "text_image":
|
667 |
+
raise NotImplementedError()
|
668 |
+
elif base_model.config.addition_embed_type == "text_time":
|
669 |
+
# SDXL - style
|
670 |
+
if "text_embeds" not in added_cond_kwargs:
|
671 |
+
raise ValueError(
|
672 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
673 |
+
)
|
674 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
675 |
+
if "time_ids" not in added_cond_kwargs:
|
676 |
+
raise ValueError(
|
677 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
678 |
+
)
|
679 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
680 |
+
time_embeds = base_model.add_time_proj(time_ids.flatten())
|
681 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
682 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
683 |
+
add_embeds = add_embeds.to(temb.dtype)
|
684 |
+
aug_emb = base_model.add_embedding(add_embeds)
|
685 |
+
elif base_model.config.addition_embed_type == "image":
|
686 |
+
raise NotImplementedError()
|
687 |
+
elif base_model.config.addition_embed_type == "image_hint":
|
688 |
+
raise NotImplementedError()
|
689 |
+
|
690 |
+
temb = temb + aug_emb if aug_emb is not None else temb
|
691 |
+
|
692 |
+
# text embeddings
|
693 |
+
cemb = encoder_hidden_states["states"]
|
694 |
+
|
695 |
+
# Preparation
|
696 |
+
guided_hint = self.controlnet_cond_embedding(controlnet_cond)
|
697 |
+
|
698 |
+
h_ctrl = h_base = sample
|
699 |
+
hs_base, hs_ctrl = [], []
|
700 |
+
it_down_convs_in, it_down_convs_out, it_dec_convs_in, it_up_convs_out = map(
|
701 |
+
iter, (self.down_zero_convs_in, self.down_zero_convs_out, self.up_zero_convs_in, self.up_zero_convs_out)
|
702 |
+
)
|
703 |
+
scales = iter(scale_list)
|
704 |
+
|
705 |
+
base_down_subblocks = to_sub_blocks(base_model.down_blocks)
|
706 |
+
ctrl_down_subblocks = to_sub_blocks(self.control_model.down_blocks)
|
707 |
+
base_mid_subblocks = to_sub_blocks([base_model.mid_block])
|
708 |
+
ctrl_mid_subblocks = to_sub_blocks([self.control_model.mid_block])
|
709 |
+
base_up_subblocks = to_sub_blocks(base_model.up_blocks)
|
710 |
+
|
711 |
+
# Cross Control
|
712 |
+
# 0 - conv in
|
713 |
+
h_base = base_model.conv_in(h_base)
|
714 |
+
h_ctrl = self.control_model.conv_in(h_ctrl)
|
715 |
+
if guided_hint is not None:
|
716 |
+
h_ctrl += guided_hint
|
717 |
+
h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base
|
718 |
+
|
719 |
+
hs_base.append(h_base)
|
720 |
+
hs_ctrl.append(h_ctrl)
|
721 |
+
|
722 |
+
# 1 - down
|
723 |
+
for m_base, m_ctrl in zip(base_down_subblocks, ctrl_down_subblocks):
|
724 |
+
h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl
|
725 |
+
h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock
|
726 |
+
h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock
|
727 |
+
h_base = h_base + next(it_down_convs_out)(h_ctrl) * next(scales) # D - add ctrl -> base
|
728 |
+
hs_base.append(h_base)
|
729 |
+
hs_ctrl.append(h_ctrl)
|
730 |
+
|
731 |
+
# 2 - mid
|
732 |
+
h_ctrl = torch.cat([h_ctrl, next(it_down_convs_in)(h_base)], dim=1) # A - concat base -> ctrl
|
733 |
+
for m_base, m_ctrl in zip(base_mid_subblocks, ctrl_mid_subblocks):
|
734 |
+
h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs) # B - apply base subblock
|
735 |
+
h_ctrl = m_ctrl(h_ctrl, temb, cemb, attention_mask, cross_attention_kwargs) # C - apply ctrl subblock
|
736 |
+
h_base = h_base + self.middle_block_out(h_ctrl) * next(scales) # D - add ctrl -> base
|
737 |
+
|
738 |
+
# 3 - up
|
739 |
+
for i, m_base in enumerate(base_up_subblocks):
|
740 |
+
h_base = h_base + next(it_up_convs_out)(hs_ctrl.pop()) * next(scales) # add info from ctrl encoder
|
741 |
+
h_base = torch.cat([h_base, hs_base.pop()], dim=1) # concat info from base encoder+ctrl encoder
|
742 |
+
h_base = m_base(h_base, temb, cemb, attention_mask, cross_attention_kwargs)
|
743 |
+
|
744 |
+
h_base = base_model.conv_norm_out(h_base)
|
745 |
+
h_base = base_model.conv_act(h_base)
|
746 |
+
h_base = base_model.conv_out(h_base)
|
747 |
+
|
748 |
+
if not return_dict:
|
749 |
+
return h_base
|
750 |
+
|
751 |
+
return ControlNetXSOutput(sample=h_base)
|
752 |
+
|
753 |
+
def _make_zero_conv(self, in_channels, out_channels=None):
|
754 |
+
# keep running track of channels sizes
|
755 |
+
self.in_channels = in_channels
|
756 |
+
self.out_channels = out_channels or in_channels
|
757 |
+
|
758 |
+
return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
|
759 |
+
|
760 |
+
@torch.no_grad()
|
761 |
+
def _check_if_vae_compatible(self, vae: AutoencoderKL):
|
762 |
+
condition_downscale_factor = 2 ** (len(self.config.conditioning_embedding_out_channels) - 1)
|
763 |
+
vae_downscale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
|
764 |
+
compatible = condition_downscale_factor == vae_downscale_factor
|
765 |
+
return compatible, condition_downscale_factor, vae_downscale_factor
|
766 |
+
|
767 |
+
|
768 |
+
class SubBlock(nn.ModuleList):
|
769 |
+
"""A SubBlock is the largest piece of either base or control model, that is executed independently of the other model respectively.
|
770 |
+
Before each subblock, information is concatted from base to control. And after each subblock, information is added from control to base.
|
771 |
+
"""
|
772 |
+
|
773 |
+
def __init__(self, ms, *args, **kwargs):
|
774 |
+
if not is_iterable(ms):
|
775 |
+
ms = [ms]
|
776 |
+
super().__init__(ms, *args, **kwargs)
|
777 |
+
|
778 |
+
def forward(
|
779 |
+
self,
|
780 |
+
x: torch.Tensor,
|
781 |
+
temb: torch.Tensor,
|
782 |
+
cemb: torch.Tensor,
|
783 |
+
attention_mask: Optional[torch.Tensor] = None,
|
784 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
785 |
+
):
|
786 |
+
"""Iterate through children and pass correct information to each."""
|
787 |
+
for m in self:
|
788 |
+
if isinstance(m, ResnetBlock2D):
|
789 |
+
x = m(x, temb)
|
790 |
+
elif isinstance(m, Transformer2DModel):
|
791 |
+
x = m(x, cemb, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs).sample
|
792 |
+
elif isinstance(m, Downsample2D):
|
793 |
+
x = m(x)
|
794 |
+
elif isinstance(m, Upsample2D):
|
795 |
+
x = m(x)
|
796 |
+
else:
|
797 |
+
raise ValueError(
|
798 |
+
f"Type of m is {type(m)} but should be `ResnetBlock2D`, `Transformer2DModel`, `Downsample2D` or `Upsample2D`"
|
799 |
+
)
|
800 |
+
|
801 |
+
return x
|
802 |
+
|
803 |
+
|
804 |
+
def adjust_time_dims(unet: UNet2DConditionModel, in_dim: int, out_dim: int):
|
805 |
+
unet.time_embedding.linear_1 = nn.Linear(in_dim, out_dim)
|
806 |
+
|
807 |
+
|
808 |
+
def increase_block_input_in_encoder_resnet(unet: UNet2DConditionModel, block_no, resnet_idx, by):
|
809 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
810 |
+
r = unet.down_blocks[block_no].resnets[resnet_idx]
|
811 |
+
old_norm1, old_conv1 = r.norm1, r.conv1
|
812 |
+
# norm
|
813 |
+
norm_args = "num_groups num_channels eps affine".split(" ")
|
814 |
+
for a in norm_args:
|
815 |
+
assert hasattr(old_norm1, a)
|
816 |
+
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
|
817 |
+
norm_kwargs["num_channels"] += by # surgery done here
|
818 |
+
# conv1
|
819 |
+
conv1_args = [
|
820 |
+
"in_channels",
|
821 |
+
"out_channels",
|
822 |
+
"kernel_size",
|
823 |
+
"stride",
|
824 |
+
"padding",
|
825 |
+
"dilation",
|
826 |
+
"groups",
|
827 |
+
"bias",
|
828 |
+
"padding_mode",
|
829 |
+
]
|
830 |
+
if not USE_PEFT_BACKEND:
|
831 |
+
conv1_args.append("lora_layer")
|
832 |
+
|
833 |
+
for a in conv1_args:
|
834 |
+
assert hasattr(old_conv1, a)
|
835 |
+
|
836 |
+
conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
|
837 |
+
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
838 |
+
conv1_kwargs["in_channels"] += by # surgery done here
|
839 |
+
# conv_shortcut
|
840 |
+
# as we changed the input size of the block, the input and output sizes are likely different,
|
841 |
+
# therefore we need a conv_shortcut (simply adding won't work)
|
842 |
+
conv_shortcut_args_kwargs = {
|
843 |
+
"in_channels": conv1_kwargs["in_channels"],
|
844 |
+
"out_channels": conv1_kwargs["out_channels"],
|
845 |
+
# default arguments from resnet.__init__
|
846 |
+
"kernel_size": 1,
|
847 |
+
"stride": 1,
|
848 |
+
"padding": 0,
|
849 |
+
"bias": True,
|
850 |
+
}
|
851 |
+
# swap old with new modules
|
852 |
+
unet.down_blocks[block_no].resnets[resnet_idx].norm1 = GroupNorm(**norm_kwargs)
|
853 |
+
unet.down_blocks[block_no].resnets[resnet_idx].conv1 = (
|
854 |
+
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
|
855 |
+
)
|
856 |
+
unet.down_blocks[block_no].resnets[resnet_idx].conv_shortcut = (
|
857 |
+
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
|
858 |
+
)
|
859 |
+
unet.down_blocks[block_no].resnets[resnet_idx].in_channels += by # surgery done here
|
860 |
+
|
861 |
+
|
862 |
+
def increase_block_input_in_encoder_downsampler(unet: UNet2DConditionModel, block_no, by):
|
863 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
864 |
+
old_down = unet.down_blocks[block_no].downsamplers[0].conv
|
865 |
+
|
866 |
+
args = [
|
867 |
+
"in_channels",
|
868 |
+
"out_channels",
|
869 |
+
"kernel_size",
|
870 |
+
"stride",
|
871 |
+
"padding",
|
872 |
+
"dilation",
|
873 |
+
"groups",
|
874 |
+
"bias",
|
875 |
+
"padding_mode",
|
876 |
+
]
|
877 |
+
if not USE_PEFT_BACKEND:
|
878 |
+
args.append("lora_layer")
|
879 |
+
|
880 |
+
for a in args:
|
881 |
+
assert hasattr(old_down, a)
|
882 |
+
kwargs = {a: getattr(old_down, a) for a in args}
|
883 |
+
kwargs["bias"] = "bias" in kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
884 |
+
kwargs["in_channels"] += by # surgery done here
|
885 |
+
# swap old with new modules
|
886 |
+
unet.down_blocks[block_no].downsamplers[0].conv = (
|
887 |
+
nn.Conv2d(**kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**kwargs)
|
888 |
+
)
|
889 |
+
unet.down_blocks[block_no].downsamplers[0].channels += by # surgery done here
|
890 |
+
|
891 |
+
|
892 |
+
def increase_block_input_in_mid_resnet(unet: UNet2DConditionModel, by):
|
893 |
+
"""Increase channels sizes to allow for additional concatted information from base model"""
|
894 |
+
m = unet.mid_block.resnets[0]
|
895 |
+
old_norm1, old_conv1 = m.norm1, m.conv1
|
896 |
+
# norm
|
897 |
+
norm_args = "num_groups num_channels eps affine".split(" ")
|
898 |
+
for a in norm_args:
|
899 |
+
assert hasattr(old_norm1, a)
|
900 |
+
norm_kwargs = {a: getattr(old_norm1, a) for a in norm_args}
|
901 |
+
norm_kwargs["num_channels"] += by # surgery done here
|
902 |
+
conv1_args = [
|
903 |
+
"in_channels",
|
904 |
+
"out_channels",
|
905 |
+
"kernel_size",
|
906 |
+
"stride",
|
907 |
+
"padding",
|
908 |
+
"dilation",
|
909 |
+
"groups",
|
910 |
+
"bias",
|
911 |
+
"padding_mode",
|
912 |
+
]
|
913 |
+
if not USE_PEFT_BACKEND:
|
914 |
+
conv1_args.append("lora_layer")
|
915 |
+
|
916 |
+
conv1_kwargs = {a: getattr(old_conv1, a) for a in conv1_args}
|
917 |
+
conv1_kwargs["bias"] = "bias" in conv1_kwargs # as param, bias is a boolean, but as attr, it's a tensor.
|
918 |
+
conv1_kwargs["in_channels"] += by # surgery done here
|
919 |
+
# conv_shortcut
|
920 |
+
# as we changed the input size of the block, the input and output sizes are likely different,
|
921 |
+
# therefore we need a conv_shortcut (simply adding won't work)
|
922 |
+
conv_shortcut_args_kwargs = {
|
923 |
+
"in_channels": conv1_kwargs["in_channels"],
|
924 |
+
"out_channels": conv1_kwargs["out_channels"],
|
925 |
+
# default arguments from resnet.__init__
|
926 |
+
"kernel_size": 1,
|
927 |
+
"stride": 1,
|
928 |
+
"padding": 0,
|
929 |
+
"bias": True,
|
930 |
+
}
|
931 |
+
# swap old with new modules
|
932 |
+
unet.mid_block.resnets[0].norm1 = GroupNorm(**norm_kwargs)
|
933 |
+
unet.mid_block.resnets[0].conv1 = (
|
934 |
+
nn.Conv2d(**conv1_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv1_kwargs)
|
935 |
+
)
|
936 |
+
unet.mid_block.resnets[0].conv_shortcut = (
|
937 |
+
nn.Conv2d(**conv_shortcut_args_kwargs) if USE_PEFT_BACKEND else LoRACompatibleConv(**conv_shortcut_args_kwargs)
|
938 |
+
)
|
939 |
+
unet.mid_block.resnets[0].in_channels += by # surgery done here
|
940 |
+
|
941 |
+
|
942 |
+
def adjust_group_norms(unet: UNet2DConditionModel, max_num_group: int = 32):
|
943 |
+
def find_denominator(number, start):
|
944 |
+
if start >= number:
|
945 |
+
return number
|
946 |
+
while start != 0:
|
947 |
+
residual = number % start
|
948 |
+
if residual == 0:
|
949 |
+
return start
|
950 |
+
start -= 1
|
951 |
+
|
952 |
+
for block in [*unet.down_blocks, unet.mid_block]:
|
953 |
+
# resnets
|
954 |
+
for r in block.resnets:
|
955 |
+
if r.norm1.num_groups < max_num_group:
|
956 |
+
r.norm1.num_groups = find_denominator(r.norm1.num_channels, start=max_num_group)
|
957 |
+
|
958 |
+
if r.norm2.num_groups < max_num_group:
|
959 |
+
r.norm2.num_groups = find_denominator(r.norm2.num_channels, start=max_num_group)
|
960 |
+
|
961 |
+
# transformers
|
962 |
+
if hasattr(block, "attentions"):
|
963 |
+
for a in block.attentions:
|
964 |
+
if a.norm.num_groups < max_num_group:
|
965 |
+
a.norm.num_groups = find_denominator(a.norm.num_channels, start=max_num_group)
|
966 |
+
|
967 |
+
|
968 |
+
def is_iterable(o):
|
969 |
+
if isinstance(o, str):
|
970 |
+
return False
|
971 |
+
try:
|
972 |
+
iter(o)
|
973 |
+
return True
|
974 |
+
except TypeError:
|
975 |
+
return False
|
976 |
+
|
977 |
+
|
978 |
+
def to_sub_blocks(blocks):
|
979 |
+
if not is_iterable(blocks):
|
980 |
+
blocks = [blocks]
|
981 |
+
|
982 |
+
sub_blocks = []
|
983 |
+
|
984 |
+
for b in blocks:
|
985 |
+
if hasattr(b, "resnets"):
|
986 |
+
if hasattr(b, "attentions") and b.attentions is not None:
|
987 |
+
for r, a in zip(b.resnets, b.attentions):
|
988 |
+
sub_blocks.append([r, a])
|
989 |
+
|
990 |
+
num_resnets = len(b.resnets)
|
991 |
+
num_attns = len(b.attentions)
|
992 |
+
|
993 |
+
if num_resnets > num_attns:
|
994 |
+
# we can have more resnets than attentions, so add each resnet as separate subblock
|
995 |
+
for i in range(num_attns, num_resnets):
|
996 |
+
sub_blocks.append([b.resnets[i]])
|
997 |
+
else:
|
998 |
+
for r in b.resnets:
|
999 |
+
sub_blocks.append([r])
|
1000 |
+
|
1001 |
+
# upsamplers are part of the same subblock
|
1002 |
+
if hasattr(b, "upsamplers") and b.upsamplers is not None:
|
1003 |
+
for u in b.upsamplers:
|
1004 |
+
sub_blocks[-1].extend([u])
|
1005 |
+
|
1006 |
+
# downsamplers are own subblock
|
1007 |
+
if hasattr(b, "downsamplers") and b.downsamplers is not None:
|
1008 |
+
for d in b.downsamplers:
|
1009 |
+
sub_blocks.append([d])
|
1010 |
+
|
1011 |
+
return list(map(SubBlock, sub_blocks))
|
1012 |
+
|
1013 |
+
|
1014 |
+
def zero_module(module):
|
1015 |
+
for p in module.parameters():
|
1016 |
+
nn.init.zeros_(p)
|
1017 |
+
return module
|
modules/controlnetxs/pipeline_controlnet_xs.py
ADDED
@@ -0,0 +1,1022 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from controlnetxs import ControlNetXSModel
|
23 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
24 |
+
|
25 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
26 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
28 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
29 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
30 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
31 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
32 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
33 |
+
from diffusers.utils import (
|
34 |
+
USE_PEFT_BACKEND,
|
35 |
+
deprecate,
|
36 |
+
logging,
|
37 |
+
scale_lora_layers,
|
38 |
+
unscale_lora_layers,
|
39 |
+
)
|
40 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
41 |
+
from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
#Support for find the region of object
|
49 |
+
def encode_sketchs(state,tokenizer,unet, scale_ratio=8, g_strength=1.0, text_ids=None):
|
50 |
+
uncond, cond = text_ids[0], text_ids[1]
|
51 |
+
|
52 |
+
img_state = []
|
53 |
+
if state is None:
|
54 |
+
return torch.FloatTensor(0)
|
55 |
+
|
56 |
+
for k, v in state.items():
|
57 |
+
if v["map"] is None:
|
58 |
+
continue
|
59 |
+
|
60 |
+
v_input = tokenizer(
|
61 |
+
k,
|
62 |
+
max_length=tokenizer.model_max_length,
|
63 |
+
truncation=True,
|
64 |
+
add_special_tokens=False,
|
65 |
+
).input_ids
|
66 |
+
|
67 |
+
dotmap = v["map"] < 255
|
68 |
+
out = dotmap.astype(float)
|
69 |
+
if v["mask_outsides"]:
|
70 |
+
out[out==0] = -1
|
71 |
+
|
72 |
+
arr = torch.from_numpy(
|
73 |
+
out * float(v["weight"]) * g_strength
|
74 |
+
)
|
75 |
+
img_state.append((v_input, arr))
|
76 |
+
|
77 |
+
if len(img_state) == 0:
|
78 |
+
return torch.FloatTensor(0)
|
79 |
+
|
80 |
+
w_tensors = dict()
|
81 |
+
cond = cond.tolist()
|
82 |
+
uncond = uncond.tolist()
|
83 |
+
for layer in unet.down_blocks:
|
84 |
+
c = int(len(cond))
|
85 |
+
w, h = img_state[0][1].shape
|
86 |
+
w_r, h_r = w // scale_ratio, h // scale_ratio
|
87 |
+
|
88 |
+
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
89 |
+
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
90 |
+
|
91 |
+
for v_as_tokens, img_where_color in img_state:
|
92 |
+
is_in = 0
|
93 |
+
|
94 |
+
ret = (
|
95 |
+
F.interpolate(
|
96 |
+
img_where_color.unsqueeze(0).unsqueeze(1),
|
97 |
+
scale_factor=1 / scale_ratio,
|
98 |
+
mode="bilinear",
|
99 |
+
align_corners=True,
|
100 |
+
)
|
101 |
+
.squeeze()
|
102 |
+
.reshape(-1, 1)
|
103 |
+
.repeat(1, len(v_as_tokens))
|
104 |
+
)
|
105 |
+
|
106 |
+
for idx, tok in enumerate(cond):
|
107 |
+
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
108 |
+
is_in = 1
|
109 |
+
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
110 |
+
|
111 |
+
for idx, tok in enumerate(uncond):
|
112 |
+
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
113 |
+
is_in = 1
|
114 |
+
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
115 |
+
|
116 |
+
if not is_in == 1:
|
117 |
+
print(f"tokens {v_as_tokens} not found in text")
|
118 |
+
|
119 |
+
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
120 |
+
scale_ratio *= 2
|
121 |
+
|
122 |
+
return w_tensors
|
123 |
+
|
124 |
+
|
125 |
+
class StableDiffusionControlNetXSPipeline(
|
126 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
127 |
+
):
|
128 |
+
r"""
|
129 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet-XS guidance.
|
130 |
+
|
131 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
132 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
133 |
+
|
134 |
+
The pipeline also inherits the following loading methods:
|
135 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
136 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
137 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
138 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
139 |
+
|
140 |
+
Args:
|
141 |
+
vae ([`AutoencoderKL`]):
|
142 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
143 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
144 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
145 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
146 |
+
A `CLIPTokenizer` to tokenize text.
|
147 |
+
unet ([`UNet2DConditionModel`]):
|
148 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
149 |
+
controlnet ([`ControlNetXSModel`]):
|
150 |
+
Provides additional conditioning to the `unet` during the denoising process.
|
151 |
+
scheduler ([`SchedulerMixin`]):
|
152 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
153 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
154 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
155 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
156 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
157 |
+
about a model's potential harms.
|
158 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
159 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
160 |
+
"""
|
161 |
+
|
162 |
+
model_cpu_offload_seq = "text_encoder->unet->vae>controlnet"
|
163 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
164 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
vae: AutoencoderKL,
|
169 |
+
text_encoder: CLIPTextModel,
|
170 |
+
tokenizer: CLIPTokenizer,
|
171 |
+
unet: UNet2DConditionModel,
|
172 |
+
controlnet: ControlNetXSModel,
|
173 |
+
scheduler: KarrasDiffusionSchedulers,
|
174 |
+
safety_checker: StableDiffusionSafetyChecker,
|
175 |
+
feature_extractor: CLIPImageProcessor,
|
176 |
+
requires_safety_checker: bool = True,
|
177 |
+
):
|
178 |
+
super().__init__()
|
179 |
+
|
180 |
+
if safety_checker is None and requires_safety_checker:
|
181 |
+
logger.warning(
|
182 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
183 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
184 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
185 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
186 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
187 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
188 |
+
)
|
189 |
+
|
190 |
+
if safety_checker is not None and feature_extractor is None:
|
191 |
+
raise ValueError(
|
192 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
193 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
194 |
+
)
|
195 |
+
|
196 |
+
vae_compatible, cnxs_condition_downsample_factor, vae_downsample_factor = controlnet._check_if_vae_compatible(
|
197 |
+
vae
|
198 |
+
)
|
199 |
+
if not vae_compatible:
|
200 |
+
raise ValueError(
|
201 |
+
f"The downsampling factors of the VAE ({vae_downsample_factor}) and the conditioning part of ControlNetXS model {cnxs_condition_downsample_factor} need to be equal. Consider building the ControlNetXS model with different `conditioning_block_sizes`."
|
202 |
+
)
|
203 |
+
|
204 |
+
self.register_modules(
|
205 |
+
vae=vae,
|
206 |
+
text_encoder=text_encoder,
|
207 |
+
tokenizer=tokenizer,
|
208 |
+
unet=unet,
|
209 |
+
controlnet=controlnet,
|
210 |
+
scheduler=scheduler,
|
211 |
+
safety_checker=safety_checker,
|
212 |
+
feature_extractor=feature_extractor,
|
213 |
+
)
|
214 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
215 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
216 |
+
self.control_image_processor = VaeImageProcessor(
|
217 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
218 |
+
)
|
219 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
220 |
+
|
221 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
222 |
+
def enable_vae_slicing(self):
|
223 |
+
r"""
|
224 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
225 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
226 |
+
"""
|
227 |
+
self.vae.enable_slicing()
|
228 |
+
|
229 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
230 |
+
def disable_vae_slicing(self):
|
231 |
+
r"""
|
232 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
233 |
+
computing decoding in one step.
|
234 |
+
"""
|
235 |
+
self.vae.disable_slicing()
|
236 |
+
|
237 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
238 |
+
def enable_vae_tiling(self):
|
239 |
+
r"""
|
240 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
241 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
242 |
+
processing larger images.
|
243 |
+
"""
|
244 |
+
self.vae.enable_tiling()
|
245 |
+
|
246 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
247 |
+
def disable_vae_tiling(self):
|
248 |
+
r"""
|
249 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
250 |
+
computing decoding in one step.
|
251 |
+
"""
|
252 |
+
self.vae.disable_tiling()
|
253 |
+
|
254 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
255 |
+
def _encode_prompt(
|
256 |
+
self,
|
257 |
+
prompt,
|
258 |
+
device,
|
259 |
+
num_images_per_prompt,
|
260 |
+
do_classifier_free_guidance,
|
261 |
+
negative_prompt=None,
|
262 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
263 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
264 |
+
lora_scale: Optional[float] = None,
|
265 |
+
**kwargs,
|
266 |
+
):
|
267 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
268 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
269 |
+
|
270 |
+
prompt_embeds_tuple = self.encode_prompt(
|
271 |
+
prompt=prompt,
|
272 |
+
device=device,
|
273 |
+
num_images_per_prompt=num_images_per_prompt,
|
274 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
275 |
+
negative_prompt=negative_prompt,
|
276 |
+
prompt_embeds=prompt_embeds,
|
277 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
278 |
+
lora_scale=lora_scale,
|
279 |
+
**kwargs,
|
280 |
+
)
|
281 |
+
|
282 |
+
# concatenate for backwards comp
|
283 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
284 |
+
|
285 |
+
return prompt_embeds
|
286 |
+
|
287 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
288 |
+
def encode_prompt(
|
289 |
+
self,
|
290 |
+
prompt,
|
291 |
+
device,
|
292 |
+
num_images_per_prompt,
|
293 |
+
do_classifier_free_guidance,
|
294 |
+
negative_prompt=None,
|
295 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
296 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
297 |
+
lora_scale: Optional[float] = None,
|
298 |
+
clip_skip: Optional[int] = None,
|
299 |
+
):
|
300 |
+
r"""
|
301 |
+
Encodes the prompt into text encoder hidden states.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
prompt (`str` or `List[str]`, *optional*):
|
305 |
+
prompt to be encoded
|
306 |
+
device: (`torch.device`):
|
307 |
+
torch device
|
308 |
+
num_images_per_prompt (`int`):
|
309 |
+
number of images that should be generated per prompt
|
310 |
+
do_classifier_free_guidance (`bool`):
|
311 |
+
whether to use classifier free guidance or not
|
312 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
313 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
314 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
315 |
+
less than `1`).
|
316 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
317 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
318 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
319 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
320 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
321 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
322 |
+
argument.
|
323 |
+
lora_scale (`float`, *optional*):
|
324 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
325 |
+
clip_skip (`int`, *optional*):
|
326 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
327 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
328 |
+
"""
|
329 |
+
# set lora scale so that monkey patched LoRA
|
330 |
+
# function of text encoder can correctly access it
|
331 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
332 |
+
self._lora_scale = lora_scale
|
333 |
+
|
334 |
+
# dynamically adjust the LoRA scale
|
335 |
+
if not USE_PEFT_BACKEND:
|
336 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
337 |
+
else:
|
338 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
339 |
+
|
340 |
+
if prompt is not None and isinstance(prompt, str):
|
341 |
+
batch_size = 1
|
342 |
+
elif prompt is not None and isinstance(prompt, list):
|
343 |
+
batch_size = len(prompt)
|
344 |
+
else:
|
345 |
+
batch_size = prompt_embeds.shape[0]
|
346 |
+
|
347 |
+
if prompt_embeds is None:
|
348 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
349 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
350 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
351 |
+
|
352 |
+
text_inputs = self.tokenizer(
|
353 |
+
prompt,
|
354 |
+
padding="max_length",
|
355 |
+
max_length=self.tokenizer.model_max_length,
|
356 |
+
truncation=True,
|
357 |
+
return_tensors="pt",
|
358 |
+
)
|
359 |
+
text_input_ids = text_inputs.input_ids
|
360 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
361 |
+
|
362 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
363 |
+
text_input_ids, untruncated_ids
|
364 |
+
):
|
365 |
+
removed_text = self.tokenizer.batch_decode(
|
366 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
367 |
+
)
|
368 |
+
logger.warning(
|
369 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
370 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
371 |
+
)
|
372 |
+
|
373 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
374 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
375 |
+
else:
|
376 |
+
attention_mask = None
|
377 |
+
|
378 |
+
if clip_skip is None:
|
379 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
380 |
+
prompt_embeds = prompt_embeds[0]
|
381 |
+
else:
|
382 |
+
prompt_embeds = self.text_encoder(
|
383 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
384 |
+
)
|
385 |
+
# Access the `hidden_states` first, that contains a tuple of
|
386 |
+
# all the hidden states from the encoder layers. Then index into
|
387 |
+
# the tuple to access the hidden states from the desired layer.
|
388 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
389 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
390 |
+
# representations. The `last_hidden_states` that we typically use for
|
391 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
392 |
+
# layer.
|
393 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
394 |
+
|
395 |
+
if self.text_encoder is not None:
|
396 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
397 |
+
elif self.unet is not None:
|
398 |
+
prompt_embeds_dtype = self.unet.dtype
|
399 |
+
else:
|
400 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
401 |
+
|
402 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
403 |
+
|
404 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
405 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
406 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
407 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
408 |
+
|
409 |
+
# get unconditional embeddings for classifier free guidance
|
410 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
411 |
+
uncond_tokens: List[str]
|
412 |
+
if negative_prompt is None:
|
413 |
+
uncond_tokens = [""] * batch_size
|
414 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
415 |
+
raise TypeError(
|
416 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
417 |
+
f" {type(prompt)}."
|
418 |
+
)
|
419 |
+
elif isinstance(negative_prompt, str):
|
420 |
+
uncond_tokens = [negative_prompt]
|
421 |
+
elif batch_size != len(negative_prompt):
|
422 |
+
raise ValueError(
|
423 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
424 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
425 |
+
" the batch size of `prompt`."
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
uncond_tokens = negative_prompt
|
429 |
+
|
430 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
431 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
432 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
433 |
+
|
434 |
+
max_length = prompt_embeds.shape[1]
|
435 |
+
uncond_input = self.tokenizer(
|
436 |
+
uncond_tokens,
|
437 |
+
padding="max_length",
|
438 |
+
max_length=max_length,
|
439 |
+
truncation=True,
|
440 |
+
return_tensors="pt",
|
441 |
+
)
|
442 |
+
|
443 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
444 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
445 |
+
else:
|
446 |
+
attention_mask = None
|
447 |
+
|
448 |
+
negative_prompt_embeds = self.text_encoder(
|
449 |
+
uncond_input.input_ids.to(device),
|
450 |
+
attention_mask=attention_mask,
|
451 |
+
)
|
452 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
453 |
+
|
454 |
+
if do_classifier_free_guidance:
|
455 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
456 |
+
seq_len = negative_prompt_embeds.shape[1]
|
457 |
+
|
458 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
459 |
+
|
460 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
461 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
462 |
+
|
463 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
464 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
465 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
466 |
+
|
467 |
+
return prompt_embeds, negative_prompt_embeds
|
468 |
+
|
469 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
470 |
+
def run_safety_checker(self, image, device, dtype):
|
471 |
+
if self.safety_checker is None:
|
472 |
+
has_nsfw_concept = None
|
473 |
+
else:
|
474 |
+
if torch.is_tensor(image):
|
475 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
476 |
+
else:
|
477 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
478 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
479 |
+
image, has_nsfw_concept = self.safety_checker(
|
480 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
481 |
+
)
|
482 |
+
return image, has_nsfw_concept
|
483 |
+
|
484 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
485 |
+
def decode_latents(self, latents):
|
486 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
487 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
488 |
+
|
489 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
490 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
491 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
492 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
493 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
494 |
+
return image
|
495 |
+
|
496 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
497 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
498 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
499 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
500 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
501 |
+
# and should be between [0, 1]
|
502 |
+
|
503 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
504 |
+
extra_step_kwargs = {}
|
505 |
+
if accepts_eta:
|
506 |
+
extra_step_kwargs["eta"] = eta
|
507 |
+
|
508 |
+
# check if the scheduler accepts generator
|
509 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
510 |
+
if accepts_generator:
|
511 |
+
extra_step_kwargs["generator"] = generator
|
512 |
+
return extra_step_kwargs
|
513 |
+
|
514 |
+
def check_inputs(
|
515 |
+
self,
|
516 |
+
prompt,
|
517 |
+
image,
|
518 |
+
callback_steps,
|
519 |
+
negative_prompt=None,
|
520 |
+
prompt_embeds=None,
|
521 |
+
negative_prompt_embeds=None,
|
522 |
+
controlnet_conditioning_scale=1.0,
|
523 |
+
control_guidance_start=0.0,
|
524 |
+
control_guidance_end=1.0,
|
525 |
+
):
|
526 |
+
if (callback_steps is None) or (
|
527 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
528 |
+
):
|
529 |
+
raise ValueError(
|
530 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
531 |
+
f" {type(callback_steps)}."
|
532 |
+
)
|
533 |
+
|
534 |
+
if prompt is not None and prompt_embeds is not None:
|
535 |
+
raise ValueError(
|
536 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
537 |
+
" only forward one of the two."
|
538 |
+
)
|
539 |
+
elif prompt is None and prompt_embeds is None:
|
540 |
+
raise ValueError(
|
541 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
542 |
+
)
|
543 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
544 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
545 |
+
|
546 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
547 |
+
raise ValueError(
|
548 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
549 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
550 |
+
)
|
551 |
+
|
552 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
553 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
554 |
+
raise ValueError(
|
555 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
556 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
557 |
+
f" {negative_prompt_embeds.shape}."
|
558 |
+
)
|
559 |
+
|
560 |
+
# Check `image`
|
561 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
562 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
563 |
+
)
|
564 |
+
if (
|
565 |
+
isinstance(self.controlnet, ControlNetXSModel)
|
566 |
+
or is_compiled
|
567 |
+
and isinstance(self.controlnet._orig_mod, ControlNetXSModel)
|
568 |
+
):
|
569 |
+
self.check_image(image, prompt, prompt_embeds)
|
570 |
+
else:
|
571 |
+
assert False
|
572 |
+
|
573 |
+
# Check `controlnet_conditioning_scale`
|
574 |
+
if (
|
575 |
+
isinstance(self.controlnet, ControlNetXSModel)
|
576 |
+
or is_compiled
|
577 |
+
and isinstance(self.controlnet._orig_mod, ControlNetXSModel)
|
578 |
+
):
|
579 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
580 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
581 |
+
else:
|
582 |
+
assert False
|
583 |
+
|
584 |
+
start, end = control_guidance_start, control_guidance_end
|
585 |
+
if start >= end:
|
586 |
+
raise ValueError(
|
587 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
588 |
+
)
|
589 |
+
if start < 0.0:
|
590 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
591 |
+
if end > 1.0:
|
592 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
593 |
+
|
594 |
+
def check_image(self, image, prompt, prompt_embeds):
|
595 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
596 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
597 |
+
image_is_np = isinstance(image, np.ndarray)
|
598 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
599 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
600 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
601 |
+
|
602 |
+
if (
|
603 |
+
not image_is_pil
|
604 |
+
and not image_is_tensor
|
605 |
+
and not image_is_np
|
606 |
+
and not image_is_pil_list
|
607 |
+
and not image_is_tensor_list
|
608 |
+
and not image_is_np_list
|
609 |
+
):
|
610 |
+
raise TypeError(
|
611 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
612 |
+
)
|
613 |
+
|
614 |
+
if image_is_pil:
|
615 |
+
image_batch_size = 1
|
616 |
+
else:
|
617 |
+
image_batch_size = len(image)
|
618 |
+
|
619 |
+
if prompt is not None and isinstance(prompt, str):
|
620 |
+
prompt_batch_size = 1
|
621 |
+
elif prompt is not None and isinstance(prompt, list):
|
622 |
+
prompt_batch_size = len(prompt)
|
623 |
+
elif prompt_embeds is not None:
|
624 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
625 |
+
|
626 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
627 |
+
raise ValueError(
|
628 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
629 |
+
)
|
630 |
+
|
631 |
+
def prepare_image(
|
632 |
+
self,
|
633 |
+
image,
|
634 |
+
width,
|
635 |
+
height,
|
636 |
+
batch_size,
|
637 |
+
num_images_per_prompt,
|
638 |
+
device,
|
639 |
+
dtype,
|
640 |
+
do_classifier_free_guidance=False,
|
641 |
+
):
|
642 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
643 |
+
image_batch_size = image.shape[0]
|
644 |
+
|
645 |
+
if image_batch_size == 1:
|
646 |
+
repeat_by = batch_size
|
647 |
+
else:
|
648 |
+
# image batch size is the same as prompt batch size
|
649 |
+
repeat_by = num_images_per_prompt
|
650 |
+
|
651 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
652 |
+
|
653 |
+
image = image.to(device=device, dtype=dtype)
|
654 |
+
|
655 |
+
if do_classifier_free_guidance:
|
656 |
+
image = torch.cat([image] * 2)
|
657 |
+
|
658 |
+
return image
|
659 |
+
|
660 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
661 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
662 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
663 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
664 |
+
raise ValueError(
|
665 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
666 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
667 |
+
)
|
668 |
+
|
669 |
+
if latents is None:
|
670 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
671 |
+
else:
|
672 |
+
latents = latents.to(device)
|
673 |
+
|
674 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
675 |
+
latents = latents * self.scheduler.init_noise_sigma
|
676 |
+
return latents
|
677 |
+
|
678 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
679 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
680 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
681 |
+
|
682 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
683 |
+
|
684 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
685 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
686 |
+
|
687 |
+
Args:
|
688 |
+
s1 (`float`):
|
689 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
690 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
691 |
+
s2 (`float`):
|
692 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
693 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
694 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
695 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
696 |
+
"""
|
697 |
+
if not hasattr(self, "unet"):
|
698 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
699 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
700 |
+
|
701 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
702 |
+
def disable_freeu(self):
|
703 |
+
"""Disables the FreeU mechanism if enabled."""
|
704 |
+
self.unet.disable_freeu()
|
705 |
+
|
706 |
+
def type_output(self,output_type,device,d_type,return_dict,latents,generator):
|
707 |
+
if not output_type == "latent":
|
708 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False,generator=generator)[0]
|
709 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, d_type)
|
710 |
+
else:
|
711 |
+
image = latents
|
712 |
+
has_nsfw_concept = None
|
713 |
+
|
714 |
+
if has_nsfw_concept is None:
|
715 |
+
do_denormalize = [True] * image.shape[0]
|
716 |
+
else:
|
717 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
718 |
+
|
719 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
720 |
+
|
721 |
+
# Offload all models
|
722 |
+
self.maybe_free_model_hooks()
|
723 |
+
|
724 |
+
if not return_dict:
|
725 |
+
return (image, has_nsfw_concept)
|
726 |
+
|
727 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
728 |
+
|
729 |
+
@torch.no_grad()
|
730 |
+
def __call__(
|
731 |
+
self,
|
732 |
+
prompt: Union[str, List[str]] = None,
|
733 |
+
image: PipelineImageInput = None,
|
734 |
+
height: Optional[int] = None,
|
735 |
+
width: Optional[int] = None,
|
736 |
+
num_inference_steps: int = 50,
|
737 |
+
guidance_scale: float = 7.5,
|
738 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
739 |
+
num_images_per_prompt: Optional[int] = 1,
|
740 |
+
eta: float = 0.0,
|
741 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
742 |
+
latents: Optional[torch.FloatTensor] = None,
|
743 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
744 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
745 |
+
output_type: Optional[str] = "pil",
|
746 |
+
return_dict: bool = True,
|
747 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
748 |
+
callback_steps: int = 1,
|
749 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
750 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
751 |
+
control_guidance_start: float = 0.0,
|
752 |
+
control_guidance_end: float = 1.0,
|
753 |
+
clip_skip: Optional[int] = 0,
|
754 |
+
pww_state=None,
|
755 |
+
pww_attn_weight=1.0,
|
756 |
+
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
|
757 |
+
latent_processing = 0,
|
758 |
+
):
|
759 |
+
r"""
|
760 |
+
The call function to the pipeline for generation.
|
761 |
+
|
762 |
+
Args:
|
763 |
+
prompt (`str` or `List[str]`, *optional*):
|
764 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
765 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
|
766 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
767 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
768 |
+
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
769 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
770 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
771 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
772 |
+
input to a single ControlNet.
|
773 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
774 |
+
The height in pixels of the generated image.
|
775 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
776 |
+
The width in pixels of the generated image.
|
777 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
778 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
779 |
+
expense of slower inference.
|
780 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
781 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
782 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
783 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
784 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
785 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
786 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
787 |
+
The number of images to generate per prompt.
|
788 |
+
eta (`float`, *optional*, defaults to 0.0):
|
789 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
790 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
791 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
792 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
793 |
+
generation deterministic.
|
794 |
+
latents (`torch.FloatTensor`, *optional*):
|
795 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
796 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
797 |
+
tensor is generated by sampling using the supplied random `generator`.
|
798 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
799 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
800 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
801 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
802 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
803 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
804 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
805 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
806 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
807 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
808 |
+
plain tuple.
|
809 |
+
callback (`Callable`, *optional*):
|
810 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
811 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
812 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
813 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
814 |
+
every step.
|
815 |
+
cross_attention_kwargs (`dict`, *optional*):
|
816 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
817 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
818 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
819 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
820 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
821 |
+
the corresponding scale as a list.
|
822 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
823 |
+
The percentage of total steps at which the ControlNet starts applying.
|
824 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
825 |
+
The percentage of total steps at which the ControlNet stops applying.
|
826 |
+
clip_skip (`int`, *optional*):
|
827 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
828 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
829 |
+
|
830 |
+
Examples:
|
831 |
+
|
832 |
+
Returns:
|
833 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
834 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
835 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
836 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
837 |
+
"not-safe-for-work" (nsfw) content.
|
838 |
+
"""
|
839 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
840 |
+
|
841 |
+
if height is None:
|
842 |
+
height = image.height
|
843 |
+
if width is None:
|
844 |
+
width = image.width
|
845 |
+
|
846 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder,clip_skip+1)
|
847 |
+
|
848 |
+
# 1. Check inputs. Raise error if not correct
|
849 |
+
self.check_inputs(
|
850 |
+
prompt,
|
851 |
+
image,
|
852 |
+
callback_steps,
|
853 |
+
negative_prompt,
|
854 |
+
prompt_embeds,
|
855 |
+
negative_prompt_embeds,
|
856 |
+
controlnet_conditioning_scale,
|
857 |
+
control_guidance_start,
|
858 |
+
control_guidance_end,
|
859 |
+
)
|
860 |
+
|
861 |
+
# 2. Define call parameters
|
862 |
+
if prompt is not None and isinstance(prompt, str):
|
863 |
+
batch_size = 1
|
864 |
+
elif prompt is not None and isinstance(prompt, list):
|
865 |
+
batch_size = len(prompt)
|
866 |
+
else:
|
867 |
+
batch_size = prompt_embeds.shape[0]
|
868 |
+
|
869 |
+
device = self._execution_device
|
870 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
871 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
872 |
+
# corresponds to doing no classifier free guidance.
|
873 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
874 |
+
|
875 |
+
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
876 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
877 |
+
|
878 |
+
# 3. Encode input prompt
|
879 |
+
text_encoder_lora_scale = (
|
880 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
881 |
+
)
|
882 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
883 |
+
prompt,
|
884 |
+
device,
|
885 |
+
num_images_per_prompt,
|
886 |
+
do_classifier_free_guidance,
|
887 |
+
negative_prompt,
|
888 |
+
prompt_embeds=prompt_embeds,
|
889 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
890 |
+
lora_scale=text_encoder_lora_scale,
|
891 |
+
clip_skip=clip_skip,
|
892 |
+
)
|
893 |
+
# For classifier free guidance, we need to do two forward passes.
|
894 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
895 |
+
# to avoid doing two forward passes
|
896 |
+
if do_classifier_free_guidance:
|
897 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
898 |
+
|
899 |
+
# 4. Prepare image
|
900 |
+
if isinstance(controlnet, ControlNetXSModel):
|
901 |
+
image = self.prepare_image(
|
902 |
+
image=image,
|
903 |
+
width=width,
|
904 |
+
height=height,
|
905 |
+
batch_size=batch_size * num_images_per_prompt,
|
906 |
+
num_images_per_prompt=num_images_per_prompt,
|
907 |
+
device=device,
|
908 |
+
dtype=controlnet.dtype,
|
909 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
910 |
+
)
|
911 |
+
height, width = image.shape[-2:]
|
912 |
+
else:
|
913 |
+
assert False
|
914 |
+
|
915 |
+
# 5. Prepare timesteps
|
916 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
917 |
+
timesteps = self.scheduler.timesteps
|
918 |
+
|
919 |
+
# 6. Prepare latent variables
|
920 |
+
img_state = encode_sketchs(
|
921 |
+
pww_state,
|
922 |
+
tokenizer = self.tokenizer,
|
923 |
+
unet = self.unet,
|
924 |
+
g_strength=pww_attn_weight,
|
925 |
+
text_ids=text_ids,
|
926 |
+
)
|
927 |
+
|
928 |
+
num_channels_latents = self.unet.config.in_channels
|
929 |
+
latents = self.prepare_latents(
|
930 |
+
batch_size * num_images_per_prompt,
|
931 |
+
num_channels_latents,
|
932 |
+
height,
|
933 |
+
width,
|
934 |
+
prompt_embeds.dtype,
|
935 |
+
device,
|
936 |
+
generator,
|
937 |
+
latents,
|
938 |
+
)
|
939 |
+
|
940 |
+
if latent_processing == 1:
|
941 |
+
lst_latent = [self.type_output("pil",device,prompt_embeds.dtype,return_dict,latents,generator).images[0]]
|
942 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
943 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
944 |
+
|
945 |
+
# 8. Denoising loop
|
946 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
947 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
948 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
949 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
950 |
+
|
951 |
+
if pww_state is not None:
|
952 |
+
prompt_embeds = text_embeddings.clone().detach()
|
953 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
954 |
+
step_x = 0
|
955 |
+
for i, t in enumerate(timesteps):
|
956 |
+
# Relevant thread:
|
957 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
958 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
959 |
+
torch._inductor.cudagraph_mark_step_begin()
|
960 |
+
# expand the latents if we are doing classifier free guidance
|
961 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
962 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
963 |
+
|
964 |
+
# predict the noise residual
|
965 |
+
dont_control = (
|
966 |
+
i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end
|
967 |
+
)
|
968 |
+
encoder_state = {
|
969 |
+
"img_state": img_state,
|
970 |
+
"states": prompt_embeds,
|
971 |
+
"sigma": self.scheduler.sigmas[step_x],
|
972 |
+
"weight_func": weight_func,
|
973 |
+
}
|
974 |
+
step_x=step_x+1
|
975 |
+
if dont_control:
|
976 |
+
noise_pred = self.unet(
|
977 |
+
sample=latent_model_input,
|
978 |
+
timestep=t,
|
979 |
+
encoder_hidden_states=encoder_state,
|
980 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
981 |
+
return_dict=True,
|
982 |
+
).sample
|
983 |
+
else:
|
984 |
+
noise_pred = self.controlnet(
|
985 |
+
base_model=self.unet,
|
986 |
+
sample=latent_model_input,
|
987 |
+
timestep=t,
|
988 |
+
encoder_hidden_states=encoder_state,
|
989 |
+
controlnet_cond=image,
|
990 |
+
conditioning_scale=controlnet_conditioning_scale,
|
991 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
992 |
+
return_dict=True,
|
993 |
+
).sample
|
994 |
+
|
995 |
+
# perform guidance
|
996 |
+
if do_classifier_free_guidance:
|
997 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
998 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
999 |
+
|
1000 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1001 |
+
|
1002 |
+
# call the callback, if provided
|
1003 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1004 |
+
progress_bar.update()
|
1005 |
+
if callback is not None and i % callback_steps == 0:
|
1006 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1007 |
+
callback(step_idx, t, latents)
|
1008 |
+
|
1009 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1010 |
+
# manually for max memory savings
|
1011 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1012 |
+
self.unet.to("cpu")
|
1013 |
+
self.controlnet.to("cpu")
|
1014 |
+
torch.cuda.empty_cache()
|
1015 |
+
if latent_processing == 1:
|
1016 |
+
if output_type == 'latent':
|
1017 |
+
lst_latent.append(self.type_output(output_type,device,prompt_embeds.dtype,return_dict,latents,generator).images[0])
|
1018 |
+
return lst_latent
|
1019 |
+
if output_type == 'latent':
|
1020 |
+
return [self.type_output("pil",device,prompt_embeds.dtype,return_dict,latents,generator).images[0],self.type_output(output_type,device,prompt_embeds.dtype,return_dict,latents,generator).images[0]]
|
1021 |
+
return [self.type_output(output_type,device,prompt_embeds.dtype,return_dict,latents,generator).images[0]]
|
1022 |
+
|
modules/encode_region_map_function.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
import importlib
|
3 |
+
import inspect
|
4 |
+
import math
|
5 |
+
from pathlib import Path
|
6 |
+
import re
|
7 |
+
from collections import defaultdict
|
8 |
+
import cv2
|
9 |
+
import time
|
10 |
+
import numpy as np
|
11 |
+
import PIL
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from torch import einsum
|
16 |
+
from torch.autograd.function import Function
|
17 |
+
from diffusers import DiffusionPipeline
|
18 |
+
|
19 |
+
|
20 |
+
#Support for find the region of object
|
21 |
+
def encode_region_map_sp(state,tokenizer,unet,width,height, scale_ratio=8, text_ids=None,do_classifier_free_guidance = True):
|
22 |
+
if text_ids is None:
|
23 |
+
return torch.Tensor(0)
|
24 |
+
uncond, cond = text_ids[0], text_ids[1]
|
25 |
+
|
26 |
+
'''img_state = []
|
27 |
+
|
28 |
+
|
29 |
+
for k, v in state.items():
|
30 |
+
if v["map"] is None:
|
31 |
+
continue
|
32 |
+
|
33 |
+
v_input = tokenizer(
|
34 |
+
k,
|
35 |
+
max_length=tokenizer.model_max_length,
|
36 |
+
truncation=True,
|
37 |
+
add_special_tokens=False,
|
38 |
+
).input_ids
|
39 |
+
|
40 |
+
dotmap = v["map"] < 255
|
41 |
+
out = dotmap.astype(float)
|
42 |
+
out = out * float(v["weight"]) * g_strength
|
43 |
+
#if v["mask_outsides"]:
|
44 |
+
out[out==0] = -1 * float(v["mask_outsides"])
|
45 |
+
|
46 |
+
arr = torch.from_numpy(
|
47 |
+
out
|
48 |
+
)
|
49 |
+
img_state.append((v_input, arr))
|
50 |
+
|
51 |
+
if len(img_state) == 0:
|
52 |
+
return torch.Tensor(0)'''
|
53 |
+
|
54 |
+
w_tensors = dict()
|
55 |
+
cond = cond.reshape(-1,).tolist() if isinstance(cond,np.ndarray) or isinstance(cond, torch.Tensor) else None
|
56 |
+
uncond = uncond.reshape(-1,).tolist() if isinstance(uncond,np.ndarray) or isinstance(uncond, torch.Tensor) else None
|
57 |
+
for layer in unet.down_blocks:
|
58 |
+
c = int(len(cond))
|
59 |
+
#w, h = img_state[0][1].shape
|
60 |
+
w_r, h_r = int(math.ceil(width / scale_ratio)), int(math.ceil(height / scale_ratio))
|
61 |
+
|
62 |
+
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
63 |
+
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
64 |
+
|
65 |
+
#for v_as_tokens, img_where_color in img_state:
|
66 |
+
if state is not None:
|
67 |
+
for k, v in state.items():
|
68 |
+
if v["map"] is None:
|
69 |
+
continue
|
70 |
+
is_in = 0
|
71 |
+
|
72 |
+
k_as_tokens = tokenizer(
|
73 |
+
k,
|
74 |
+
max_length=tokenizer.model_max_length,
|
75 |
+
truncation=True,
|
76 |
+
add_special_tokens=False,
|
77 |
+
).input_ids
|
78 |
+
|
79 |
+
region_map_resize = np.array(v["map"] < 255 ,dtype = np.uint8)
|
80 |
+
region_map_resize = cv2.resize(region_map_resize,(w_r,h_r),interpolation = cv2.INTER_CUBIC)
|
81 |
+
region_map_resize = (region_map_resize == np.max(region_map_resize)).astype(float)
|
82 |
+
region_map_resize = region_map_resize * float(v["weight"])
|
83 |
+
region_map_resize[region_map_resize==0] = -1 * float(v["mask_outsides"])
|
84 |
+
ret = torch.from_numpy(
|
85 |
+
region_map_resize
|
86 |
+
)
|
87 |
+
ret = ret.reshape(-1, 1).repeat(1, len(k_as_tokens))
|
88 |
+
|
89 |
+
'''ret = (
|
90 |
+
F.interpolate(
|
91 |
+
img_where_color.unsqueeze(0).unsqueeze(1),
|
92 |
+
scale_factor=1 / scale_ratio,
|
93 |
+
mode="bilinear",
|
94 |
+
align_corners=True,
|
95 |
+
)
|
96 |
+
.squeeze()
|
97 |
+
.reshape(-1, 1)
|
98 |
+
.repeat(1, len(v_as_tokens))
|
99 |
+
)'''
|
100 |
+
|
101 |
+
if cond is not None:
|
102 |
+
for idx, tok in enumerate(cond):
|
103 |
+
if cond[idx : idx + len(k_as_tokens)] == k_as_tokens:
|
104 |
+
is_in = 1
|
105 |
+
ret_cond_tensor[0, :, idx : idx + len(k_as_tokens)] += ret
|
106 |
+
|
107 |
+
if uncond is not None:
|
108 |
+
for idx, tok in enumerate(uncond):
|
109 |
+
if uncond[idx : idx + len(k_as_tokens)] == k_as_tokens:
|
110 |
+
is_in = 1
|
111 |
+
ret_uncond_tensor[0, :, idx : idx + len(k_as_tokens)] += ret
|
112 |
+
|
113 |
+
if not is_in == 1:
|
114 |
+
print(f"tokens {k_as_tokens} not found in text")
|
115 |
+
|
116 |
+
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor]) if do_classifier_free_guidance else ret_cond_tensor
|
117 |
+
scale_ratio *= 2
|
118 |
+
|
119 |
+
return w_tensors
|
120 |
+
|
121 |
+
def encode_region_map(
|
122 |
+
pipe : DiffusionPipeline,
|
123 |
+
state,
|
124 |
+
width,
|
125 |
+
height,
|
126 |
+
num_images_per_prompt,
|
127 |
+
text_ids = None,
|
128 |
+
):
|
129 |
+
negative_prompt_tokens_id, prompt_tokens_id = text_ids[0] , text_ids[1]
|
130 |
+
if prompt_tokens_id is None:
|
131 |
+
return torch.Tensor(0)
|
132 |
+
prompt_tokens_id = np.array(prompt_tokens_id)
|
133 |
+
negative_prompt_tokens_id = np.array(prompt_tokens_id) if negative_prompt_tokens_id is not None else None
|
134 |
+
|
135 |
+
#Spilit to each prompt
|
136 |
+
number_prompt = prompt_tokens_id.shape[0]
|
137 |
+
prompt_tokens_id = np.split(prompt_tokens_id,number_prompt)
|
138 |
+
negative_prompt_tokens_id = np.split(negative_prompt_tokens_id,number_prompt) if negative_prompt_tokens_id is not None else None
|
139 |
+
lst_prompt_map = []
|
140 |
+
if not isinstance(state,list):
|
141 |
+
state = [state]
|
142 |
+
if len(state) < number_prompt:
|
143 |
+
state = [state] + [None] * int(number_prompt - len(state))
|
144 |
+
for i in range(0,number_prompt):
|
145 |
+
text_ids = [negative_prompt_tokens_id[i],prompt_tokens_id[i]] if negative_prompt_tokens_id is not None else [None,prompt_tokens_id[i]]
|
146 |
+
region_map = encode_region_map_sp(state[i],pipe.tokenizer,pipe.unet,width,height,scale_ratio = pipe.vae_scale_factor,text_ids = text_ids,do_classifier_free_guidance = pipe.do_classifier_free_guidance)
|
147 |
+
lst_prompt_map.append(region_map)
|
148 |
+
|
149 |
+
region_state_sp = {}
|
150 |
+
for d in lst_prompt_map:
|
151 |
+
for key, tensor in d.items():
|
152 |
+
if key in region_state_sp:
|
153 |
+
#If key exist, concat
|
154 |
+
region_state_sp[key] = torch.cat((region_state_sp[key], tensor))
|
155 |
+
else:
|
156 |
+
# if key doesnt exist, add
|
157 |
+
region_state_sp[key] = tensor
|
158 |
+
|
159 |
+
#add_when_apply num_images_per_prompt
|
160 |
+
region_state = {}
|
161 |
+
|
162 |
+
for key, tensor in region_state_sp.items():
|
163 |
+
# Repeant accoding to axis = 0
|
164 |
+
region_state[key] = tensor.repeat(num_images_per_prompt,1,1)
|
165 |
+
|
166 |
+
return region_state
|
167 |
+
|
168 |
+
|
modules/encoder_prompt_modify.py
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
7 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
8 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
9 |
+
from diffusers.utils import (
|
10 |
+
USE_PEFT_BACKEND,
|
11 |
+
deprecate,
|
12 |
+
logging,
|
13 |
+
replace_example_docstring,
|
14 |
+
scale_lora_layers,
|
15 |
+
unscale_lora_layers,
|
16 |
+
)
|
17 |
+
from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
re_attention = re.compile(
|
22 |
+
r"""
|
23 |
+
\\\(|
|
24 |
+
\\\)|
|
25 |
+
\\\[|
|
26 |
+
\\]|
|
27 |
+
\\\\|
|
28 |
+
\\|
|
29 |
+
\(|
|
30 |
+
\[|
|
31 |
+
:([+-]?[.\d]+)\)|
|
32 |
+
\)|
|
33 |
+
]|
|
34 |
+
[^\\()\[\]:]+|
|
35 |
+
:
|
36 |
+
""",
|
37 |
+
re.X,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def parse_prompt_attention(text):
|
42 |
+
"""
|
43 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
44 |
+
Accepted tokens are:
|
45 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
46 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
47 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
48 |
+
\\( - literal character '('
|
49 |
+
\\[ - literal character '['
|
50 |
+
\\) - literal character ')'
|
51 |
+
\\] - literal character ']'
|
52 |
+
\\ - literal character '\'
|
53 |
+
anything else - just text
|
54 |
+
>>> parse_prompt_attention('normal text')
|
55 |
+
[['normal text', 1.0]]
|
56 |
+
>>> parse_prompt_attention('an (important) word')
|
57 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
58 |
+
>>> parse_prompt_attention('(unbalanced')
|
59 |
+
[['unbalanced', 1.1]]
|
60 |
+
>>> parse_prompt_attention('\\(literal\\]')
|
61 |
+
[['(literal]', 1.0]]
|
62 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
63 |
+
[['unnecessaryparens', 1.1]]
|
64 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
65 |
+
[['a ', 1.0],
|
66 |
+
['house', 1.5730000000000004],
|
67 |
+
[' ', 1.1],
|
68 |
+
['on', 1.0],
|
69 |
+
[' a ', 1.1],
|
70 |
+
['hill', 0.55],
|
71 |
+
[', sun, ', 1.1],
|
72 |
+
['sky', 1.4641000000000006],
|
73 |
+
['.', 1.1]]
|
74 |
+
"""
|
75 |
+
|
76 |
+
res = []
|
77 |
+
round_brackets = []
|
78 |
+
square_brackets = []
|
79 |
+
|
80 |
+
round_bracket_multiplier = 1.1
|
81 |
+
square_bracket_multiplier = 1 / 1.1
|
82 |
+
|
83 |
+
def multiply_range(start_position, multiplier):
|
84 |
+
for p in range(start_position, len(res)):
|
85 |
+
res[p][1] *= multiplier
|
86 |
+
|
87 |
+
for m in re_attention.finditer(text):
|
88 |
+
text = m.group(0)
|
89 |
+
weight = m.group(1)
|
90 |
+
|
91 |
+
if text.startswith("\\"):
|
92 |
+
res.append([text[1:], 1.0])
|
93 |
+
elif text == "(":
|
94 |
+
round_brackets.append(len(res))
|
95 |
+
elif text == "[":
|
96 |
+
square_brackets.append(len(res))
|
97 |
+
elif weight is not None and len(round_brackets) > 0:
|
98 |
+
multiply_range(round_brackets.pop(), float(weight))
|
99 |
+
elif text == ")" and len(round_brackets) > 0:
|
100 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
101 |
+
elif text == "]" and len(square_brackets) > 0:
|
102 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
103 |
+
else:
|
104 |
+
res.append([text, 1.0])
|
105 |
+
|
106 |
+
for pos in round_brackets:
|
107 |
+
multiply_range(pos, round_bracket_multiplier)
|
108 |
+
|
109 |
+
for pos in square_brackets:
|
110 |
+
multiply_range(pos, square_bracket_multiplier)
|
111 |
+
|
112 |
+
if len(res) == 0:
|
113 |
+
res = [["", 1.0]]
|
114 |
+
|
115 |
+
# merge runs of identical weights
|
116 |
+
i = 0
|
117 |
+
while i + 1 < len(res):
|
118 |
+
if res[i][1] == res[i + 1][1]:
|
119 |
+
res[i][0] += res[i + 1][0]
|
120 |
+
res.pop(i + 1)
|
121 |
+
else:
|
122 |
+
i += 1
|
123 |
+
|
124 |
+
return res
|
125 |
+
|
126 |
+
|
127 |
+
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
|
128 |
+
r"""
|
129 |
+
Tokenize a list of prompts and return its tokens with weights of each token.
|
130 |
+
|
131 |
+
No padding, starting or ending token is included.
|
132 |
+
"""
|
133 |
+
tokens = []
|
134 |
+
weights = []
|
135 |
+
truncated = False
|
136 |
+
for text in prompt:
|
137 |
+
texts_and_weights = parse_prompt_attention(text)
|
138 |
+
text_token = []
|
139 |
+
text_weight = []
|
140 |
+
for word, weight in texts_and_weights:
|
141 |
+
# tokenize and discard the starting and the ending token
|
142 |
+
token = pipe.tokenizer(word).input_ids[1:-1]
|
143 |
+
text_token += token
|
144 |
+
# copy the weight by length of token
|
145 |
+
text_weight += [weight] * len(token)
|
146 |
+
# stop if the text is too long (longer than truncation limit)
|
147 |
+
if len(text_token) > max_length:
|
148 |
+
truncated = True
|
149 |
+
break
|
150 |
+
# truncate
|
151 |
+
if len(text_token) > max_length:
|
152 |
+
truncated = True
|
153 |
+
text_token = text_token[:max_length]
|
154 |
+
text_weight = text_weight[:max_length]
|
155 |
+
tokens.append(text_token)
|
156 |
+
weights.append(text_weight)
|
157 |
+
if truncated:
|
158 |
+
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
|
159 |
+
return tokens, weights
|
160 |
+
|
161 |
+
|
162 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
|
163 |
+
r"""
|
164 |
+
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
165 |
+
"""
|
166 |
+
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
167 |
+
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
168 |
+
for i in range(len(tokens)):
|
169 |
+
tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos]
|
170 |
+
if no_boseos_middle:
|
171 |
+
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
172 |
+
else:
|
173 |
+
w = []
|
174 |
+
if len(weights[i]) == 0:
|
175 |
+
w = [1.0] * weights_length
|
176 |
+
else:
|
177 |
+
for j in range(max_embeddings_multiples):
|
178 |
+
w.append(1.0) # weight for starting token in this chunk
|
179 |
+
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
|
180 |
+
w.append(1.0) # weight for ending token in this chunk
|
181 |
+
w += [1.0] * (weights_length - len(w))
|
182 |
+
weights[i] = w[:]
|
183 |
+
|
184 |
+
return tokens, weights
|
185 |
+
|
186 |
+
def clip_skip_prompt(
|
187 |
+
pipe,
|
188 |
+
text_input,
|
189 |
+
clip_skip = None,
|
190 |
+
):
|
191 |
+
if hasattr(pipe.text_encoder.config, "use_attention_mask") and pipe.text_encoder.config.use_attention_mask:
|
192 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
193 |
+
else:
|
194 |
+
attention_mask = None
|
195 |
+
if clip_skip is not None and clip_skip > 1:
|
196 |
+
text_embedding = pipe.text_encoder(text_input, attention_mask=attention_mask, output_hidden_states=True)
|
197 |
+
# Access the `hidden_states` first, that contains a tuple of
|
198 |
+
# all the hidden states from the encoder layers. Then index into
|
199 |
+
# the tuple to access the hidden states from the desired layer.
|
200 |
+
text_embedding = text_embedding[-1][-clip_skip]
|
201 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
202 |
+
# representations. The `last_hidden_states` that we typically use for
|
203 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
204 |
+
# layer.
|
205 |
+
text_embedding = pipe.text_encoder.text_model.final_layer_norm(text_embedding)
|
206 |
+
else:
|
207 |
+
text_embedding = pipe.text_encoder(text_input, attention_mask=attention_mask)
|
208 |
+
text_embedding = text_embedding[0]
|
209 |
+
|
210 |
+
return text_embedding
|
211 |
+
|
212 |
+
def get_unweighted_text_embeddings(
|
213 |
+
pipe: DiffusionPipeline,
|
214 |
+
text_input: torch.Tensor,
|
215 |
+
chunk_length: int,
|
216 |
+
no_boseos_middle: Optional[bool] = True,
|
217 |
+
clip_skip : Optional[int] = None,
|
218 |
+
):
|
219 |
+
"""
|
220 |
+
When the length of tokens is a multiple of the capacity of the text encoder,
|
221 |
+
it should be split into chunks and sent to the text encoder individually.
|
222 |
+
"""
|
223 |
+
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
224 |
+
if max_embeddings_multiples > 1:
|
225 |
+
text_embeddings = []
|
226 |
+
for i in range(max_embeddings_multiples):
|
227 |
+
# extract the i-th chunk
|
228 |
+
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
|
229 |
+
|
230 |
+
# cover the head and the tail by the starting and the ending tokens
|
231 |
+
text_input_chunk[:, 0] = text_input[0, 0]
|
232 |
+
text_input_chunk[:, -1] = text_input[0, -1]
|
233 |
+
|
234 |
+
text_embedding = clip_skip_prompt(pipe,text_input_chunk,clip_skip)
|
235 |
+
|
236 |
+
if no_boseos_middle:
|
237 |
+
if i == 0:
|
238 |
+
# discard the ending token
|
239 |
+
text_embedding = text_embedding[:, :-1]
|
240 |
+
elif i == max_embeddings_multiples - 1:
|
241 |
+
# discard the starting token
|
242 |
+
text_embedding = text_embedding[:, 1:]
|
243 |
+
else:
|
244 |
+
# discard both starting and ending tokens
|
245 |
+
text_embedding = text_embedding[:, 1:-1]
|
246 |
+
|
247 |
+
text_embeddings.append(text_embedding)
|
248 |
+
text_embeddings = torch.concat(text_embeddings, axis=1)
|
249 |
+
else:
|
250 |
+
text_embeddings = clip_skip_prompt(pipe,text_input,clip_skip)
|
251 |
+
return text_embeddings
|
252 |
+
|
253 |
+
|
254 |
+
def get_weighted_text_embeddings(
|
255 |
+
pipe: DiffusionPipeline,
|
256 |
+
prompt: Union[str, List[str]],
|
257 |
+
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
258 |
+
max_embeddings_multiples: Optional[int] = 3,
|
259 |
+
no_boseos_middle: Optional[bool] = False,
|
260 |
+
skip_parsing: Optional[bool] = False,
|
261 |
+
skip_weighting: Optional[bool] = False,
|
262 |
+
clip_skip : Optional[int] = None,
|
263 |
+
):
|
264 |
+
r"""
|
265 |
+
Prompts can be assigned with local weights using brackets. For example,
|
266 |
+
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
|
267 |
+
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
|
268 |
+
|
269 |
+
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
pipe (`DiffusionPipeline`):
|
273 |
+
Pipe to provide access to the tokenizer and the text encoder.
|
274 |
+
prompt (`str` or `List[str]`):
|
275 |
+
The prompt or prompts to guide the image generation.
|
276 |
+
uncond_prompt (`str` or `List[str]`):
|
277 |
+
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
278 |
+
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
279 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
280 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
281 |
+
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
282 |
+
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
283 |
+
ending token in each of the chunk in the middle.
|
284 |
+
skip_parsing (`bool`, *optional*, defaults to `False`):
|
285 |
+
Skip the parsing of brackets.
|
286 |
+
skip_weighting (`bool`, *optional*, defaults to `False`):
|
287 |
+
Skip the weighting. When the parsing is skipped, it is forced True.
|
288 |
+
"""
|
289 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
290 |
+
prompt_tokens_id = None
|
291 |
+
negative_prompt_tokens_id = None
|
292 |
+
if isinstance(prompt, str):
|
293 |
+
prompt = [prompt]
|
294 |
+
|
295 |
+
if not skip_parsing:
|
296 |
+
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
297 |
+
if uncond_prompt is not None:
|
298 |
+
if isinstance(uncond_prompt, str):
|
299 |
+
uncond_prompt = [uncond_prompt]
|
300 |
+
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
301 |
+
else:
|
302 |
+
prompt_tokens = [
|
303 |
+
token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
|
304 |
+
]
|
305 |
+
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
306 |
+
if uncond_prompt is not None:
|
307 |
+
if isinstance(uncond_prompt, str):
|
308 |
+
uncond_prompt = [uncond_prompt]
|
309 |
+
uncond_tokens = [
|
310 |
+
token[1:-1]
|
311 |
+
for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
|
312 |
+
]
|
313 |
+
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
314 |
+
|
315 |
+
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
316 |
+
max_length = max([len(token) for token in prompt_tokens])
|
317 |
+
if uncond_prompt is not None:
|
318 |
+
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
319 |
+
|
320 |
+
max_embeddings_multiples = min(
|
321 |
+
max_embeddings_multiples,
|
322 |
+
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
|
323 |
+
)
|
324 |
+
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
325 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
326 |
+
|
327 |
+
# pad the length of tokens and weights
|
328 |
+
bos = pipe.tokenizer.bos_token_id
|
329 |
+
eos = pipe.tokenizer.eos_token_id
|
330 |
+
pad = getattr(pipe.tokenizer, "pad_token_id", eos)
|
331 |
+
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
332 |
+
prompt_tokens,
|
333 |
+
prompt_weights,
|
334 |
+
max_length,
|
335 |
+
bos,
|
336 |
+
eos,
|
337 |
+
pad,
|
338 |
+
no_boseos_middle=no_boseos_middle,
|
339 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
340 |
+
)
|
341 |
+
|
342 |
+
prompt_tokens_id = np.array(prompt_tokens, dtype=np.int64)
|
343 |
+
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
|
344 |
+
if uncond_prompt is not None:
|
345 |
+
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
346 |
+
uncond_tokens,
|
347 |
+
uncond_weights,
|
348 |
+
max_length,
|
349 |
+
bos,
|
350 |
+
eos,
|
351 |
+
pad,
|
352 |
+
no_boseos_middle=no_boseos_middle,
|
353 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
354 |
+
)
|
355 |
+
negative_prompt_tokens_id = np.array(uncond_tokens, dtype=np.int64)
|
356 |
+
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
|
357 |
+
|
358 |
+
# get the embeddings
|
359 |
+
text_embeddings = get_unweighted_text_embeddings(
|
360 |
+
pipe,
|
361 |
+
prompt_tokens,
|
362 |
+
pipe.tokenizer.model_max_length,
|
363 |
+
no_boseos_middle=no_boseos_middle,
|
364 |
+
clip_skip = clip_skip,
|
365 |
+
)
|
366 |
+
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
|
367 |
+
if uncond_prompt is not None:
|
368 |
+
uncond_embeddings = get_unweighted_text_embeddings(
|
369 |
+
pipe,
|
370 |
+
uncond_tokens,
|
371 |
+
pipe.tokenizer.model_max_length,
|
372 |
+
no_boseos_middle=no_boseos_middle,
|
373 |
+
clip_skip = clip_skip,
|
374 |
+
)
|
375 |
+
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)
|
376 |
+
|
377 |
+
# assign weights to the prompts and normalize in the sense of mean
|
378 |
+
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
379 |
+
if (not skip_parsing) and (not skip_weighting):
|
380 |
+
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
381 |
+
text_embeddings *= prompt_weights.unsqueeze(-1)
|
382 |
+
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
383 |
+
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
384 |
+
if uncond_prompt is not None:
|
385 |
+
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
386 |
+
uncond_embeddings *= uncond_weights.unsqueeze(-1)
|
387 |
+
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
388 |
+
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
389 |
+
|
390 |
+
if uncond_prompt is not None:
|
391 |
+
return text_embeddings, uncond_embeddings, negative_prompt_tokens_id, prompt_tokens_id
|
392 |
+
return text_embeddings, None, None, prompt_tokens_id
|
393 |
+
|
394 |
+
|
395 |
+
def encoder_long_prompt(
|
396 |
+
pipe,
|
397 |
+
prompt,
|
398 |
+
device,
|
399 |
+
num_images_per_prompt,
|
400 |
+
do_classifier_free_guidance,
|
401 |
+
negative_prompt=None,
|
402 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
403 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
404 |
+
lora_scale: Optional[float] = None,
|
405 |
+
clip_skip : Optional[int] = None,
|
406 |
+
max_embeddings_multiples: Optional[int] = 3,
|
407 |
+
):
|
408 |
+
r"""
|
409 |
+
Encodes the prompt into text encoder hidden states.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
prompt (`str` or `list(int)`):
|
413 |
+
prompt to be encoded
|
414 |
+
device: (`torch.device`):
|
415 |
+
torch device
|
416 |
+
num_images_per_prompt (`int`):
|
417 |
+
number of images that should be generated per prompt
|
418 |
+
do_classifier_free_guidance (`bool`):
|
419 |
+
whether to use classifier free guidance or not
|
420 |
+
negative_prompt (`str` or `List[str]`):
|
421 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
422 |
+
if `guidance_scale` is less than `1`).
|
423 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
424 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
425 |
+
"""
|
426 |
+
|
427 |
+
# set lora scale so that monkey patched LoRA
|
428 |
+
# function of text encoder can correctly access it
|
429 |
+
if lora_scale is not None and isinstance(pipe, LoraLoaderMixin):
|
430 |
+
pipe._lora_scale = lora_scale
|
431 |
+
# dynamically adjust the LoRA scale
|
432 |
+
if not USE_PEFT_BACKEND:
|
433 |
+
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
434 |
+
else:
|
435 |
+
scale_lora_layers(pipe.text_encoder, lora_scale)
|
436 |
+
if prompt is not None and isinstance(prompt, str):
|
437 |
+
batch_size = 1
|
438 |
+
elif prompt is not None and isinstance(prompt, list):
|
439 |
+
batch_size = len(prompt)
|
440 |
+
else:
|
441 |
+
batch_size = prompt_embeds.shape[0]
|
442 |
+
|
443 |
+
negative_prompt_tokens_id, prompt_tokens_id = None, None
|
444 |
+
if negative_prompt_embeds is None:
|
445 |
+
if negative_prompt is None:
|
446 |
+
negative_prompt = [""] * batch_size
|
447 |
+
elif isinstance(negative_prompt, str):
|
448 |
+
negative_prompt = [negative_prompt] * batch_size
|
449 |
+
if batch_size != len(negative_prompt):
|
450 |
+
raise ValueError(
|
451 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
452 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
453 |
+
" the batch size of `prompt`."
|
454 |
+
)
|
455 |
+
if prompt_embeds is None or negative_prompt_embeds is None:
|
456 |
+
if isinstance(pipe, TextualInversionLoaderMixin):
|
457 |
+
prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)
|
458 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
459 |
+
negative_prompt = pipe.maybe_convert_prompt(negative_prompt, pipe.tokenizer)
|
460 |
+
|
461 |
+
prompt_embeds1, negative_prompt_embeds1, negative_prompt_tokens_id, prompt_tokens_id = get_weighted_text_embeddings(
|
462 |
+
pipe=pipe,
|
463 |
+
prompt=prompt,
|
464 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
465 |
+
max_embeddings_multiples=int(max_embeddings_multiples),
|
466 |
+
clip_skip = clip_skip,
|
467 |
+
)
|
468 |
+
if prompt_embeds is None:
|
469 |
+
prompt_embeds = prompt_embeds1
|
470 |
+
if negative_prompt_embeds is None:
|
471 |
+
negative_prompt_embeds = negative_prompt_embeds1
|
472 |
+
|
473 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
474 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
475 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
476 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
477 |
+
|
478 |
+
if do_classifier_free_guidance:
|
479 |
+
bs_embed, seq_len, _ = negative_prompt_embeds.shape
|
480 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
481 |
+
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
482 |
+
|
483 |
+
if isinstance(pipe, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
484 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
485 |
+
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
486 |
+
|
487 |
+
return prompt_embeds, negative_prompt_embeds, [negative_prompt_tokens_id, prompt_tokens_id]
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
def encode_short_prompt(
|
493 |
+
pipe,
|
494 |
+
prompt,
|
495 |
+
device,
|
496 |
+
num_images_per_prompt,
|
497 |
+
do_classifier_free_guidance,
|
498 |
+
negative_prompt=None,
|
499 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
500 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
501 |
+
lora_scale: Optional[float] = None,
|
502 |
+
clip_skip: Optional[int] = None,
|
503 |
+
):
|
504 |
+
r"""
|
505 |
+
Encodes the prompt into text encoder hidden states.
|
506 |
+
|
507 |
+
Args:
|
508 |
+
prompt (`str` or `List[str]`, *optional*):
|
509 |
+
prompt to be encoded
|
510 |
+
device: (`torch.device`):
|
511 |
+
torch device
|
512 |
+
num_images_per_prompt (`int`):
|
513 |
+
number of images that should be generated per prompt
|
514 |
+
do_classifier_free_guidance (`bool`):
|
515 |
+
whether to use classifier free guidance or not
|
516 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
517 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
518 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
519 |
+
less than `1`).
|
520 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
521 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
522 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
523 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
524 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
525 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
526 |
+
argument.
|
527 |
+
lora_scale (`float`, *optional*):
|
528 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
529 |
+
clip_skip (`int`, *optional*):
|
530 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
531 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
532 |
+
"""
|
533 |
+
# set lora scale so that monkey patched LoRA
|
534 |
+
# function of text encoder can correctly access it
|
535 |
+
if lora_scale is not None and isinstance(pipe, LoraLoaderMixin):
|
536 |
+
pipe._lora_scale = lora_scale
|
537 |
+
|
538 |
+
# dynamically adjust the LoRA scale
|
539 |
+
if not USE_PEFT_BACKEND:
|
540 |
+
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
541 |
+
else:
|
542 |
+
scale_lora_layers(pipe.text_encoder, lora_scale)
|
543 |
+
|
544 |
+
if prompt is not None and isinstance(prompt, str):
|
545 |
+
batch_size = 1
|
546 |
+
elif prompt is not None and isinstance(prompt, list):
|
547 |
+
batch_size = len(prompt)
|
548 |
+
else:
|
549 |
+
batch_size = prompt_embeds.shape[0]
|
550 |
+
|
551 |
+
prompt_tokens_id = None
|
552 |
+
negative_prompt_tokens_id = None
|
553 |
+
|
554 |
+
if prompt_embeds is None:
|
555 |
+
# textual inversion: process multi-vector tokens if necessary
|
556 |
+
if isinstance(pipe, TextualInversionLoaderMixin):
|
557 |
+
prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)
|
558 |
+
|
559 |
+
text_inputs = pipe.tokenizer(
|
560 |
+
prompt,
|
561 |
+
padding="max_length",
|
562 |
+
max_length=pipe.tokenizer.model_max_length,
|
563 |
+
truncation=True,
|
564 |
+
return_tensors="pt",
|
565 |
+
)
|
566 |
+
text_input_ids = text_inputs.input_ids
|
567 |
+
prompt_tokens_id = text_inputs.input_ids.detach().cpu().numpy()
|
568 |
+
untruncated_ids = pipe.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
569 |
+
|
570 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
571 |
+
text_input_ids, untruncated_ids
|
572 |
+
):
|
573 |
+
removed_text = pipe.tokenizer.batch_decode(
|
574 |
+
untruncated_ids[:, pipe.tokenizer.model_max_length - 1 : -1]
|
575 |
+
)
|
576 |
+
logger.warning(
|
577 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
578 |
+
f" {pipe.tokenizer.model_max_length} tokens: {removed_text}"
|
579 |
+
)
|
580 |
+
|
581 |
+
if hasattr(pipe.text_encoder.config, "use_attention_mask") and pipe.text_encoder.config.use_attention_mask:
|
582 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
583 |
+
else:
|
584 |
+
attention_mask = None
|
585 |
+
|
586 |
+
if clip_skip is not None and clip_skip > 1:
|
587 |
+
prompt_embeds = pipe.text_encoder(
|
588 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
589 |
+
)
|
590 |
+
# Access the `hidden_states` first, that contains a tuple of
|
591 |
+
# all the hidden states from the encoder layers. Then index into
|
592 |
+
# the tuple to access the hidden states from the desired layer.
|
593 |
+
prompt_embeds = prompt_embeds[-1][-clip_skip]
|
594 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
595 |
+
# representations. The `last_hidden_states` that we typically use for
|
596 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
597 |
+
# layer.
|
598 |
+
prompt_embeds = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
599 |
+
else:
|
600 |
+
prompt_embeds = pipe.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
601 |
+
prompt_embeds = prompt_embeds[0]
|
602 |
+
|
603 |
+
if pipe.text_encoder is not None:
|
604 |
+
prompt_embeds_dtype = pipe.text_encoder.dtype
|
605 |
+
elif pipe.unet is not None:
|
606 |
+
prompt_embeds_dtype = pipe.unet.dtype
|
607 |
+
else:
|
608 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
609 |
+
|
610 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
611 |
+
|
612 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
613 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
614 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
615 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
616 |
+
|
617 |
+
# get unconditional embeddings for classifier free guidance
|
618 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
619 |
+
uncond_tokens: List[str]
|
620 |
+
if negative_prompt is None:
|
621 |
+
uncond_tokens = [""] * batch_size
|
622 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
623 |
+
raise TypeError(
|
624 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
625 |
+
f" {type(prompt)}."
|
626 |
+
)
|
627 |
+
elif isinstance(negative_prompt, str):
|
628 |
+
uncond_tokens = [negative_prompt]
|
629 |
+
elif batch_size != len(negative_prompt):
|
630 |
+
raise ValueError(
|
631 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
632 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
633 |
+
" the batch size of `prompt`."
|
634 |
+
)
|
635 |
+
else:
|
636 |
+
uncond_tokens = negative_prompt
|
637 |
+
|
638 |
+
# textual inversion: process multi-vector tokens if necessary
|
639 |
+
if isinstance(pipe, TextualInversionLoaderMixin):
|
640 |
+
uncond_tokens = pipe.maybe_convert_prompt(uncond_tokens, pipe.tokenizer)
|
641 |
+
|
642 |
+
max_length = prompt_embeds.shape[1]
|
643 |
+
uncond_input = pipe.tokenizer(
|
644 |
+
uncond_tokens,
|
645 |
+
padding="max_length",
|
646 |
+
max_length=max_length,
|
647 |
+
truncation=True,
|
648 |
+
return_tensors="pt",
|
649 |
+
)
|
650 |
+
negative_prompt_tokens_id = uncond_input.input_ids.detach().cpu().numpy()
|
651 |
+
|
652 |
+
if hasattr(pipe.text_encoder.config, "use_attention_mask") and pipe.text_encoder.config.use_attention_mask:
|
653 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
654 |
+
else:
|
655 |
+
attention_mask = None
|
656 |
+
|
657 |
+
if clip_skip is not None and clip_skip > 1:
|
658 |
+
negative_prompt_embeds = pipe.text_encoder(
|
659 |
+
uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
660 |
+
)
|
661 |
+
# Access the `hidden_states` first, that contains a tuple of
|
662 |
+
# all the hidden states from the encoder layers. Then index into
|
663 |
+
# the tuple to access the hidden states from the desired layer.
|
664 |
+
negative_prompt_embeds = negative_prompt_embeds[-1][-clip_skip ]
|
665 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
666 |
+
# representations. The `last_hidden_states` that we typically use for
|
667 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
668 |
+
# layer.
|
669 |
+
negative_prompt_embeds = pipe.text_encoder.text_model.final_layer_norm(negative_prompt_embeds)
|
670 |
+
else:
|
671 |
+
negative_prompt_embeds = pipe.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask)
|
672 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
673 |
+
|
674 |
+
if do_classifier_free_guidance:
|
675 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
676 |
+
seq_len = negative_prompt_embeds.shape[1]
|
677 |
+
|
678 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
679 |
+
|
680 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
681 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
682 |
+
|
683 |
+
if isinstance(pipe, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
684 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
685 |
+
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
686 |
+
|
687 |
+
return prompt_embeds, negative_prompt_embeds, [negative_prompt_tokens_id, prompt_tokens_id]
|
688 |
+
|
689 |
+
|
690 |
+
|
691 |
+
def encode_prompt_automatic1111(
|
692 |
+
pipe,
|
693 |
+
prompt,
|
694 |
+
device,
|
695 |
+
num_images_per_prompt,
|
696 |
+
do_classifier_free_guidance,
|
697 |
+
negative_prompt=None,
|
698 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
699 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
700 |
+
lora_scale: Optional[float] = None,
|
701 |
+
clip_skip: Optional[int] = None,
|
702 |
+
):
|
703 |
+
if lora_scale is not None and isinstance(pipe, LoraLoaderMixin):
|
704 |
+
pipe._lora_scale = lora_scale
|
705 |
+
|
706 |
+
# dynamically adjust the LoRA scale
|
707 |
+
if not USE_PEFT_BACKEND:
|
708 |
+
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
709 |
+
else:
|
710 |
+
scale_lora_layers(pipe.text_encoder, lora_scale)
|
711 |
+
|
712 |
+
if prompt is not None and isinstance(prompt, str):
|
713 |
+
batch_size = 1
|
714 |
+
elif prompt is not None and isinstance(prompt, list):
|
715 |
+
batch_size = len(prompt)
|
716 |
+
else:
|
717 |
+
batch_size = prompt_embeds.shape[0]
|
718 |
+
|
719 |
+
prompt_tokens_id = None
|
720 |
+
negative_prompt_tokens_id = None
|
721 |
+
|
722 |
+
|
723 |
+
# get unconditional embeddings for classifier free guidance
|
724 |
+
uncond_tokens = []
|
725 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
726 |
+
if negative_prompt is None:
|
727 |
+
uncond_tokens = [""] * batch_size
|
728 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
729 |
+
raise TypeError(
|
730 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
731 |
+
f" {type(prompt)}."
|
732 |
+
)
|
733 |
+
elif isinstance(negative_prompt, str):
|
734 |
+
uncond_tokens = [negative_prompt] + [""] * (batch_size - 1)
|
735 |
+
elif batch_size != len(negative_prompt):
|
736 |
+
raise ValueError(
|
737 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
738 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
739 |
+
" the batch size of `prompt`."
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
uncond_tokens = negative_prompt
|
743 |
+
|
744 |
+
# textual inversion: process multi-vector tokens if necessary
|
745 |
+
if isinstance(pipe, TextualInversionLoaderMixin):
|
746 |
+
uncond_tokens = pipe.maybe_convert_prompt(uncond_tokens, pipe.tokenizer)
|
747 |
+
if len(uncond_tokens) == 0:
|
748 |
+
uncond_tokens = [""]* batch_size
|
749 |
+
# textual inversion: process multi-vector tokens if necessary
|
750 |
+
if isinstance(pipe, TextualInversionLoaderMixin):
|
751 |
+
uncond_tokens = pipe.maybe_convert_prompt(uncond_tokens, pipe.tokenizer)
|
752 |
+
|
753 |
+
if prompt_embeds is None:
|
754 |
+
if not isinstance(prompt,list):
|
755 |
+
prompt = [prompt]
|
756 |
+
# textual inversion: process multi-vector tokens if necessary
|
757 |
+
if isinstance(pipe, TextualInversionLoaderMixin):
|
758 |
+
prompt = pipe.maybe_convert_prompt(prompt, pipe.tokenizer)
|
759 |
+
|
760 |
+
prompt_parser = FrozenCLIPEmbedderWithCustomWords(pipe.tokenizer, pipe.text_encoder,clip_skip)
|
761 |
+
prompt_embeds_lst = []
|
762 |
+
negative_prompt_embeds_lst =[]
|
763 |
+
negative_prompt_tokens_id_lst =[]
|
764 |
+
prompt_tokens_id_lst =[]
|
765 |
+
for i in range(0,batch_size):
|
766 |
+
text_ids, text_embeddings = prompt_parser([uncond_tokens[i], prompt[i]])
|
767 |
+
negative_prompt_embeddings, prompt_embeddings = torch.chunk(text_embeddings, 2, dim=0)
|
768 |
+
text_ids = np.split(text_ids,text_ids.shape[0])
|
769 |
+
negative_prompt_embeddings_id, prompt_embeddings_id = text_ids[0], text_ids[1]
|
770 |
+
prompt_embeds_lst.append(prompt_embeddings)
|
771 |
+
negative_prompt_embeds_lst.append(negative_prompt_embeddings)
|
772 |
+
negative_prompt_tokens_id_lst.append(negative_prompt_embeddings_id)
|
773 |
+
prompt_tokens_id_lst.append(prompt_embeddings_id)
|
774 |
+
|
775 |
+
if prompt_embeds is None:
|
776 |
+
prompt_embeds = torch.cat(prompt_embeds_lst)
|
777 |
+
prompt_tokens_id = np.concatenate(prompt_tokens_id_lst)
|
778 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
779 |
+
negative_prompt_embeds = torch.cat(negative_prompt_embeds_lst)
|
780 |
+
negative_prompt_tokens_id = np.concatenate(negative_prompt_tokens_id_lst)
|
781 |
+
|
782 |
+
if pipe.text_encoder is not None:
|
783 |
+
prompt_embeds_dtype = pipe.text_encoder.dtype
|
784 |
+
elif pipe.unet is not None:
|
785 |
+
prompt_embeds_dtype = pipe.unet.dtype
|
786 |
+
else:
|
787 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
788 |
+
|
789 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
790 |
+
|
791 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
792 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
793 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
794 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
795 |
+
|
796 |
+
if do_classifier_free_guidance:
|
797 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
798 |
+
seq_len = negative_prompt_embeds.shape[1]
|
799 |
+
|
800 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
801 |
+
|
802 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
803 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
804 |
+
|
805 |
+
if isinstance(pipe, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
806 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
807 |
+
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
808 |
+
|
809 |
+
return prompt_embeds, negative_prompt_embeds, [negative_prompt_tokens_id, prompt_tokens_id]
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
|
814 |
+
def encode_prompt_function(
|
815 |
+
pipe,
|
816 |
+
prompt,
|
817 |
+
device,
|
818 |
+
num_images_per_prompt,
|
819 |
+
do_classifier_free_guidance,
|
820 |
+
negative_prompt=None,
|
821 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
822 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
823 |
+
lora_scale: Optional[float] = None,
|
824 |
+
clip_skip: Optional[int] = None,
|
825 |
+
long_encode: Optional[bool] = False,
|
826 |
+
):
|
827 |
+
if long_encode == 0:
|
828 |
+
return encode_prompt_automatic1111(pipe, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, lora_scale, clip_skip)
|
829 |
+
elif long_encode == 1:
|
830 |
+
return encoder_long_prompt(pipe, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, lora_scale, clip_skip)
|
831 |
+
return encode_short_prompt(pipe, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, lora_scale, clip_skip)
|
modules/external_k_diffusion.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import k_diffusion
|
6 |
+
from k_diffusion import sampling, utils
|
7 |
+
|
8 |
+
class VDenoiser(nn.Module):
|
9 |
+
"""A v-diffusion-pytorch model wrapper for k-diffusion."""
|
10 |
+
|
11 |
+
def __init__(self, inner_model):
|
12 |
+
super().__init__()
|
13 |
+
self.inner_model = inner_model
|
14 |
+
self.sigma_data = 1.
|
15 |
+
|
16 |
+
def get_scalings(self, sigma):
|
17 |
+
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
|
18 |
+
c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
19 |
+
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
20 |
+
return c_skip, c_out, c_in
|
21 |
+
|
22 |
+
def sigma_to_t(self, sigma):
|
23 |
+
return sigma.atan() / math.pi * 2
|
24 |
+
|
25 |
+
def t_to_sigma(self, t):
|
26 |
+
return (t * math.pi / 2).tan()
|
27 |
+
|
28 |
+
def loss(self, input, noise, sigma, **kwargs):
|
29 |
+
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
30 |
+
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
31 |
+
model_output = self.inner_model(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
|
32 |
+
target = (input - c_skip * noised_input) / c_out
|
33 |
+
return (model_output - target).pow(2).flatten(1).mean(1)
|
34 |
+
|
35 |
+
def forward(self, input, sigma, **kwargs):
|
36 |
+
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
37 |
+
return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
|
38 |
+
|
39 |
+
|
40 |
+
class DiscreteSchedule(nn.Module):
|
41 |
+
"""A mapping between continuous noise levels (sigmas) and a list of discrete noise
|
42 |
+
levels."""
|
43 |
+
|
44 |
+
def __init__(self, sigmas, quantize):
|
45 |
+
super().__init__()
|
46 |
+
self.register_buffer('sigmas', sigmas)
|
47 |
+
self.register_buffer('log_sigmas', sigmas.log())
|
48 |
+
self.quantize = quantize
|
49 |
+
|
50 |
+
@property
|
51 |
+
def sigma_min(self):
|
52 |
+
return self.sigmas[0]
|
53 |
+
|
54 |
+
@property
|
55 |
+
def sigma_max(self):
|
56 |
+
return self.sigmas[-1]
|
57 |
+
|
58 |
+
def get_sigmas(self, n=None):
|
59 |
+
if n is None:
|
60 |
+
return sampling.append_zero(self.sigmas.flip(0))
|
61 |
+
t_max = len(self.sigmas) - 1
|
62 |
+
t = torch.linspace(t_max, 0, n, device=self.sigmas.device)
|
63 |
+
return sampling.append_zero(self.t_to_sigma(t))
|
64 |
+
|
65 |
+
def sigma_to_t(self, sigma, quantize=None):
|
66 |
+
quantize = self.quantize if quantize is None else quantize
|
67 |
+
log_sigma = sigma.log()
|
68 |
+
dists = log_sigma - self.log_sigmas[:, None]
|
69 |
+
if quantize:
|
70 |
+
return dists.abs().argmin(dim=0).view(sigma.shape)
|
71 |
+
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)
|
72 |
+
high_idx = low_idx + 1
|
73 |
+
low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx]
|
74 |
+
w = (low - log_sigma) / (low - high)
|
75 |
+
w = w.clamp(0, 1)
|
76 |
+
t = (1 - w) * low_idx + w * high_idx
|
77 |
+
return t.view(sigma.shape)
|
78 |
+
|
79 |
+
def t_to_sigma(self, t):
|
80 |
+
t = t.float()
|
81 |
+
low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac()
|
82 |
+
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
83 |
+
return log_sigma.exp()
|
84 |
+
|
85 |
+
|
86 |
+
class DiscreteEpsDDPMDenoiser(DiscreteSchedule):
|
87 |
+
"""A wrapper for discrete schedule DDPM models that output eps (the predicted
|
88 |
+
noise)."""
|
89 |
+
|
90 |
+
def __init__(self, model, alphas_cumprod, quantize):
|
91 |
+
super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
|
92 |
+
self.inner_model = model
|
93 |
+
self.sigma_data = 1.
|
94 |
+
|
95 |
+
def get_scalings(self, sigma):
|
96 |
+
c_out = -sigma
|
97 |
+
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
98 |
+
return c_out, c_in
|
99 |
+
|
100 |
+
def get_eps(self, *args, **kwargs):
|
101 |
+
return self.inner_model(*args, **kwargs)
|
102 |
+
|
103 |
+
def loss(self, input, noise, sigma, **kwargs):
|
104 |
+
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
105 |
+
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
106 |
+
eps = self.get_eps(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
|
107 |
+
return (eps - noise).pow(2).flatten(1).mean(1)
|
108 |
+
|
109 |
+
def forward(self, input, sigma, **kwargs):
|
110 |
+
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
111 |
+
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
|
112 |
+
# !!! fix for special models (controlnet, inpaint, depth, ..)
|
113 |
+
input = input[:, :eps.shape[1],...]
|
114 |
+
return input + eps * c_out
|
115 |
+
|
116 |
+
|
117 |
+
class OpenAIDenoiser(DiscreteEpsDDPMDenoiser):
|
118 |
+
"""A wrapper for OpenAI diffusion models."""
|
119 |
+
|
120 |
+
def __init__(self, model, diffusion, quantize=False, has_learned_sigmas=True, device='cpu'):
|
121 |
+
alphas_cumprod = torch.tensor(diffusion.alphas_cumprod, device=device, dtype=torch.float32)
|
122 |
+
super().__init__(model, alphas_cumprod, quantize=quantize)
|
123 |
+
self.has_learned_sigmas = has_learned_sigmas
|
124 |
+
|
125 |
+
def get_eps(self, *args, **kwargs):
|
126 |
+
model_output = self.inner_model(*args, **kwargs)
|
127 |
+
if self.has_learned_sigmas:
|
128 |
+
return model_output.chunk(2, dim=1)[0]
|
129 |
+
return model_output
|
130 |
+
|
131 |
+
|
132 |
+
class CompVisDenoiser(DiscreteEpsDDPMDenoiser):
|
133 |
+
"""A wrapper for CompVis diffusion models."""
|
134 |
+
|
135 |
+
def __init__(self, model, quantize=False, device='cpu'):
|
136 |
+
super().__init__(model, model.alphas_cumprod, quantize=quantize)
|
137 |
+
|
138 |
+
def get_eps(self, *args, **kwargs):
|
139 |
+
return self.inner_model.apply_model(*args, **kwargs)
|
140 |
+
|
141 |
+
|
142 |
+
class DiscreteVDDPMDenoiser(DiscreteSchedule):
|
143 |
+
"""A wrapper for discrete schedule DDPM models that output v."""
|
144 |
+
|
145 |
+
def __init__(self, model, alphas_cumprod, quantize):
|
146 |
+
super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
|
147 |
+
self.inner_model = model
|
148 |
+
self.sigma_data = 1.
|
149 |
+
|
150 |
+
def get_scalings(self, sigma):
|
151 |
+
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
|
152 |
+
c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
153 |
+
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
154 |
+
return c_skip, c_out, c_in
|
155 |
+
|
156 |
+
def get_v(self, *args, **kwargs):
|
157 |
+
return self.inner_model(*args, **kwargs)
|
158 |
+
|
159 |
+
def loss(self, input, noise, sigma, **kwargs):
|
160 |
+
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
161 |
+
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
162 |
+
model_output = self.get_v(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
|
163 |
+
target = (input - c_skip * noised_input) / c_out
|
164 |
+
return (model_output - target).pow(2).flatten(1).mean(1)
|
165 |
+
|
166 |
+
def forward(self, input, sigma, **kwargs):
|
167 |
+
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
168 |
+
vout = self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out
|
169 |
+
# !!! fix for special models (controlnet, upscale, ..)
|
170 |
+
input = input[:, :vout.shape[1],...]
|
171 |
+
return vout + input * c_skip
|
172 |
+
#return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
|
173 |
+
|
174 |
+
|
175 |
+
class CompVisVDenoiser(DiscreteVDDPMDenoiser):
|
176 |
+
"""A wrapper for CompVis diffusion models that output v."""
|
177 |
+
|
178 |
+
def __init__(self, model, quantize=False, device='cpu'):
|
179 |
+
super().__init__(model, model.alphas_cumprod, quantize=quantize)
|
180 |
+
|
181 |
+
def get_v(self, x, t, cond, **kwargs):
|
182 |
+
return self.inner_model.apply_model(x, t, cond)
|
modules/ip_adapter.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
21 |
+
from safetensors import safe_open
|
22 |
+
|
23 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
|
24 |
+
|
25 |
+
|
26 |
+
from diffusers.utils import (
|
27 |
+
USE_PEFT_BACKEND,
|
28 |
+
_get_model_file,
|
29 |
+
is_accelerate_available,
|
30 |
+
is_torch_version,
|
31 |
+
is_transformers_available,
|
32 |
+
logging,
|
33 |
+
)
|
34 |
+
|
35 |
+
from diffusers.loaders.unet_loader_utils import _maybe_expand_lora_scales
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
if is_transformers_available():
|
40 |
+
from transformers import (
|
41 |
+
CLIPImageProcessor,
|
42 |
+
CLIPVisionModelWithProjection,
|
43 |
+
)
|
44 |
+
|
45 |
+
from .attention_modify import (
|
46 |
+
AttnProcessor,
|
47 |
+
IPAdapterAttnProcessor,
|
48 |
+
AttnProcessor2_0,
|
49 |
+
IPAdapterAttnProcessor2_0
|
50 |
+
)
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
class IPAdapterMixin:
|
56 |
+
"""Mixin for handling IP Adapters."""
|
57 |
+
|
58 |
+
@validate_hf_hub_args
|
59 |
+
def load_ip_adapter(
|
60 |
+
self,
|
61 |
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
62 |
+
subfolder: Union[str, List[str]],
|
63 |
+
weight_name: Union[str, List[str]],
|
64 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
Parameters:
|
69 |
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
70 |
+
Can be either:
|
71 |
+
|
72 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
73 |
+
the Hub.
|
74 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
75 |
+
with [`ModelMixin.save_pretrained`].
|
76 |
+
- A [torch state
|
77 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
78 |
+
subfolder (`str` or `List[str]`):
|
79 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
|
80 |
+
list is passed, it should have the same length as `weight_name`.
|
81 |
+
weight_name (`str` or `List[str]`):
|
82 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
83 |
+
`weight_name`.
|
84 |
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
85 |
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
86 |
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
|
87 |
+
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
|
88 |
+
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
|
89 |
+
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
|
90 |
+
`image_encoder_folder="different_subfolder/image_encoder"`.
|
91 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
92 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
93 |
+
is not used.
|
94 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
96 |
+
cached versions if they exist.
|
97 |
+
resume_download:
|
98 |
+
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
|
99 |
+
of Diffusers.
|
100 |
+
proxies (`Dict[str, str]`, *optional*):
|
101 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
102 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
103 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
104 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
105 |
+
won't be downloaded from the Hub.
|
106 |
+
token (`str` or *bool*, *optional*):
|
107 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
108 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
109 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
110 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
111 |
+
allowed by Git.
|
112 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
113 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
114 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
115 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
116 |
+
argument to `True` will raise an error.
|
117 |
+
"""
|
118 |
+
|
119 |
+
# handle the list inputs for multiple IP Adapters
|
120 |
+
if not isinstance(weight_name, list):
|
121 |
+
weight_name = [weight_name]
|
122 |
+
|
123 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
124 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
125 |
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
126 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
127 |
+
|
128 |
+
if not isinstance(subfolder, list):
|
129 |
+
subfolder = [subfolder]
|
130 |
+
if len(subfolder) == 1:
|
131 |
+
subfolder = subfolder * len(weight_name)
|
132 |
+
|
133 |
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
134 |
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
135 |
+
|
136 |
+
if len(weight_name) != len(subfolder):
|
137 |
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
138 |
+
|
139 |
+
# Load the main state dict first.
|
140 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
141 |
+
force_download = kwargs.pop("force_download", False)
|
142 |
+
resume_download = kwargs.pop("resume_download", None)
|
143 |
+
proxies = kwargs.pop("proxies", None)
|
144 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
145 |
+
token = kwargs.pop("token", None)
|
146 |
+
revision = kwargs.pop("revision", None)
|
147 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
148 |
+
|
149 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
150 |
+
low_cpu_mem_usage = False
|
151 |
+
logger.warning(
|
152 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
153 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
154 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
155 |
+
" install accelerate\n```\n."
|
156 |
+
)
|
157 |
+
|
158 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
159 |
+
raise NotImplementedError(
|
160 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
161 |
+
" `low_cpu_mem_usage=False`."
|
162 |
+
)
|
163 |
+
|
164 |
+
user_agent = {
|
165 |
+
"file_type": "attn_procs_weights",
|
166 |
+
"framework": "pytorch",
|
167 |
+
}
|
168 |
+
state_dicts = []
|
169 |
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
170 |
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
171 |
+
):
|
172 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
173 |
+
model_file = _get_model_file(
|
174 |
+
pretrained_model_name_or_path_or_dict,
|
175 |
+
weights_name=weight_name,
|
176 |
+
cache_dir=cache_dir,
|
177 |
+
force_download=force_download,
|
178 |
+
resume_download=resume_download,
|
179 |
+
proxies=proxies,
|
180 |
+
local_files_only=local_files_only,
|
181 |
+
token=token,
|
182 |
+
revision=revision,
|
183 |
+
subfolder=subfolder,
|
184 |
+
user_agent=user_agent,
|
185 |
+
)
|
186 |
+
if weight_name.endswith(".safetensors"):
|
187 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
188 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
189 |
+
for key in f.keys():
|
190 |
+
if key.startswith("image_proj."):
|
191 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
192 |
+
elif key.startswith("ip_adapter."):
|
193 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
194 |
+
else:
|
195 |
+
state_dict = load_state_dict(model_file)
|
196 |
+
else:
|
197 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
198 |
+
|
199 |
+
keys = list(state_dict.keys())
|
200 |
+
if keys != ["image_proj", "ip_adapter"]:
|
201 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
202 |
+
|
203 |
+
state_dicts.append(state_dict)
|
204 |
+
|
205 |
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
206 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
207 |
+
if image_encoder_folder is not None:
|
208 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
209 |
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
210 |
+
if image_encoder_folder.count("/") == 0:
|
211 |
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
212 |
+
else:
|
213 |
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
214 |
+
|
215 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
216 |
+
pretrained_model_name_or_path_or_dict,
|
217 |
+
subfolder=image_encoder_subfolder,
|
218 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
219 |
+
).to(self.device, dtype=self.dtype)
|
220 |
+
self.register_modules(image_encoder=image_encoder)
|
221 |
+
else:
|
222 |
+
raise ValueError(
|
223 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
logger.warning(
|
227 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
228 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
229 |
+
)
|
230 |
+
|
231 |
+
# create feature extractor if it has not been registered to the pipeline yet
|
232 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
233 |
+
feature_extractor = CLIPImageProcessor()
|
234 |
+
self.register_modules(feature_extractor=feature_extractor)
|
235 |
+
|
236 |
+
# load ip-adapter into unet
|
237 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
238 |
+
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
239 |
+
|
240 |
+
extra_loras = unet._load_ip_adapter_loras(state_dicts)
|
241 |
+
if extra_loras != {}:
|
242 |
+
if not USE_PEFT_BACKEND:
|
243 |
+
logger.warning("PEFT backend is required to load these weights.")
|
244 |
+
else:
|
245 |
+
# apply the IP Adapter Face ID LoRA weights
|
246 |
+
peft_config = getattr(unet, "peft_config", {})
|
247 |
+
for k, lora in extra_loras.items():
|
248 |
+
if f"faceid_{k}" not in peft_config:
|
249 |
+
self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
|
250 |
+
self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])
|
251 |
+
|
252 |
+
def set_ip_adapter_scale(self, scale):
|
253 |
+
"""
|
254 |
+
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
|
255 |
+
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
|
256 |
+
|
257 |
+
Example:
|
258 |
+
|
259 |
+
```py
|
260 |
+
# To use original IP-Adapter
|
261 |
+
scale = 1.0
|
262 |
+
pipeline.set_ip_adapter_scale(scale)
|
263 |
+
|
264 |
+
# To use style block only
|
265 |
+
scale = {
|
266 |
+
"up": {"block_0": [0.0, 1.0, 0.0]},
|
267 |
+
}
|
268 |
+
pipeline.set_ip_adapter_scale(scale)
|
269 |
+
|
270 |
+
# To use style+layout blocks
|
271 |
+
scale = {
|
272 |
+
"down": {"block_2": [0.0, 1.0]},
|
273 |
+
"up": {"block_0": [0.0, 1.0, 0.0]},
|
274 |
+
}
|
275 |
+
pipeline.set_ip_adapter_scale(scale)
|
276 |
+
|
277 |
+
# To use style and layout from 2 reference images
|
278 |
+
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
|
279 |
+
pipeline.set_ip_adapter_scale(scales)
|
280 |
+
```
|
281 |
+
"""
|
282 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
283 |
+
if not isinstance(scale, list):
|
284 |
+
scale = [scale]
|
285 |
+
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
|
286 |
+
|
287 |
+
for attn_name, attn_processor in unet.attn_processors.items():
|
288 |
+
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
|
289 |
+
if len(scale_configs) != len(attn_processor.scale):
|
290 |
+
raise ValueError(
|
291 |
+
f"Cannot assign {len(scale_configs)} scale_configs to "
|
292 |
+
f"{len(attn_processor.scale)} IP-Adapter."
|
293 |
+
)
|
294 |
+
elif len(scale_configs) == 1:
|
295 |
+
scale_configs = scale_configs * len(attn_processor.scale)
|
296 |
+
for i, scale_config in enumerate(scale_configs):
|
297 |
+
if isinstance(scale_config, dict):
|
298 |
+
for k, s in scale_config.items():
|
299 |
+
if attn_name.startswith(k):
|
300 |
+
attn_processor.scale[i] = s
|
301 |
+
else:
|
302 |
+
attn_processor.scale[i] = scale_config
|
303 |
+
|
304 |
+
def unload_ip_adapter(self):
|
305 |
+
"""
|
306 |
+
Unloads the IP Adapter weights
|
307 |
+
|
308 |
+
Examples:
|
309 |
+
|
310 |
+
```python
|
311 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
312 |
+
>>> pipeline.unload_ip_adapter()
|
313 |
+
>>> ...
|
314 |
+
```
|
315 |
+
"""
|
316 |
+
# remove CLIP image encoder
|
317 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
318 |
+
self.image_encoder = None
|
319 |
+
self.register_to_config(image_encoder=[None, None])
|
320 |
+
|
321 |
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
322 |
+
# the feature_extractor later
|
323 |
+
if not hasattr(self, "safety_checker"):
|
324 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
325 |
+
self.feature_extractor = None
|
326 |
+
self.register_to_config(feature_extractor=[None, None])
|
327 |
+
|
328 |
+
# remove hidden encoder
|
329 |
+
self.unet.encoder_hid_proj = None
|
330 |
+
self.config.encoder_hid_dim_type = None
|
331 |
+
|
332 |
+
# restore original Unet attention processors layers
|
333 |
+
attn_procs = {}
|
334 |
+
for name, value in self.unet.attn_processors.items():
|
335 |
+
attn_processor_class = (
|
336 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
|
337 |
+
)
|
338 |
+
attn_procs[name] = (
|
339 |
+
attn_processor_class
|
340 |
+
if isinstance(value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0))
|
341 |
+
else value.__class__()
|
342 |
+
)
|
343 |
+
self.unet.set_attn_processor(attn_procs)
|
modules/keypose/__init__.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import os
|
6 |
+
#from modules import devices
|
7 |
+
#from annotator.annotator_path import models_path
|
8 |
+
|
9 |
+
import mmcv
|
10 |
+
from mmdet.apis import inference_detector, init_detector
|
11 |
+
from mmpose.apis import inference_top_down_pose_model
|
12 |
+
from mmpose.apis import init_pose_model, process_mmdet_results, vis_pose_result
|
13 |
+
|
14 |
+
device = "cpu"
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
device = "cuda"
|
17 |
+
|
18 |
+
def preprocessing(image, device):
|
19 |
+
# Resize
|
20 |
+
scale = 640 / max(image.shape[:2])
|
21 |
+
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
|
22 |
+
raw_image = image.astype(np.uint8)
|
23 |
+
|
24 |
+
# Subtract mean values
|
25 |
+
image = image.astype(np.float32)
|
26 |
+
image -= np.array(
|
27 |
+
[
|
28 |
+
float(104.008),
|
29 |
+
float(116.669),
|
30 |
+
float(122.675),
|
31 |
+
]
|
32 |
+
)
|
33 |
+
|
34 |
+
# Convert to torch.Tensor and add "batch" axis
|
35 |
+
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
|
36 |
+
image = image.to(device)
|
37 |
+
|
38 |
+
return image, raw_image
|
39 |
+
|
40 |
+
|
41 |
+
def imshow_keypoints(img,
|
42 |
+
pose_result,
|
43 |
+
skeleton=None,
|
44 |
+
kpt_score_thr=0.1,
|
45 |
+
pose_kpt_color=None,
|
46 |
+
pose_link_color=None,
|
47 |
+
radius=4,
|
48 |
+
thickness=1):
|
49 |
+
"""Draw keypoints and links on an image.
|
50 |
+
Args:
|
51 |
+
img (ndarry): The image to draw poses on.
|
52 |
+
pose_result (list[kpts]): The poses to draw. Each element kpts is
|
53 |
+
a set of K keypoints as an Kx3 numpy.ndarray, where each
|
54 |
+
keypoint is represented as x, y, score.
|
55 |
+
kpt_score_thr (float, optional): Minimum score of keypoints
|
56 |
+
to be shown. Default: 0.3.
|
57 |
+
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
|
58 |
+
the keypoint will not be drawn.
|
59 |
+
pose_link_color (np.array[Mx3]): Color of M links. If None, the
|
60 |
+
links will not be drawn.
|
61 |
+
thickness (int): Thickness of lines.
|
62 |
+
"""
|
63 |
+
|
64 |
+
img_h, img_w, _ = img.shape
|
65 |
+
img = np.zeros(img.shape)
|
66 |
+
|
67 |
+
for idx, kpts in enumerate(pose_result):
|
68 |
+
if idx > 1:
|
69 |
+
continue
|
70 |
+
kpts = kpts['keypoints']
|
71 |
+
# print(kpts)
|
72 |
+
kpts = np.array(kpts, copy=False)
|
73 |
+
|
74 |
+
# draw each point on image
|
75 |
+
if pose_kpt_color is not None:
|
76 |
+
assert len(pose_kpt_color) == len(kpts)
|
77 |
+
|
78 |
+
for kid, kpt in enumerate(kpts):
|
79 |
+
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
|
80 |
+
|
81 |
+
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
|
82 |
+
# skip the point that should not be drawn
|
83 |
+
continue
|
84 |
+
|
85 |
+
color = tuple(int(c) for c in pose_kpt_color[kid])
|
86 |
+
cv2.circle(img, (int(x_coord), int(y_coord)),
|
87 |
+
radius, color, -1)
|
88 |
+
|
89 |
+
# draw links
|
90 |
+
if skeleton is not None and pose_link_color is not None:
|
91 |
+
assert len(pose_link_color) == len(skeleton)
|
92 |
+
|
93 |
+
for sk_id, sk in enumerate(skeleton):
|
94 |
+
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
|
95 |
+
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
|
96 |
+
|
97 |
+
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
|
98 |
+
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
|
99 |
+
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
|
100 |
+
# skip the link that should not be drawn
|
101 |
+
continue
|
102 |
+
color = tuple(int(c) for c in pose_link_color[sk_id])
|
103 |
+
cv2.line(img, pos1, pos2, color, thickness=thickness)
|
104 |
+
|
105 |
+
return img
|
106 |
+
|
107 |
+
|
108 |
+
human_det, pose_model = None, None
|
109 |
+
det_model_path = "https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
|
110 |
+
pose_model_path = "https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth"
|
111 |
+
|
112 |
+
#modeldir = os.path.join(models_path, "keypose")
|
113 |
+
modeldir = os.getcwd()
|
114 |
+
old_modeldir = os.path.dirname(os.path.realpath(__file__))
|
115 |
+
|
116 |
+
det_config = 'faster_rcnn_r50_fpn_coco.py'
|
117 |
+
pose_config = 'hrnet_w48_coco_256x192.py'
|
118 |
+
|
119 |
+
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
|
120 |
+
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
|
121 |
+
det_cat_id = 1
|
122 |
+
bbox_thr = 0.2
|
123 |
+
|
124 |
+
skeleton = [
|
125 |
+
[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8],
|
126 |
+
[7, 9], [8, 10],
|
127 |
+
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]
|
128 |
+
]
|
129 |
+
|
130 |
+
pose_kpt_color = [
|
131 |
+
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
132 |
+
[0, 255, 0],
|
133 |
+
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0],
|
134 |
+
[255, 128, 0],
|
135 |
+
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]
|
136 |
+
]
|
137 |
+
|
138 |
+
pose_link_color = [
|
139 |
+
[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
|
140 |
+
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
|
141 |
+
[255, 128, 0],
|
142 |
+
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
143 |
+
[51, 153, 255],
|
144 |
+
[51, 153, 255], [51, 153, 255], [51, 153, 255]
|
145 |
+
]
|
146 |
+
|
147 |
+
def find_download_model(checkpoint, remote_path):
|
148 |
+
modelpath = os.path.join(modeldir, checkpoint)
|
149 |
+
old_modelpath = os.path.join(old_modeldir, checkpoint)
|
150 |
+
|
151 |
+
if os.path.exists(old_modelpath):
|
152 |
+
modelpath = old_modelpath
|
153 |
+
elif not os.path.exists(modelpath):
|
154 |
+
from basicsr.utils.download_util import load_file_from_url
|
155 |
+
load_file_from_url(remote_path, model_dir=modeldir)
|
156 |
+
|
157 |
+
return modelpath
|
158 |
+
|
159 |
+
def apply_keypose(input_image):
|
160 |
+
global human_det, pose_model,device
|
161 |
+
if netNetwork is None:
|
162 |
+
det_model_local = find_download_model(det_checkpoint, det_model_path)
|
163 |
+
hrnet_model_local = find_download_model(pose_checkpoint, pose_model_path)
|
164 |
+
det_config_mmcv = mmcv.Config.fromfile(det_config)
|
165 |
+
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
|
166 |
+
human_det = init_detector(det_config_mmcv, det_model_local, device=device)
|
167 |
+
pose_model = init_pose_model(pose_config_mmcv, hrnet_model_local, device=device)
|
168 |
+
|
169 |
+
assert input_image.ndim == 3
|
170 |
+
input_image = input_image.copy()
|
171 |
+
with torch.no_grad():
|
172 |
+
image = torch.from_numpy(input_image).float().to(device)
|
173 |
+
image = image / 255.0
|
174 |
+
mmdet_results = inference_detector(human_det, image)
|
175 |
+
|
176 |
+
# keep the person class bounding boxes.
|
177 |
+
person_results = process_mmdet_results(mmdet_results, det_cat_id)
|
178 |
+
|
179 |
+
return_heatmap = False
|
180 |
+
dataset = pose_model.cfg.data['test']['type']
|
181 |
+
|
182 |
+
# e.g. use ('backbone', ) to return backbone feature
|
183 |
+
output_layer_names = None
|
184 |
+
pose_results, _ = inference_top_down_pose_model(
|
185 |
+
pose_model,
|
186 |
+
image,
|
187 |
+
person_results,
|
188 |
+
bbox_thr=bbox_thr,
|
189 |
+
format='xyxy',
|
190 |
+
dataset=dataset,
|
191 |
+
dataset_info=None,
|
192 |
+
return_heatmap=return_heatmap,
|
193 |
+
outputs=output_layer_names
|
194 |
+
)
|
195 |
+
|
196 |
+
im_keypose_out = imshow_keypoints(
|
197 |
+
image,
|
198 |
+
pose_results,
|
199 |
+
skeleton=skeleton,
|
200 |
+
pose_kpt_color=pose_kpt_color,
|
201 |
+
pose_link_color=pose_link_color,
|
202 |
+
radius=2,
|
203 |
+
thickness=2
|
204 |
+
)
|
205 |
+
im_keypose_out = im_keypose_out.astype(np.uint8)
|
206 |
+
|
207 |
+
# image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
208 |
+
# edge = netNetwork(image_hed)[0]
|
209 |
+
# edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
210 |
+
return im_keypose_out
|
211 |
+
|
212 |
+
|
213 |
+
def unload_hed_model():
|
214 |
+
global netNetwork
|
215 |
+
if netNetwork is not None:
|
216 |
+
netNetwork.cpu()
|
modules/keypose/faster_rcnn_r50_fpn_coco.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoint_config = dict(interval=1)
|
2 |
+
# yapf:disable
|
3 |
+
log_config = dict(
|
4 |
+
interval=50,
|
5 |
+
hooks=[
|
6 |
+
dict(type='TextLoggerHook'),
|
7 |
+
# dict(type='TensorboardLoggerHook')
|
8 |
+
])
|
9 |
+
# yapf:enable
|
10 |
+
dist_params = dict(backend='nccl')
|
11 |
+
log_level = 'INFO'
|
12 |
+
load_from = None
|
13 |
+
resume_from = None
|
14 |
+
workflow = [('train', 1)]
|
15 |
+
# optimizer
|
16 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
17 |
+
optimizer_config = dict(grad_clip=None)
|
18 |
+
# learning policy
|
19 |
+
lr_config = dict(
|
20 |
+
policy='step',
|
21 |
+
warmup='linear',
|
22 |
+
warmup_iters=500,
|
23 |
+
warmup_ratio=0.001,
|
24 |
+
step=[8, 11])
|
25 |
+
total_epochs = 12
|
26 |
+
|
27 |
+
model = dict(
|
28 |
+
type='FasterRCNN',
|
29 |
+
pretrained='torchvision://resnet50',
|
30 |
+
backbone=dict(
|
31 |
+
type='ResNet',
|
32 |
+
depth=50,
|
33 |
+
num_stages=4,
|
34 |
+
out_indices=(0, 1, 2, 3),
|
35 |
+
frozen_stages=1,
|
36 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
37 |
+
norm_eval=True,
|
38 |
+
style='pytorch'),
|
39 |
+
neck=dict(
|
40 |
+
type='FPN',
|
41 |
+
in_channels=[256, 512, 1024, 2048],
|
42 |
+
out_channels=256,
|
43 |
+
num_outs=5),
|
44 |
+
rpn_head=dict(
|
45 |
+
type='RPNHead',
|
46 |
+
in_channels=256,
|
47 |
+
feat_channels=256,
|
48 |
+
anchor_generator=dict(
|
49 |
+
type='AnchorGenerator',
|
50 |
+
scales=[8],
|
51 |
+
ratios=[0.5, 1.0, 2.0],
|
52 |
+
strides=[4, 8, 16, 32, 64]),
|
53 |
+
bbox_coder=dict(
|
54 |
+
type='DeltaXYWHBBoxCoder',
|
55 |
+
target_means=[.0, .0, .0, .0],
|
56 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
57 |
+
loss_cls=dict(
|
58 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
59 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
60 |
+
roi_head=dict(
|
61 |
+
type='StandardRoIHead',
|
62 |
+
bbox_roi_extractor=dict(
|
63 |
+
type='SingleRoIExtractor',
|
64 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
65 |
+
out_channels=256,
|
66 |
+
featmap_strides=[4, 8, 16, 32]),
|
67 |
+
bbox_head=dict(
|
68 |
+
type='Shared2FCBBoxHead',
|
69 |
+
in_channels=256,
|
70 |
+
fc_out_channels=1024,
|
71 |
+
roi_feat_size=7,
|
72 |
+
num_classes=80,
|
73 |
+
bbox_coder=dict(
|
74 |
+
type='DeltaXYWHBBoxCoder',
|
75 |
+
target_means=[0., 0., 0., 0.],
|
76 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
77 |
+
reg_class_agnostic=False,
|
78 |
+
loss_cls=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
80 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
81 |
+
# model training and testing settings
|
82 |
+
train_cfg=dict(
|
83 |
+
rpn=dict(
|
84 |
+
assigner=dict(
|
85 |
+
type='MaxIoUAssigner',
|
86 |
+
pos_iou_thr=0.7,
|
87 |
+
neg_iou_thr=0.3,
|
88 |
+
min_pos_iou=0.3,
|
89 |
+
match_low_quality=True,
|
90 |
+
ignore_iof_thr=-1),
|
91 |
+
sampler=dict(
|
92 |
+
type='RandomSampler',
|
93 |
+
num=256,
|
94 |
+
pos_fraction=0.5,
|
95 |
+
neg_pos_ub=-1,
|
96 |
+
add_gt_as_proposals=False),
|
97 |
+
allowed_border=-1,
|
98 |
+
pos_weight=-1,
|
99 |
+
debug=False),
|
100 |
+
rpn_proposal=dict(
|
101 |
+
nms_pre=2000,
|
102 |
+
max_per_img=1000,
|
103 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
104 |
+
min_bbox_size=0),
|
105 |
+
rcnn=dict(
|
106 |
+
assigner=dict(
|
107 |
+
type='MaxIoUAssigner',
|
108 |
+
pos_iou_thr=0.5,
|
109 |
+
neg_iou_thr=0.5,
|
110 |
+
min_pos_iou=0.5,
|
111 |
+
match_low_quality=False,
|
112 |
+
ignore_iof_thr=-1),
|
113 |
+
sampler=dict(
|
114 |
+
type='RandomSampler',
|
115 |
+
num=512,
|
116 |
+
pos_fraction=0.25,
|
117 |
+
neg_pos_ub=-1,
|
118 |
+
add_gt_as_proposals=True),
|
119 |
+
pos_weight=-1,
|
120 |
+
debug=False)),
|
121 |
+
test_cfg=dict(
|
122 |
+
rpn=dict(
|
123 |
+
nms_pre=1000,
|
124 |
+
max_per_img=1000,
|
125 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
126 |
+
min_bbox_size=0),
|
127 |
+
rcnn=dict(
|
128 |
+
score_thr=0.05,
|
129 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
130 |
+
max_per_img=100)
|
131 |
+
# soft-nms is also supported for rcnn testing
|
132 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
133 |
+
))
|
134 |
+
|
135 |
+
dataset_type = 'CocoDataset'
|
136 |
+
data_root = 'data/coco'
|
137 |
+
img_norm_cfg = dict(
|
138 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
139 |
+
train_pipeline = [
|
140 |
+
dict(type='LoadImageFromFile'),
|
141 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
142 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
143 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
144 |
+
dict(type='Normalize', **img_norm_cfg),
|
145 |
+
dict(type='Pad', size_divisor=32),
|
146 |
+
dict(type='DefaultFormatBundle'),
|
147 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
148 |
+
]
|
149 |
+
test_pipeline = [
|
150 |
+
dict(type='LoadImageFromFile'),
|
151 |
+
dict(
|
152 |
+
type='MultiScaleFlipAug',
|
153 |
+
img_scale=(1333, 800),
|
154 |
+
flip=False,
|
155 |
+
transforms=[
|
156 |
+
dict(type='Resize', keep_ratio=True),
|
157 |
+
dict(type='RandomFlip'),
|
158 |
+
dict(type='Normalize', **img_norm_cfg),
|
159 |
+
dict(type='Pad', size_divisor=32),
|
160 |
+
dict(type='DefaultFormatBundle'),
|
161 |
+
dict(type='Collect', keys=['img']),
|
162 |
+
])
|
163 |
+
]
|
164 |
+
data = dict(
|
165 |
+
samples_per_gpu=2,
|
166 |
+
workers_per_gpu=2,
|
167 |
+
train=dict(
|
168 |
+
type=dataset_type,
|
169 |
+
ann_file=f'{data_root}/annotations/instances_train2017.json',
|
170 |
+
img_prefix=f'{data_root}/train2017/',
|
171 |
+
pipeline=train_pipeline),
|
172 |
+
val=dict(
|
173 |
+
type=dataset_type,
|
174 |
+
ann_file=f'{data_root}/annotations/instances_val2017.json',
|
175 |
+
img_prefix=f'{data_root}/val2017/',
|
176 |
+
pipeline=test_pipeline),
|
177 |
+
test=dict(
|
178 |
+
type=dataset_type,
|
179 |
+
ann_file=f'{data_root}/annotations/instances_val2017.json',
|
180 |
+
img_prefix=f'{data_root}/val2017/',
|
181 |
+
pipeline=test_pipeline))
|
182 |
+
evaluation = dict(interval=1, metric='bbox')
|
modules/keypose/hrnet_w48_coco_256x192.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# _base_ = [
|
2 |
+
# '../../../../_base_/default_runtime.py',
|
3 |
+
# '../../../../_base_/datasets/coco.py'
|
4 |
+
# ]
|
5 |
+
evaluation = dict(interval=10, metric='mAP', save_best='AP')
|
6 |
+
|
7 |
+
optimizer = dict(
|
8 |
+
type='Adam',
|
9 |
+
lr=5e-4,
|
10 |
+
)
|
11 |
+
optimizer_config = dict(grad_clip=None)
|
12 |
+
# learning policy
|
13 |
+
lr_config = dict(
|
14 |
+
policy='step',
|
15 |
+
warmup='linear',
|
16 |
+
warmup_iters=500,
|
17 |
+
warmup_ratio=0.001,
|
18 |
+
step=[170, 200])
|
19 |
+
total_epochs = 210
|
20 |
+
channel_cfg = dict(
|
21 |
+
num_output_channels=17,
|
22 |
+
dataset_joints=17,
|
23 |
+
dataset_channel=[
|
24 |
+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
|
25 |
+
],
|
26 |
+
inference_channel=[
|
27 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
28 |
+
])
|
29 |
+
|
30 |
+
# model settings
|
31 |
+
model = dict(
|
32 |
+
type='TopDown',
|
33 |
+
pretrained='https://download.openmmlab.com/mmpose/'
|
34 |
+
'pretrain_models/hrnet_w48-8ef0771d.pth',
|
35 |
+
backbone=dict(
|
36 |
+
type='HRNet',
|
37 |
+
in_channels=3,
|
38 |
+
extra=dict(
|
39 |
+
stage1=dict(
|
40 |
+
num_modules=1,
|
41 |
+
num_branches=1,
|
42 |
+
block='BOTTLENECK',
|
43 |
+
num_blocks=(4, ),
|
44 |
+
num_channels=(64, )),
|
45 |
+
stage2=dict(
|
46 |
+
num_modules=1,
|
47 |
+
num_branches=2,
|
48 |
+
block='BASIC',
|
49 |
+
num_blocks=(4, 4),
|
50 |
+
num_channels=(48, 96)),
|
51 |
+
stage3=dict(
|
52 |
+
num_modules=4,
|
53 |
+
num_branches=3,
|
54 |
+
block='BASIC',
|
55 |
+
num_blocks=(4, 4, 4),
|
56 |
+
num_channels=(48, 96, 192)),
|
57 |
+
stage4=dict(
|
58 |
+
num_modules=3,
|
59 |
+
num_branches=4,
|
60 |
+
block='BASIC',
|
61 |
+
num_blocks=(4, 4, 4, 4),
|
62 |
+
num_channels=(48, 96, 192, 384))),
|
63 |
+
),
|
64 |
+
keypoint_head=dict(
|
65 |
+
type='TopdownHeatmapSimpleHead',
|
66 |
+
in_channels=48,
|
67 |
+
out_channels=channel_cfg['num_output_channels'],
|
68 |
+
num_deconv_layers=0,
|
69 |
+
extra=dict(final_conv_kernel=1, ),
|
70 |
+
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
|
71 |
+
train_cfg=dict(),
|
72 |
+
test_cfg=dict(
|
73 |
+
flip_test=True,
|
74 |
+
post_process='default',
|
75 |
+
shift_heatmap=True,
|
76 |
+
modulate_kernel=11))
|
77 |
+
|
78 |
+
data_cfg = dict(
|
79 |
+
image_size=[192, 256],
|
80 |
+
heatmap_size=[48, 64],
|
81 |
+
num_output_channels=channel_cfg['num_output_channels'],
|
82 |
+
num_joints=channel_cfg['dataset_joints'],
|
83 |
+
dataset_channel=channel_cfg['dataset_channel'],
|
84 |
+
inference_channel=channel_cfg['inference_channel'],
|
85 |
+
soft_nms=False,
|
86 |
+
nms_thr=1.0,
|
87 |
+
oks_thr=0.9,
|
88 |
+
vis_thr=0.2,
|
89 |
+
use_gt_bbox=False,
|
90 |
+
det_bbox_thr=0.0,
|
91 |
+
bbox_file='data/coco/person_detection_results/'
|
92 |
+
'COCO_val2017_detections_AP_H_56_person.json',
|
93 |
+
)
|
94 |
+
|
95 |
+
train_pipeline = [
|
96 |
+
dict(type='LoadImageFromFile'),
|
97 |
+
dict(type='TopDownGetBboxCenterScale', padding=1.25),
|
98 |
+
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
|
99 |
+
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
100 |
+
dict(
|
101 |
+
type='TopDownHalfBodyTransform',
|
102 |
+
num_joints_half_body=8,
|
103 |
+
prob_half_body=0.3),
|
104 |
+
dict(
|
105 |
+
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
|
106 |
+
dict(type='TopDownAffine'),
|
107 |
+
dict(type='ToTensor'),
|
108 |
+
dict(
|
109 |
+
type='NormalizeTensor',
|
110 |
+
mean=[0.485, 0.456, 0.406],
|
111 |
+
std=[0.229, 0.224, 0.225]),
|
112 |
+
dict(type='TopDownGenerateTarget', sigma=2),
|
113 |
+
dict(
|
114 |
+
type='Collect',
|
115 |
+
keys=['img', 'target', 'target_weight'],
|
116 |
+
meta_keys=[
|
117 |
+
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
|
118 |
+
'rotation', 'bbox_score', 'flip_pairs'
|
119 |
+
]),
|
120 |
+
]
|
121 |
+
|
122 |
+
val_pipeline = [
|
123 |
+
dict(type='LoadImageFromFile'),
|
124 |
+
dict(type='TopDownGetBboxCenterScale', padding=1.25),
|
125 |
+
dict(type='TopDownAffine'),
|
126 |
+
dict(type='ToTensor'),
|
127 |
+
dict(
|
128 |
+
type='NormalizeTensor',
|
129 |
+
mean=[0.485, 0.456, 0.406],
|
130 |
+
std=[0.229, 0.224, 0.225]),
|
131 |
+
dict(
|
132 |
+
type='Collect',
|
133 |
+
keys=['img'],
|
134 |
+
meta_keys=[
|
135 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
136 |
+
'flip_pairs'
|
137 |
+
]),
|
138 |
+
]
|
139 |
+
|
140 |
+
test_pipeline = val_pipeline
|
141 |
+
|
142 |
+
data_root = 'data/coco'
|
143 |
+
data = dict(
|
144 |
+
samples_per_gpu=32,
|
145 |
+
workers_per_gpu=2,
|
146 |
+
val_dataloader=dict(samples_per_gpu=32),
|
147 |
+
test_dataloader=dict(samples_per_gpu=32),
|
148 |
+
train=dict(
|
149 |
+
type='TopDownCocoDataset',
|
150 |
+
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
|
151 |
+
img_prefix=f'{data_root}/train2017/',
|
152 |
+
data_cfg=data_cfg,
|
153 |
+
pipeline=train_pipeline,
|
154 |
+
dataset_info={{_base_.dataset_info}}),
|
155 |
+
val=dict(
|
156 |
+
type='TopDownCocoDataset',
|
157 |
+
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
|
158 |
+
img_prefix=f'{data_root}/val2017/',
|
159 |
+
data_cfg=data_cfg,
|
160 |
+
pipeline=val_pipeline,
|
161 |
+
dataset_info={{_base_.dataset_info}}),
|
162 |
+
test=dict(
|
163 |
+
type='TopDownCocoDataset',
|
164 |
+
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
|
165 |
+
img_prefix=f'{data_root}/val2017/',
|
166 |
+
data_cfg=data_cfg,
|
167 |
+
pipeline=test_pipeline,
|
168 |
+
dataset_info={{_base_.dataset_info}}),
|
169 |
+
)
|
modules/lora.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA network module
|
2 |
+
# reference:
|
3 |
+
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
4 |
+
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
5 |
+
# https://github.com/bmaltais/kohya_ss/blob/master/networks/lora.py#L48
|
6 |
+
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import diffusers
|
11 |
+
import modules.safe as _
|
12 |
+
from safetensors.torch import load_file
|
13 |
+
|
14 |
+
|
15 |
+
class LoRAModule(torch.nn.Module):
|
16 |
+
"""
|
17 |
+
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
lora_name,
|
23 |
+
org_module: torch.nn.Module,
|
24 |
+
multiplier=1.0,
|
25 |
+
lora_dim=4,
|
26 |
+
alpha=1,
|
27 |
+
):
|
28 |
+
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
29 |
+
super().__init__()
|
30 |
+
self.lora_name = lora_name
|
31 |
+
self.lora_dim = lora_dim
|
32 |
+
|
33 |
+
if org_module.__class__.__name__ == "Conv2d":
|
34 |
+
in_dim = org_module.in_channels
|
35 |
+
out_dim = org_module.out_channels
|
36 |
+
self.lora_down = torch.nn.Conv2d(in_dim, lora_dim, (1, 1), bias=False)
|
37 |
+
self.lora_up = torch.nn.Conv2d(lora_dim, out_dim, (1, 1), bias=False)
|
38 |
+
else:
|
39 |
+
in_dim = org_module.in_features
|
40 |
+
out_dim = org_module.out_features
|
41 |
+
self.lora_down = torch.nn.Linear(in_dim, lora_dim, bias=False)
|
42 |
+
self.lora_up = torch.nn.Linear(lora_dim, out_dim, bias=False)
|
43 |
+
|
44 |
+
if type(alpha) == torch.Tensor:
|
45 |
+
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
46 |
+
|
47 |
+
alpha = lora_dim if alpha is None or alpha == 0 else alpha
|
48 |
+
self.scale = alpha / self.lora_dim
|
49 |
+
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
50 |
+
|
51 |
+
# same as microsoft's
|
52 |
+
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
53 |
+
torch.nn.init.zeros_(self.lora_up.weight)
|
54 |
+
|
55 |
+
self.multiplier = multiplier
|
56 |
+
self.org_module = org_module # remove in applying
|
57 |
+
self.enable = False
|
58 |
+
|
59 |
+
def resize(self, rank, alpha, multiplier):
|
60 |
+
self.alpha = alpha.clone().detach()
|
61 |
+
self.multiplier = multiplier
|
62 |
+
self.scale = alpha / rank
|
63 |
+
if self.lora_down.__class__.__name__ == "Conv2d":
|
64 |
+
in_dim = self.lora_down.in_channels
|
65 |
+
out_dim = self.lora_up.out_channels
|
66 |
+
self.lora_down = torch.nn.Conv2d(in_dim, rank, (1, 1), bias=False)
|
67 |
+
self.lora_up = torch.nn.Conv2d(rank, out_dim, (1, 1), bias=False)
|
68 |
+
else:
|
69 |
+
in_dim = self.lora_down.in_features
|
70 |
+
out_dim = self.lora_up.out_features
|
71 |
+
self.lora_down = torch.nn.Linear(in_dim, rank, bias=False)
|
72 |
+
self.lora_up = torch.nn.Linear(rank, out_dim, bias=False)
|
73 |
+
|
74 |
+
def apply(self):
|
75 |
+
if hasattr(self, "org_module"):
|
76 |
+
self.org_forward = self.org_module.forward
|
77 |
+
self.org_module.forward = self.forward
|
78 |
+
del self.org_module
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
if self.enable:
|
82 |
+
return (
|
83 |
+
self.org_forward(x)
|
84 |
+
+ self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
85 |
+
)
|
86 |
+
return self.org_forward(x)
|
87 |
+
|
88 |
+
|
89 |
+
class LoRANetwork(torch.nn.Module):
|
90 |
+
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"]
|
91 |
+
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
92 |
+
LORA_PREFIX_UNET = "lora_unet"
|
93 |
+
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
94 |
+
|
95 |
+
def __init__(self, text_encoder, unet, multiplier=1.0, lora_dim=4, alpha=1) -> None:
|
96 |
+
super().__init__()
|
97 |
+
self.multiplier = multiplier
|
98 |
+
self.lora_dim = lora_dim
|
99 |
+
self.alpha = alpha
|
100 |
+
|
101 |
+
# create module instances
|
102 |
+
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules):
|
103 |
+
loras = []
|
104 |
+
for name, module in root_module.named_modules():
|
105 |
+
if module.__class__.__name__ in target_replace_modules:
|
106 |
+
for child_name, child_module in module.named_modules():
|
107 |
+
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
|
108 |
+
lora_name = prefix + "." + name + "." + child_name
|
109 |
+
lora_name = lora_name.replace(".", "_")
|
110 |
+
lora = LoRAModule(lora_name, child_module, self.multiplier, self.lora_dim, self.alpha,)
|
111 |
+
loras.append(lora)
|
112 |
+
return loras
|
113 |
+
|
114 |
+
if isinstance(text_encoder, list):
|
115 |
+
self.text_encoder_loras = text_encoder
|
116 |
+
else:
|
117 |
+
self.text_encoder_loras = create_modules(LoRANetwork.LORA_PREFIX_TEXT_ENCODER, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
118 |
+
print(f"Create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
119 |
+
|
120 |
+
if diffusers.__version__ >= "0.15.0":
|
121 |
+
LoRANetwork.UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
|
122 |
+
|
123 |
+
self.unet_loras = create_modules(LoRANetwork.LORA_PREFIX_UNET, unet, LoRANetwork.UNET_TARGET_REPLACE_MODULE)
|
124 |
+
print(f"Create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
125 |
+
|
126 |
+
self.weights_sd = None
|
127 |
+
|
128 |
+
# assertion
|
129 |
+
names = set()
|
130 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
131 |
+
assert (lora.lora_name not in names), f"duplicated lora name: {lora.lora_name}"
|
132 |
+
names.add(lora.lora_name)
|
133 |
+
|
134 |
+
lora.apply()
|
135 |
+
self.add_module(lora.lora_name, lora)
|
136 |
+
|
137 |
+
def reset(self):
|
138 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
139 |
+
lora.enable = False
|
140 |
+
|
141 |
+
def load(self, file, scale):
|
142 |
+
|
143 |
+
weights = None
|
144 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
145 |
+
weights = load_file(file)
|
146 |
+
else:
|
147 |
+
weights = torch.load(file, map_location="cpu")
|
148 |
+
|
149 |
+
if not weights:
|
150 |
+
return
|
151 |
+
|
152 |
+
network_alpha = None
|
153 |
+
network_dim = None
|
154 |
+
for key, value in weights.items():
|
155 |
+
if network_alpha is None and "alpha" in key:
|
156 |
+
network_alpha = value
|
157 |
+
if network_dim is None and "lora_down" in key and len(value.size()) == 2:
|
158 |
+
network_dim = value.size()[0]
|
159 |
+
|
160 |
+
if network_alpha is None:
|
161 |
+
network_alpha = network_dim
|
162 |
+
|
163 |
+
weights_has_text_encoder = weights_has_unet = False
|
164 |
+
weights_to_modify = []
|
165 |
+
|
166 |
+
for key in weights.keys():
|
167 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
168 |
+
weights_has_text_encoder = True
|
169 |
+
|
170 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
171 |
+
weights_has_unet = True
|
172 |
+
|
173 |
+
if weights_has_text_encoder:
|
174 |
+
weights_to_modify += self.text_encoder_loras
|
175 |
+
|
176 |
+
if weights_has_unet:
|
177 |
+
weights_to_modify += self.unet_loras
|
178 |
+
|
179 |
+
for lora in self.text_encoder_loras + self.unet_loras:
|
180 |
+
lora.resize(network_dim, network_alpha, scale)
|
181 |
+
if lora in weights_to_modify:
|
182 |
+
lora.enable = True
|
183 |
+
|
184 |
+
info = self.load_state_dict(weights, False)
|
185 |
+
if len(info.unexpected_keys) > 0:
|
186 |
+
print(f"Weights are loaded. Unexpected keys={info.unexpected_keys}")
|
187 |
+
|
modules/model_diffusers.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules/model_k_diffusion.py
ADDED
@@ -0,0 +1,1960 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
import cv2
|
9 |
+
import time
|
10 |
+
import k_diffusion
|
11 |
+
import numpy as np
|
12 |
+
import PIL
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from einops import rearrange
|
17 |
+
from .external_k_diffusion import CompVisDenoiser, CompVisVDenoiser
|
18 |
+
#from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
|
19 |
+
from torch import einsum
|
20 |
+
from torch.autograd.function import Function
|
21 |
+
|
22 |
+
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
|
23 |
+
from diffusers.utils import logging
|
24 |
+
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module
|
25 |
+
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
|
26 |
+
from safetensors.torch import load_file
|
27 |
+
from diffusers import ControlNetModel
|
28 |
+
from PIL import Image
|
29 |
+
import torchvision.transforms as transforms
|
30 |
+
from diffusers.models import AutoencoderKL, ImageProjection
|
31 |
+
from .ip_adapter import IPAdapterMixin
|
32 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
33 |
+
import gc
|
34 |
+
from .t2i_adapter import preprocessing_t2i_adapter,default_height_width
|
35 |
+
from .encoder_prompt_modify import encode_prompt_function
|
36 |
+
from .encode_region_map_function import encode_region_map
|
37 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
38 |
+
from diffusers.loaders import LoraLoaderMixin
|
39 |
+
from diffusers.loaders import TextualInversionLoaderMixin
|
40 |
+
|
41 |
+
def get_image_size(image):
|
42 |
+
height, width = None, None
|
43 |
+
if isinstance(image, Image.Image):
|
44 |
+
return image.size
|
45 |
+
elif isinstance(image, np.ndarray):
|
46 |
+
height, width = image.shape[:2]
|
47 |
+
return (width, height)
|
48 |
+
elif torch.is_tensor(image):
|
49 |
+
#RGB image
|
50 |
+
if len(image.shape) == 3:
|
51 |
+
_, height, width = image.shape
|
52 |
+
else:
|
53 |
+
height, width = image.shape
|
54 |
+
return (width, height)
|
55 |
+
else:
|
56 |
+
raise TypeError("The image must be an instance of PIL.Image, numpy.ndarray, or torch.Tensor.")
|
57 |
+
|
58 |
+
|
59 |
+
def retrieve_latents(
|
60 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
61 |
+
):
|
62 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
63 |
+
return encoder_output.latent_dist.sample(generator)
|
64 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
65 |
+
return encoder_output.latent_dist.mode()
|
66 |
+
elif hasattr(encoder_output, "latents"):
|
67 |
+
return encoder_output.latents
|
68 |
+
else:
|
69 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
70 |
+
|
71 |
+
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
72 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
73 |
+
"""
|
74 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
75 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
76 |
+
"""
|
77 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
78 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
79 |
+
# rescale the results from guidance (fixes overexposure)
|
80 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
81 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
82 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
83 |
+
return noise_cfg
|
84 |
+
|
85 |
+
|
86 |
+
class ModelWrapper:
|
87 |
+
def __init__(self, model, alphas_cumprod):
|
88 |
+
self.model = model
|
89 |
+
self.alphas_cumprod = alphas_cumprod
|
90 |
+
|
91 |
+
def apply_model(self, *args, **kwargs):
|
92 |
+
if len(args) == 3:
|
93 |
+
encoder_hidden_states = args[-1]
|
94 |
+
args = args[:2]
|
95 |
+
if kwargs.get("cond", None) is not None:
|
96 |
+
encoder_hidden_states = kwargs.pop("cond")
|
97 |
+
return self.model(
|
98 |
+
*args, encoder_hidden_states=encoder_hidden_states, **kwargs
|
99 |
+
).sample
|
100 |
+
|
101 |
+
|
102 |
+
class StableDiffusionPipeline(IPAdapterMixin,DiffusionPipeline,StableDiffusionMixin,LoraLoaderMixin,TextualInversionLoaderMixin):
|
103 |
+
|
104 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
vae,
|
109 |
+
text_encoder,
|
110 |
+
tokenizer,
|
111 |
+
unet,
|
112 |
+
scheduler,
|
113 |
+
feature_extractor,
|
114 |
+
image_encoder = None,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
# get correct sigmas from LMS
|
119 |
+
self.register_modules(
|
120 |
+
vae=vae,
|
121 |
+
text_encoder=text_encoder,
|
122 |
+
tokenizer=tokenizer,
|
123 |
+
unet=unet,
|
124 |
+
scheduler=scheduler,
|
125 |
+
feature_extractor=feature_extractor,
|
126 |
+
image_encoder=image_encoder,
|
127 |
+
)
|
128 |
+
self.controlnet = None
|
129 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
130 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
131 |
+
self.mask_processor = VaeImageProcessor(
|
132 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
133 |
+
)
|
134 |
+
self.setup_unet(self.unet)
|
135 |
+
#self.setup_text_encoder()
|
136 |
+
|
137 |
+
'''def setup_text_encoder(self, n=1, new_encoder=None):
|
138 |
+
if new_encoder is not None:
|
139 |
+
self.text_encoder = new_encoder
|
140 |
+
|
141 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder,n)'''
|
142 |
+
#self.prompt_parser.CLIP_stop_at_last_layers = n
|
143 |
+
|
144 |
+
def setup_unet(self, unet):
|
145 |
+
unet = unet.to(self.device)
|
146 |
+
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
147 |
+
if self.scheduler.config.prediction_type == "v_prediction":
|
148 |
+
self.k_diffusion_model = CompVisVDenoiser(model)
|
149 |
+
else:
|
150 |
+
self.k_diffusion_model = CompVisDenoiser(model)
|
151 |
+
|
152 |
+
def get_scheduler(self, scheduler_type: str):
|
153 |
+
library = importlib.import_module("k_diffusion")
|
154 |
+
sampling = getattr(library, "sampling")
|
155 |
+
return getattr(sampling, scheduler_type)
|
156 |
+
|
157 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
158 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
159 |
+
|
160 |
+
if not isinstance(image, torch.Tensor):
|
161 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
162 |
+
|
163 |
+
image = image.to(device=device, dtype=dtype)
|
164 |
+
if output_hidden_states:
|
165 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
166 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
167 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
168 |
+
torch.zeros_like(image), output_hidden_states=True
|
169 |
+
).hidden_states[-2]
|
170 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
171 |
+
num_images_per_prompt, dim=0
|
172 |
+
)
|
173 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
174 |
+
else:
|
175 |
+
image_embeds = self.image_encoder(image).image_embeds
|
176 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
177 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
178 |
+
|
179 |
+
return image_embeds, uncond_image_embeds
|
180 |
+
|
181 |
+
|
182 |
+
def prepare_ip_adapter_image_embeds(
|
183 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
184 |
+
):
|
185 |
+
if ip_adapter_image_embeds is None:
|
186 |
+
if not isinstance(ip_adapter_image, list):
|
187 |
+
ip_adapter_image = [ip_adapter_image]
|
188 |
+
|
189 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
190 |
+
raise ValueError(
|
191 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
192 |
+
)
|
193 |
+
|
194 |
+
image_embeds = []
|
195 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
196 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
197 |
+
):
|
198 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
199 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
200 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
201 |
+
)
|
202 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
203 |
+
single_negative_image_embeds = torch.stack(
|
204 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
205 |
+
)
|
206 |
+
|
207 |
+
if do_classifier_free_guidance:
|
208 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
209 |
+
single_image_embeds = single_image_embeds.to(device)
|
210 |
+
|
211 |
+
image_embeds.append(single_image_embeds)
|
212 |
+
else:
|
213 |
+
repeat_dims = [1]
|
214 |
+
image_embeds = []
|
215 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
216 |
+
if do_classifier_free_guidance:
|
217 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
218 |
+
single_image_embeds = single_image_embeds.repeat(
|
219 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
220 |
+
)
|
221 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
222 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
223 |
+
)
|
224 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
225 |
+
else:
|
226 |
+
single_image_embeds = single_image_embeds.repeat(
|
227 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
228 |
+
)
|
229 |
+
image_embeds.append(single_image_embeds)
|
230 |
+
|
231 |
+
return image_embeds
|
232 |
+
|
233 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
234 |
+
r"""
|
235 |
+
Enable sliced attention computation.
|
236 |
+
|
237 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
238 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
242 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
243 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
244 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
245 |
+
"""
|
246 |
+
if slice_size == "auto":
|
247 |
+
# half the attention head size is usually a good trade-off between
|
248 |
+
# speed and memory
|
249 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
250 |
+
self.unet.set_attention_slice(slice_size)
|
251 |
+
|
252 |
+
def disable_attention_slicing(self):
|
253 |
+
r"""
|
254 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
255 |
+
back to computing attention in one step.
|
256 |
+
"""
|
257 |
+
# set slice_size = `None` to disable `attention slicing`
|
258 |
+
self.enable_attention_slicing(None)
|
259 |
+
|
260 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
261 |
+
r"""
|
262 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
263 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
264 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
265 |
+
"""
|
266 |
+
if is_accelerate_available():
|
267 |
+
from accelerate import cpu_offload
|
268 |
+
else:
|
269 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
270 |
+
|
271 |
+
device = torch.device(f"cuda:{gpu_id}")
|
272 |
+
|
273 |
+
for cpu_offloaded_model in [
|
274 |
+
self.unet,
|
275 |
+
self.text_encoder,
|
276 |
+
self.vae,
|
277 |
+
self.safety_checker,
|
278 |
+
]:
|
279 |
+
if cpu_offloaded_model is not None:
|
280 |
+
cpu_offload(cpu_offloaded_model, device)
|
281 |
+
|
282 |
+
@property
|
283 |
+
def _execution_device(self):
|
284 |
+
r"""
|
285 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
286 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
287 |
+
hooks.
|
288 |
+
"""
|
289 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
290 |
+
return self.device
|
291 |
+
for module in self.unet.modules():
|
292 |
+
if (
|
293 |
+
hasattr(module, "_hf_hook")
|
294 |
+
and hasattr(module._hf_hook, "execution_device")
|
295 |
+
and module._hf_hook.execution_device is not None
|
296 |
+
):
|
297 |
+
return torch.device(module._hf_hook.execution_device)
|
298 |
+
return self.device
|
299 |
+
|
300 |
+
def decode_latents(self, latents):
|
301 |
+
latents = latents.to(self.device, dtype=self.vae.dtype)
|
302 |
+
#latents = 1 / 0.18215 * latents
|
303 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
304 |
+
image = self.vae.decode(latents).sample
|
305 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
306 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
307 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
308 |
+
return image
|
309 |
+
|
310 |
+
|
311 |
+
def _default_height_width(self, height, width, image):
|
312 |
+
if isinstance(image, list):
|
313 |
+
image = image[0]
|
314 |
+
|
315 |
+
if height is None:
|
316 |
+
if isinstance(image, PIL.Image.Image):
|
317 |
+
height = image.height
|
318 |
+
elif isinstance(image, torch.Tensor):
|
319 |
+
height = image.shape[3]
|
320 |
+
|
321 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
322 |
+
|
323 |
+
if width is None:
|
324 |
+
if isinstance(image, PIL.Image.Image):
|
325 |
+
width = image.width
|
326 |
+
elif isinstance(image, torch.Tensor):
|
327 |
+
width = image.shape[2]
|
328 |
+
|
329 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
330 |
+
|
331 |
+
return height, width
|
332 |
+
|
333 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
334 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
335 |
+
raise ValueError(
|
336 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
337 |
+
)
|
338 |
+
|
339 |
+
if height % 8 != 0 or width % 8 != 0:
|
340 |
+
raise ValueError(
|
341 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
342 |
+
)
|
343 |
+
|
344 |
+
if (callback_steps is None) or (
|
345 |
+
callback_steps is not None
|
346 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
347 |
+
):
|
348 |
+
raise ValueError(
|
349 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
350 |
+
f" {type(callback_steps)}."
|
351 |
+
)
|
352 |
+
|
353 |
+
@property
|
354 |
+
def do_classifier_free_guidance(self):
|
355 |
+
return self._do_classifier_free_guidance and self.unet.config.time_cond_proj_dim is None
|
356 |
+
|
357 |
+
def setup_controlnet(self,controlnet):
|
358 |
+
if isinstance(controlnet, (list, tuple)):
|
359 |
+
controlnet = MultiControlNetModel(controlnet)
|
360 |
+
self.register_modules(
|
361 |
+
controlnet=controlnet,
|
362 |
+
)
|
363 |
+
|
364 |
+
def preprocess_controlnet(self,controlnet_conditioning_scale,control_guidance_start,control_guidance_end,image,width,height,num_inference_steps,batch_size,num_images_per_prompt):
|
365 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
366 |
+
|
367 |
+
# align format for control guidance
|
368 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
369 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
370 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
371 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
372 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
373 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
374 |
+
control_guidance_start, control_guidance_end = (
|
375 |
+
mult * [control_guidance_start],
|
376 |
+
mult * [control_guidance_end],
|
377 |
+
)
|
378 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
379 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
380 |
+
|
381 |
+
global_pool_conditions = (
|
382 |
+
controlnet.config.global_pool_conditions
|
383 |
+
if isinstance(controlnet, ControlNetModel)
|
384 |
+
else controlnet.nets[0].config.global_pool_conditions
|
385 |
+
)
|
386 |
+
guess_mode = False or global_pool_conditions
|
387 |
+
|
388 |
+
# 4. Prepare image
|
389 |
+
if isinstance(controlnet, ControlNetModel):
|
390 |
+
image = self.prepare_image(
|
391 |
+
image=image,
|
392 |
+
width=width,
|
393 |
+
height=height,
|
394 |
+
batch_size=batch_size,
|
395 |
+
num_images_per_prompt=num_images_per_prompt,
|
396 |
+
device=self._execution_device,
|
397 |
+
dtype=controlnet.dtype,
|
398 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
399 |
+
guess_mode=guess_mode,
|
400 |
+
)
|
401 |
+
height, width = image.shape[-2:]
|
402 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
403 |
+
images = []
|
404 |
+
|
405 |
+
for image_ in image:
|
406 |
+
image_ = self.prepare_image(
|
407 |
+
image=image_,
|
408 |
+
width=width,
|
409 |
+
height=height,
|
410 |
+
batch_size=batch_size,
|
411 |
+
num_images_per_prompt=num_images_per_prompt,
|
412 |
+
device=self._execution_device,
|
413 |
+
dtype=controlnet.dtype,
|
414 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
415 |
+
guess_mode=guess_mode,
|
416 |
+
)
|
417 |
+
|
418 |
+
images.append(image_)
|
419 |
+
|
420 |
+
image = images
|
421 |
+
height, width = image[0].shape[-2:]
|
422 |
+
else:
|
423 |
+
assert False
|
424 |
+
|
425 |
+
# 7.2 Create tensor stating which controlnets to keep
|
426 |
+
controlnet_keep = []
|
427 |
+
for i in range(num_inference_steps):
|
428 |
+
keeps = [
|
429 |
+
1.0 - float(i / num_inference_steps < s or (i + 1) / num_inference_steps > e)
|
430 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
431 |
+
]
|
432 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
433 |
+
return image,controlnet_keep,guess_mode,controlnet_conditioning_scale
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
def prepare_latents(
|
438 |
+
self,
|
439 |
+
batch_size,
|
440 |
+
num_channels_latents,
|
441 |
+
height,
|
442 |
+
width,
|
443 |
+
dtype,
|
444 |
+
device,
|
445 |
+
generator,
|
446 |
+
latents=None,
|
447 |
+
):
|
448 |
+
shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor)
|
449 |
+
if latents is None:
|
450 |
+
if device.type == "mps":
|
451 |
+
# randn does not work reproducibly on mps
|
452 |
+
latents = torch.randn(
|
453 |
+
shape, generator=generator, device="cpu", dtype=dtype
|
454 |
+
).to(device)
|
455 |
+
else:
|
456 |
+
latents = torch.randn(
|
457 |
+
shape, generator=generator, device=device, dtype=dtype
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
# if latents.shape != shape:
|
461 |
+
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
462 |
+
latents = latents.to(device)
|
463 |
+
|
464 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
465 |
+
return latents
|
466 |
+
|
467 |
+
def preprocess(self, image):
|
468 |
+
if isinstance(image, torch.Tensor):
|
469 |
+
return image
|
470 |
+
elif isinstance(image, PIL.Image.Image):
|
471 |
+
image = [image]
|
472 |
+
|
473 |
+
if isinstance(image[0], PIL.Image.Image):
|
474 |
+
w, h = image[0].size
|
475 |
+
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
|
476 |
+
|
477 |
+
image = [
|
478 |
+
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
|
479 |
+
None, :
|
480 |
+
]
|
481 |
+
for i in image
|
482 |
+
]
|
483 |
+
image = np.concatenate(image, axis=0)
|
484 |
+
image = np.array(image).astype(np.float32) / 255.0
|
485 |
+
image = image.transpose(0, 3, 1, 2)
|
486 |
+
image = 2.0 * image - 1.0
|
487 |
+
image = torch.from_numpy(image)
|
488 |
+
elif isinstance(image[0], torch.Tensor):
|
489 |
+
image = torch.cat(image, dim=0)
|
490 |
+
return image
|
491 |
+
|
492 |
+
def prepare_image(
|
493 |
+
self,
|
494 |
+
image,
|
495 |
+
width,
|
496 |
+
height,
|
497 |
+
batch_size,
|
498 |
+
num_images_per_prompt,
|
499 |
+
device,
|
500 |
+
dtype,
|
501 |
+
do_classifier_free_guidance=False,
|
502 |
+
guess_mode=False,
|
503 |
+
):
|
504 |
+
|
505 |
+
self.control_image_processor = VaeImageProcessor(
|
506 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
507 |
+
)
|
508 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
509 |
+
image_batch_size = image.shape[0]
|
510 |
+
|
511 |
+
if image_batch_size == 1:
|
512 |
+
repeat_by = batch_size
|
513 |
+
else:
|
514 |
+
# image batch size is the same as prompt batch size
|
515 |
+
repeat_by = num_images_per_prompt
|
516 |
+
|
517 |
+
#image = image.repeat_interleave(repeat_by, dim=0)
|
518 |
+
|
519 |
+
image = image.to(device=device, dtype=dtype)
|
520 |
+
|
521 |
+
if do_classifier_free_guidance and not guess_mode:
|
522 |
+
image = torch.cat([image] * 2)
|
523 |
+
|
524 |
+
return image
|
525 |
+
|
526 |
+
def numpy_to_pil(self,images):
|
527 |
+
r"""
|
528 |
+
Convert a numpy image or a batch of images to a PIL image.
|
529 |
+
"""
|
530 |
+
if images.ndim == 3:
|
531 |
+
images = images[None, ...]
|
532 |
+
#images = (images * 255).round().astype("uint8")
|
533 |
+
images = np.clip((images * 255).round(), 0, 255).astype("uint8")
|
534 |
+
if images.shape[-1] == 1:
|
535 |
+
# special case for grayscale (single channel) images
|
536 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
537 |
+
else:
|
538 |
+
pil_images = [Image.fromarray(image) for image in images]
|
539 |
+
|
540 |
+
return pil_images
|
541 |
+
|
542 |
+
def latent_to_image(self,latent,output_type):
|
543 |
+
image = self.decode_latents(latent)
|
544 |
+
if output_type == "pil":
|
545 |
+
image = self.numpy_to_pil(image)
|
546 |
+
if len(image) > 1:
|
547 |
+
return image
|
548 |
+
return image[0]
|
549 |
+
|
550 |
+
|
551 |
+
@torch.no_grad()
|
552 |
+
def img2img(
|
553 |
+
self,
|
554 |
+
prompt: Union[str, List[str]],
|
555 |
+
num_inference_steps: int = 50,
|
556 |
+
guidance_scale: float = 7.5,
|
557 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
558 |
+
generator: Optional[torch.Generator] = None,
|
559 |
+
image: Optional[torch.Tensor] = None,
|
560 |
+
output_type: Optional[str] = "pil",
|
561 |
+
latents=None,
|
562 |
+
strength=1.0,
|
563 |
+
region_map_state=None,
|
564 |
+
sampler_name="",
|
565 |
+
sampler_opt={},
|
566 |
+
start_time=-1,
|
567 |
+
timeout=180,
|
568 |
+
scale_ratio=8.0,
|
569 |
+
latent_processing = 0,
|
570 |
+
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
|
571 |
+
upscale=False,
|
572 |
+
upscale_x: float = 2.0,
|
573 |
+
upscale_method: str = "bicubic",
|
574 |
+
upscale_antialias: bool = False,
|
575 |
+
upscale_denoising_strength: int = 0.7,
|
576 |
+
width = None,
|
577 |
+
height = None,
|
578 |
+
seed = 0,
|
579 |
+
sampler_name_hires="",
|
580 |
+
sampler_opt_hires= {},
|
581 |
+
latent_upscale_processing = False,
|
582 |
+
ip_adapter_image = None,
|
583 |
+
control_img = None,
|
584 |
+
controlnet_conditioning_scale = None,
|
585 |
+
control_guidance_start = None,
|
586 |
+
control_guidance_end = None,
|
587 |
+
image_t2i_adapter : Optional[PipelineImageInput] = None,
|
588 |
+
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
589 |
+
adapter_conditioning_factor: float = 1.0,
|
590 |
+
guidance_rescale: float = 0.0,
|
591 |
+
cross_attention_kwargs = None,
|
592 |
+
clip_skip = None,
|
593 |
+
long_encode = 0,
|
594 |
+
num_images_per_prompt = 1,
|
595 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
596 |
+
):
|
597 |
+
if isinstance(sampler_name, str):
|
598 |
+
sampler = self.get_scheduler(sampler_name)
|
599 |
+
else:
|
600 |
+
sampler = sampler_name
|
601 |
+
if height is None:
|
602 |
+
_,height = get_image_size(image)
|
603 |
+
height = int((height // 8)*8)
|
604 |
+
if width is None:
|
605 |
+
width,_ = get_image_size(image)
|
606 |
+
width = int((width // 8)*8)
|
607 |
+
|
608 |
+
if image_t2i_adapter is not None:
|
609 |
+
height, width = default_height_width(self,height, width, image_t2i_adapter)
|
610 |
+
if image is not None:
|
611 |
+
image = self.preprocess(image)
|
612 |
+
image = image.to(self.vae.device, dtype=self.vae.dtype)
|
613 |
+
|
614 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
615 |
+
latents = 0.18215 * init_latents
|
616 |
+
|
617 |
+
# 2. Define call parameters
|
618 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
619 |
+
device = self._execution_device
|
620 |
+
latents = latents.to(device, dtype=self.unet.dtype)
|
621 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
622 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
623 |
+
# corresponds to doing no classifier free guidance.
|
624 |
+
|
625 |
+
lora_scale = (
|
626 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
627 |
+
)
|
628 |
+
self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
|
629 |
+
'''if guidance_scale <= 1.0:
|
630 |
+
raise ValueError("has to use guidance_scale")'''
|
631 |
+
# 3. Encode input prompt
|
632 |
+
|
633 |
+
text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
|
634 |
+
self,
|
635 |
+
prompt,
|
636 |
+
device,
|
637 |
+
num_images_per_prompt,
|
638 |
+
self.do_classifier_free_guidance,
|
639 |
+
negative_prompt,
|
640 |
+
lora_scale = lora_scale,
|
641 |
+
clip_skip = clip_skip,
|
642 |
+
long_encode = long_encode,
|
643 |
+
)
|
644 |
+
|
645 |
+
if self.do_classifier_free_guidance:
|
646 |
+
text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])
|
647 |
+
|
648 |
+
#text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
649 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
650 |
+
|
651 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
652 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
653 |
+
|
654 |
+
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
|
655 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
656 |
+
)
|
657 |
+
|
658 |
+
sigma_sched = sigmas[t_start:]
|
659 |
+
|
660 |
+
noise = randn_tensor(
|
661 |
+
latents.shape,
|
662 |
+
generator=generator,
|
663 |
+
device=device,
|
664 |
+
dtype=text_embeddings.dtype,
|
665 |
+
)
|
666 |
+
latents = latents.to(device)
|
667 |
+
latents = latents + noise * (sigma_sched[0]**2 + 1) ** 0.5
|
668 |
+
#latents = latents + noise * sigma_sched[0] #Nearly
|
669 |
+
steps_denoising = len(sigma_sched)
|
670 |
+
# 5. Prepare latent variables
|
671 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
672 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
673 |
+
latents.device
|
674 |
+
)
|
675 |
+
|
676 |
+
region_state = encode_region_map(
|
677 |
+
self,
|
678 |
+
region_map_state,
|
679 |
+
width = width,
|
680 |
+
height = height,
|
681 |
+
num_images_per_prompt = num_images_per_prompt,
|
682 |
+
text_ids=text_input_ids,
|
683 |
+
)
|
684 |
+
if cross_attention_kwargs is None:
|
685 |
+
cross_attention_kwargs ={}
|
686 |
+
|
687 |
+
controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale
|
688 |
+
control_guidance_start_copy = control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start
|
689 |
+
control_guidance_end_copy = control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end
|
690 |
+
guess_mode = False
|
691 |
+
|
692 |
+
if self.controlnet is not None:
|
693 |
+
img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,len(sigma_sched),batch_size,num_images_per_prompt)
|
694 |
+
#print(len(controlnet_keep))
|
695 |
+
|
696 |
+
#controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
|
697 |
+
#sp_control = 1
|
698 |
+
|
699 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
700 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
701 |
+
ip_adapter_image,
|
702 |
+
ip_adapter_image_embeds,
|
703 |
+
device,
|
704 |
+
batch_size * num_images_per_prompt,
|
705 |
+
self.do_classifier_free_guidance,
|
706 |
+
)
|
707 |
+
# 6.1 Add image embeds for IP-Adapter
|
708 |
+
added_cond_kwargs = (
|
709 |
+
{"image_embeds": image_embeds}
|
710 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
711 |
+
else None
|
712 |
+
)
|
713 |
+
#if controlnet_img is not None:
|
714 |
+
#controlnet_img_processing = controlnet_img.convert("RGB")
|
715 |
+
#transform = transforms.Compose([transforms.PILToTensor()])
|
716 |
+
#controlnet_img_processing = transform(controlnet_img)
|
717 |
+
#controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
|
718 |
+
#controlnet_img = torch.from_numpy(controlnet_img).half()
|
719 |
+
#controlnet_img = controlnet_img.unsqueeze(0)
|
720 |
+
#controlnet_img = controlnet_img.repeat_interleave(3, dim=0)
|
721 |
+
#controlnet_img=controlnet_img.to(device)
|
722 |
+
#controlnet_img = controlnet_img.repeat_interleave(4 // len(controlnet_img), 0)
|
723 |
+
if latent_processing == 1:
|
724 |
+
latents_process = [self.latent_to_image(latents,output_type)]
|
725 |
+
lst_latent_sigma = []
|
726 |
+
step_control = -1
|
727 |
+
adapter_state = None
|
728 |
+
adapter_sp_count = []
|
729 |
+
if image_t2i_adapter is not None:
|
730 |
+
adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
|
731 |
+
def model_fn(x, sigma):
|
732 |
+
nonlocal step_control,lst_latent_sigma,adapter_sp_count
|
733 |
+
|
734 |
+
if start_time > 0 and timeout > 0:
|
735 |
+
assert (time.time() - start_time) < timeout, "inference process timed out"
|
736 |
+
|
737 |
+
latent_model_input = torch.cat([x] * 2) if self.do_classifier_free_guidance else x
|
738 |
+
|
739 |
+
region_prompt = {
|
740 |
+
"region_state": region_state,
|
741 |
+
"sigma": sigma[0],
|
742 |
+
"weight_func": weight_func,
|
743 |
+
}
|
744 |
+
cross_attention_kwargs["region_prompt"] = region_prompt
|
745 |
+
|
746 |
+
#print(self.k_diffusion_model.sigma_to_t(sigma[0]))
|
747 |
+
|
748 |
+
if latent_model_input.dtype != text_embeddings.dtype:
|
749 |
+
latent_model_input = latent_model_input.to(text_embeddings.dtype)
|
750 |
+
ukwargs = {}
|
751 |
+
|
752 |
+
down_intrablock_additional_residuals = None
|
753 |
+
if adapter_state is not None:
|
754 |
+
if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
|
755 |
+
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
|
756 |
+
else:
|
757 |
+
down_intrablock_additional_residuals = None
|
758 |
+
sigma_string_t2i = str(sigma.item())
|
759 |
+
if sigma_string_t2i not in adapter_sp_count:
|
760 |
+
adapter_sp_count.append(sigma_string_t2i)
|
761 |
+
|
762 |
+
if self.controlnet is not None :
|
763 |
+
sigma_string = str(sigma.item())
|
764 |
+
if sigma_string not in lst_latent_sigma:
|
765 |
+
#sigmas_sp = sigma.detach().clone()
|
766 |
+
step_control+=1
|
767 |
+
lst_latent_sigma.append(sigma_string)
|
768 |
+
|
769 |
+
if isinstance(controlnet_keep[step_control], list):
|
770 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
|
771 |
+
else:
|
772 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
773 |
+
if isinstance(controlnet_cond_scale, list):
|
774 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
775 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
|
776 |
+
|
777 |
+
down_block_res_samples = None
|
778 |
+
mid_block_res_sample = None
|
779 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
780 |
+
latent_model_input / ((sigma**2 + 1) ** 0.5),
|
781 |
+
self.k_diffusion_model.sigma_to_t(sigma),
|
782 |
+
encoder_hidden_states=text_embeddings,
|
783 |
+
controlnet_cond=img_control,
|
784 |
+
conditioning_scale=cond_scale,
|
785 |
+
guess_mode=guess_mode,
|
786 |
+
return_dict=False,
|
787 |
+
)
|
788 |
+
if guess_mode and self.do_classifier_free_guidance:
|
789 |
+
# Infered ControlNet only for the conditional batch.
|
790 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
791 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
792 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
793 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
794 |
+
ukwargs ={
|
795 |
+
"down_block_additional_residuals": down_block_res_samples,
|
796 |
+
"mid_block_additional_residual":mid_block_res_sample,
|
797 |
+
}
|
798 |
+
|
799 |
+
noise_pred = self.k_diffusion_model(
|
800 |
+
latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs = cross_attention_kwargs,down_intrablock_additional_residuals = down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
|
801 |
+
)
|
802 |
+
|
803 |
+
|
804 |
+
if self.do_classifier_free_guidance:
|
805 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
806 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
807 |
+
noise_pred_text - noise_pred_uncond
|
808 |
+
)
|
809 |
+
|
810 |
+
if guidance_rescale > 0.0:
|
811 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
812 |
+
if latent_processing == 1:
|
813 |
+
latents_process.append(self.latent_to_image(noise_pred,output_type))
|
814 |
+
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
|
815 |
+
return noise_pred
|
816 |
+
|
817 |
+
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched,len(sigma_sched),sampler_opt,latents,seed, sampler)
|
818 |
+
latents = sampler(model_fn, latents, **sampler_args)
|
819 |
+
self.maybe_free_model_hooks()
|
820 |
+
torch.cuda.empty_cache()
|
821 |
+
gc.collect()
|
822 |
+
if upscale:
|
823 |
+
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
824 |
+
target_height = int(height * upscale_x // vae_scale_factor )* 8
|
825 |
+
target_width = int(width * upscale_x // vae_scale_factor)*8
|
826 |
+
|
827 |
+
latents = torch.nn.functional.interpolate(
|
828 |
+
latents,
|
829 |
+
size=(
|
830 |
+
int(target_height // vae_scale_factor),
|
831 |
+
int(target_width // vae_scale_factor),
|
832 |
+
),
|
833 |
+
mode=upscale_method,
|
834 |
+
antialias=upscale_antialias,
|
835 |
+
)
|
836 |
+
#if controlnet_img is not None:
|
837 |
+
#controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
|
838 |
+
#controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
|
839 |
+
|
840 |
+
#region_map_state = apply_size_sketch(int(target_width),int(target_height),region_map_state)
|
841 |
+
latent_reisze= self.img2img(
|
842 |
+
prompt=prompt,
|
843 |
+
num_inference_steps=num_inference_steps,
|
844 |
+
guidance_scale=guidance_scale,
|
845 |
+
negative_prompt=negative_prompt,
|
846 |
+
generator=generator,
|
847 |
+
latents=latents,
|
848 |
+
strength=upscale_denoising_strength,
|
849 |
+
sampler_name=sampler_name_hires,
|
850 |
+
sampler_opt=sampler_opt_hires,
|
851 |
+
region_map_state=region_map_state,
|
852 |
+
latent_processing = latent_upscale_processing,
|
853 |
+
width = int(target_width),
|
854 |
+
height = int(target_height),
|
855 |
+
seed = seed,
|
856 |
+
ip_adapter_image = ip_adapter_image,
|
857 |
+
control_img = control_img,
|
858 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
|
859 |
+
control_guidance_start = control_guidance_start_copy,
|
860 |
+
control_guidance_end = control_guidance_end_copy,
|
861 |
+
image_t2i_adapter= image_t2i_adapter,
|
862 |
+
adapter_conditioning_scale = adapter_conditioning_scale,
|
863 |
+
adapter_conditioning_factor = adapter_conditioning_factor,
|
864 |
+
guidance_rescale = guidance_rescale,
|
865 |
+
cross_attention_kwargs = cross_attention_kwargs,
|
866 |
+
clip_skip = clip_skip,
|
867 |
+
long_encode = long_encode,
|
868 |
+
num_images_per_prompt = num_images_per_prompt,
|
869 |
+
)
|
870 |
+
'''if latent_processing == 1:
|
871 |
+
latents = latents_process.copy()
|
872 |
+
images = []
|
873 |
+
for i in latents:
|
874 |
+
images.append(self.decode_latents(i))
|
875 |
+
image = []
|
876 |
+
if output_type == "pil":
|
877 |
+
for i in images:
|
878 |
+
image.append(self.numpy_to_pil(i))
|
879 |
+
image[-1] = latent_reisze
|
880 |
+
return image'''
|
881 |
+
if latent_processing == 1:
|
882 |
+
latents_process= latents_process+latent_reisze
|
883 |
+
return latents_process
|
884 |
+
torch.cuda.empty_cache()
|
885 |
+
gc.collect()
|
886 |
+
return latent_reisze
|
887 |
+
|
888 |
+
'''if latent_processing == 1:
|
889 |
+
latents = latents_process.copy()
|
890 |
+
images = []
|
891 |
+
for i in latents:
|
892 |
+
images.append(self.decode_latents(i))
|
893 |
+
image = []
|
894 |
+
# 10. Convert to PIL
|
895 |
+
if output_type == "pil":
|
896 |
+
for i in images:
|
897 |
+
image.append(self.numpy_to_pil(i))
|
898 |
+
else:
|
899 |
+
image = self.decode_latents(latents)
|
900 |
+
# 10. Convert to PIL
|
901 |
+
if output_type == "pil":
|
902 |
+
image = self.numpy_to_pil(image)'''
|
903 |
+
if latent_processing == 1:
|
904 |
+
return latents_process
|
905 |
+
self.maybe_free_model_hooks()
|
906 |
+
torch.cuda.empty_cache()
|
907 |
+
gc.collect()
|
908 |
+
return [self.latent_to_image(latents,output_type)]
|
909 |
+
|
910 |
+
def get_sigmas(self, steps, params):
|
911 |
+
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
|
912 |
+
steps += 1 if discard_next_to_last_sigma else 0
|
913 |
+
|
914 |
+
if params.get("scheduler", None) == "karras":
|
915 |
+
sigma_min, sigma_max = (
|
916 |
+
self.k_diffusion_model.sigmas[0].item(),
|
917 |
+
self.k_diffusion_model.sigmas[-1].item(),
|
918 |
+
)
|
919 |
+
sigmas = k_diffusion.sampling.get_sigmas_karras(
|
920 |
+
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
|
921 |
+
)
|
922 |
+
elif params.get("scheduler", None) == "exponential":
|
923 |
+
sigma_min, sigma_max = (
|
924 |
+
self.k_diffusion_model.sigmas[0].item(),
|
925 |
+
self.k_diffusion_model.sigmas[-1].item(),
|
926 |
+
)
|
927 |
+
sigmas = k_diffusion.sampling.get_sigmas_exponential(
|
928 |
+
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
|
929 |
+
)
|
930 |
+
elif params.get("scheduler", None) == "polyexponential":
|
931 |
+
sigma_min, sigma_max = (
|
932 |
+
self.k_diffusion_model.sigmas[0].item(),
|
933 |
+
self.k_diffusion_model.sigmas[-1].item(),
|
934 |
+
)
|
935 |
+
sigmas = k_diffusion.sampling.get_sigmas_polyexponential(
|
936 |
+
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
|
937 |
+
)
|
938 |
+
else:
|
939 |
+
sigmas = self.k_diffusion_model.get_sigmas(steps)
|
940 |
+
|
941 |
+
if discard_next_to_last_sigma:
|
942 |
+
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
943 |
+
|
944 |
+
return sigmas
|
945 |
+
|
946 |
+
def create_noise_sampler(self, x, sigmas, p,seed):
|
947 |
+
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
|
948 |
+
|
949 |
+
from k_diffusion.sampling import BrownianTreeNoiseSampler
|
950 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
951 |
+
#current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
|
952 |
+
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed)
|
953 |
+
|
954 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
|
955 |
+
def get_sampler_extra_args_t2i(self, sigmas, eta, steps,sampler_opt,latents,seed, func):
|
956 |
+
extra_params_kwargs = {}
|
957 |
+
|
958 |
+
if "eta" in inspect.signature(func).parameters:
|
959 |
+
extra_params_kwargs["eta"] = eta
|
960 |
+
|
961 |
+
if "sigma_min" in inspect.signature(func).parameters:
|
962 |
+
extra_params_kwargs["sigma_min"] = sigmas[0].item()
|
963 |
+
extra_params_kwargs["sigma_max"] = sigmas[-1].item()
|
964 |
+
|
965 |
+
if "n" in inspect.signature(func).parameters:
|
966 |
+
extra_params_kwargs["n"] = steps
|
967 |
+
else:
|
968 |
+
extra_params_kwargs["sigmas"] = sigmas
|
969 |
+
if sampler_opt.get('brownian_noise', False):
|
970 |
+
noise_sampler = self.create_noise_sampler(latents, sigmas, steps,seed)
|
971 |
+
extra_params_kwargs['noise_sampler'] = noise_sampler
|
972 |
+
if sampler_opt.get('solver_type', None) == 'heun':
|
973 |
+
extra_params_kwargs['solver_type'] = 'heun'
|
974 |
+
|
975 |
+
return extra_params_kwargs
|
976 |
+
|
977 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
|
978 |
+
def get_sampler_extra_args_i2i(self, sigmas,steps,sampler_opt,latents,seed, func):
|
979 |
+
extra_params_kwargs = {}
|
980 |
+
|
981 |
+
if "sigma_min" in inspect.signature(func).parameters:
|
982 |
+
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
983 |
+
extra_params_kwargs["sigma_min"] = sigmas[-2]
|
984 |
+
|
985 |
+
if "sigma_max" in inspect.signature(func).parameters:
|
986 |
+
extra_params_kwargs["sigma_max"] = sigmas[0]
|
987 |
+
|
988 |
+
if "n" in inspect.signature(func).parameters:
|
989 |
+
extra_params_kwargs["n"] = len(sigmas) - 1
|
990 |
+
|
991 |
+
if "sigma_sched" in inspect.signature(func).parameters:
|
992 |
+
extra_params_kwargs["sigma_sched"] = sigmas
|
993 |
+
|
994 |
+
if "sigmas" in inspect.signature(func).parameters:
|
995 |
+
extra_params_kwargs["sigmas"] = sigmas
|
996 |
+
if sampler_opt.get('brownian_noise', False):
|
997 |
+
noise_sampler = self.create_noise_sampler(latents, sigmas, steps,seed)
|
998 |
+
extra_params_kwargs['noise_sampler'] = noise_sampler
|
999 |
+
if sampler_opt.get('solver_type', None) == 'heun':
|
1000 |
+
extra_params_kwargs['solver_type'] = 'heun'
|
1001 |
+
|
1002 |
+
return extra_params_kwargs
|
1003 |
+
|
1004 |
+
@torch.no_grad()
|
1005 |
+
def txt2img(
|
1006 |
+
self,
|
1007 |
+
prompt: Union[str, List[str]],
|
1008 |
+
height: int = 512,
|
1009 |
+
width: int = 512,
|
1010 |
+
num_inference_steps: int = 50,
|
1011 |
+
guidance_scale: float = 7.5,
|
1012 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1013 |
+
eta: float = 0.0,
|
1014 |
+
generator: Optional[torch.Generator] = None,
|
1015 |
+
latents: Optional[torch.Tensor] = None,
|
1016 |
+
output_type: Optional[str] = "pil",
|
1017 |
+
callback_steps: Optional[int] = 1,
|
1018 |
+
upscale=False,
|
1019 |
+
upscale_x: float = 2.0,
|
1020 |
+
upscale_method: str = "bicubic",
|
1021 |
+
upscale_antialias: bool = False,
|
1022 |
+
upscale_denoising_strength: int = 0.7,
|
1023 |
+
region_map_state=None,
|
1024 |
+
sampler_name="",
|
1025 |
+
sampler_opt={},
|
1026 |
+
start_time=-1,
|
1027 |
+
timeout=180,
|
1028 |
+
latent_processing = 0,
|
1029 |
+
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
|
1030 |
+
seed = 0,
|
1031 |
+
sampler_name_hires= "",
|
1032 |
+
sampler_opt_hires= {},
|
1033 |
+
latent_upscale_processing = False,
|
1034 |
+
ip_adapter_image = None,
|
1035 |
+
control_img = None,
|
1036 |
+
controlnet_conditioning_scale = None,
|
1037 |
+
control_guidance_start = None,
|
1038 |
+
control_guidance_end = None,
|
1039 |
+
image_t2i_adapter : Optional[PipelineImageInput] = None,
|
1040 |
+
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
1041 |
+
adapter_conditioning_factor: float = 1.0,
|
1042 |
+
guidance_rescale: float = 0.0,
|
1043 |
+
cross_attention_kwargs = None,
|
1044 |
+
clip_skip = None,
|
1045 |
+
long_encode = 0,
|
1046 |
+
num_images_per_prompt = 1,
|
1047 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1048 |
+
):
|
1049 |
+
height, width = self._default_height_width(height, width, None)
|
1050 |
+
if isinstance(sampler_name, str):
|
1051 |
+
sampler = self.get_scheduler(sampler_name)
|
1052 |
+
else:
|
1053 |
+
sampler = sampler_name
|
1054 |
+
# 1. Check inputs. Raise error if not correct
|
1055 |
+
if image_t2i_adapter is not None:
|
1056 |
+
height, width = default_height_width(self,height, width, image_t2i_adapter)
|
1057 |
+
#print(default_height_width(self,height, width, image_t2i_adapter))
|
1058 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
1059 |
+
# 2. Define call parameters
|
1060 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
1061 |
+
device = self._execution_device
|
1062 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1063 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1064 |
+
# corresponds to doing no classifier free guidance.
|
1065 |
+
'''do_classifier_free_guidance = True
|
1066 |
+
if guidance_scale <= 1.0:
|
1067 |
+
raise ValueError("has to use guidance_scale")'''
|
1068 |
+
|
1069 |
+
lora_scale = (
|
1070 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1071 |
+
)
|
1072 |
+
self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
|
1073 |
+
'''if guidance_scale <= 1.0:
|
1074 |
+
raise ValueError("has to use guidance_scale")'''
|
1075 |
+
# 3. Encode input prompt
|
1076 |
+
|
1077 |
+
text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
|
1078 |
+
self,
|
1079 |
+
prompt,
|
1080 |
+
device,
|
1081 |
+
num_images_per_prompt,
|
1082 |
+
self.do_classifier_free_guidance,
|
1083 |
+
negative_prompt,
|
1084 |
+
lora_scale = lora_scale,
|
1085 |
+
clip_skip = clip_skip,
|
1086 |
+
long_encode = long_encode,
|
1087 |
+
)
|
1088 |
+
if self.do_classifier_free_guidance:
|
1089 |
+
text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])
|
1090 |
+
|
1091 |
+
# 3. Encode input prompt
|
1092 |
+
#text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
1093 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
1094 |
+
|
1095 |
+
# 4. Prepare timesteps
|
1096 |
+
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
|
1097 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
# 5. Prepare latent variables
|
1101 |
+
num_channels_latents = self.unet.config.in_channels
|
1102 |
+
latents = self.prepare_latents(
|
1103 |
+
batch_size * num_images_per_prompt,
|
1104 |
+
num_channels_latents,
|
1105 |
+
height,
|
1106 |
+
width,
|
1107 |
+
text_embeddings.dtype,
|
1108 |
+
device,
|
1109 |
+
generator,
|
1110 |
+
latents,
|
1111 |
+
)
|
1112 |
+
latents = latents * (sigmas[0]**2 + 1) ** 0.5
|
1113 |
+
#latents = latents * sigmas[0]#Nearly
|
1114 |
+
steps_denoising = len(sigmas)
|
1115 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
1116 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
1117 |
+
latents.device
|
1118 |
+
)
|
1119 |
+
|
1120 |
+
region_state = encode_region_map(
|
1121 |
+
self,
|
1122 |
+
region_map_state,
|
1123 |
+
width = width,
|
1124 |
+
height = height,
|
1125 |
+
num_images_per_prompt = num_images_per_prompt,
|
1126 |
+
text_ids=text_input_ids,
|
1127 |
+
)
|
1128 |
+
if cross_attention_kwargs is None:
|
1129 |
+
cross_attention_kwargs ={}
|
1130 |
+
controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale
|
1131 |
+
control_guidance_start_copy = control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start
|
1132 |
+
control_guidance_end_copy = control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end
|
1133 |
+
guess_mode = False
|
1134 |
+
|
1135 |
+
if self.controlnet is not None:
|
1136 |
+
img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,num_inference_steps,batch_size,num_images_per_prompt)
|
1137 |
+
#print(len(controlnet_keep))
|
1138 |
+
|
1139 |
+
#controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
|
1140 |
+
#sp_control = 1
|
1141 |
+
|
1142 |
+
|
1143 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1144 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1145 |
+
ip_adapter_image,
|
1146 |
+
ip_adapter_image_embeds,
|
1147 |
+
device,
|
1148 |
+
batch_size * num_images_per_prompt,
|
1149 |
+
self.do_classifier_free_guidance,
|
1150 |
+
)
|
1151 |
+
# 6.1 Add image embeds for IP-Adapter
|
1152 |
+
added_cond_kwargs = (
|
1153 |
+
{"image_embeds": image_embeds}
|
1154 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
1155 |
+
else None
|
1156 |
+
)
|
1157 |
+
#if controlnet_img is not None:
|
1158 |
+
#controlnet_img_processing = controlnet_img.convert("RGB")
|
1159 |
+
#transform = transforms.Compose([transforms.PILToTensor()])
|
1160 |
+
#controlnet_img_processing = transform(controlnet_img)
|
1161 |
+
#controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
|
1162 |
+
if latent_processing == 1:
|
1163 |
+
latents_process = [self.latent_to_image(latents,output_type)]
|
1164 |
+
#sp_find_new = None
|
1165 |
+
lst_latent_sigma = []
|
1166 |
+
step_control = -1
|
1167 |
+
adapter_state = None
|
1168 |
+
adapter_sp_count = []
|
1169 |
+
if image_t2i_adapter is not None:
|
1170 |
+
adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
|
1171 |
+
def model_fn(x, sigma):
|
1172 |
+
nonlocal step_control,lst_latent_sigma,adapter_sp_count
|
1173 |
+
|
1174 |
+
if start_time > 0 and timeout > 0:
|
1175 |
+
assert (time.time() - start_time) < timeout, "inference process timed out"
|
1176 |
+
|
1177 |
+
latent_model_input = torch.cat([x] * 2) if self.do_classifier_free_guidance else x
|
1178 |
+
region_prompt = {
|
1179 |
+
"region_state": region_state,
|
1180 |
+
"sigma": sigma[0],
|
1181 |
+
"weight_func": weight_func,
|
1182 |
+
}
|
1183 |
+
cross_attention_kwargs["region_prompt"] = region_prompt
|
1184 |
+
|
1185 |
+
#print(self.k_diffusion_model.sigma_to_t(sigma[0]))
|
1186 |
+
|
1187 |
+
if latent_model_input.dtype != text_embeddings.dtype:
|
1188 |
+
latent_model_input = latent_model_input.to(text_embeddings.dtype)
|
1189 |
+
ukwargs = {}
|
1190 |
+
|
1191 |
+
down_intrablock_additional_residuals = None
|
1192 |
+
if adapter_state is not None:
|
1193 |
+
if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
|
1194 |
+
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
|
1195 |
+
else:
|
1196 |
+
down_intrablock_additional_residuals = None
|
1197 |
+
sigma_string_t2i = str(sigma.item())
|
1198 |
+
if sigma_string_t2i not in adapter_sp_count:
|
1199 |
+
adapter_sp_count.append(sigma_string_t2i)
|
1200 |
+
|
1201 |
+
if self.controlnet is not None :
|
1202 |
+
sigma_string = str(sigma.item())
|
1203 |
+
if sigma_string not in lst_latent_sigma:
|
1204 |
+
#sigmas_sp = sigma.detach().clone()
|
1205 |
+
step_control+=1
|
1206 |
+
lst_latent_sigma.append(sigma_string)
|
1207 |
+
|
1208 |
+
if isinstance(controlnet_keep[step_control], list):
|
1209 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
|
1210 |
+
else:
|
1211 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1212 |
+
if isinstance(controlnet_cond_scale, list):
|
1213 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1214 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
|
1215 |
+
|
1216 |
+
down_block_res_samples = None
|
1217 |
+
mid_block_res_sample = None
|
1218 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1219 |
+
latent_model_input / ((sigma**2 + 1) ** 0.5),
|
1220 |
+
self.k_diffusion_model.sigma_to_t(sigma),
|
1221 |
+
encoder_hidden_states=text_embeddings,
|
1222 |
+
controlnet_cond=img_control,
|
1223 |
+
conditioning_scale=cond_scale,
|
1224 |
+
guess_mode=guess_mode,
|
1225 |
+
return_dict=False,
|
1226 |
+
)
|
1227 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1228 |
+
# Infered ControlNet only for the conditional batch.
|
1229 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1230 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1231 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1232 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1233 |
+
ukwargs ={
|
1234 |
+
"down_block_additional_residuals": down_block_res_samples,
|
1235 |
+
"mid_block_additional_residual":mid_block_res_sample,
|
1236 |
+
}
|
1237 |
+
|
1238 |
+
|
1239 |
+
noise_pred = self.k_diffusion_model(
|
1240 |
+
latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs=cross_attention_kwargs,down_intrablock_additional_residuals=down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
|
1244 |
+
if self.do_classifier_free_guidance:
|
1245 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1246 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
1247 |
+
noise_pred_text - noise_pred_uncond
|
1248 |
+
)
|
1249 |
+
if guidance_rescale > 0.0:
|
1250 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1251 |
+
if latent_processing == 1:
|
1252 |
+
latents_process.append(self.latent_to_image(noise_pred,output_type))
|
1253 |
+
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
|
1254 |
+
return noise_pred
|
1255 |
+
extra_args = self.get_sampler_extra_args_t2i(
|
1256 |
+
sigmas, eta, num_inference_steps,sampler_opt,latents,seed, sampler
|
1257 |
+
)
|
1258 |
+
latents = sampler(model_fn, latents, **extra_args)
|
1259 |
+
#latents = latents_process[0]
|
1260 |
+
#print(len(latents_process))
|
1261 |
+
self.maybe_free_model_hooks()
|
1262 |
+
torch.cuda.empty_cache()
|
1263 |
+
gc.collect()
|
1264 |
+
if upscale:
|
1265 |
+
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
1266 |
+
target_height = int(height * upscale_x // vae_scale_factor )* 8
|
1267 |
+
target_width = int(width * upscale_x // vae_scale_factor)*8
|
1268 |
+
latents = torch.nn.functional.interpolate(
|
1269 |
+
latents,
|
1270 |
+
size=(
|
1271 |
+
int(target_height // vae_scale_factor),
|
1272 |
+
int(target_width // vae_scale_factor),
|
1273 |
+
),
|
1274 |
+
mode=upscale_method,
|
1275 |
+
antialias=upscale_antialias,
|
1276 |
+
)
|
1277 |
+
|
1278 |
+
#if controlnet_img is not None:
|
1279 |
+
#controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
|
1280 |
+
#controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
|
1281 |
+
latent_reisze= self.img2img(
|
1282 |
+
prompt=prompt,
|
1283 |
+
num_inference_steps=num_inference_steps,
|
1284 |
+
guidance_scale=guidance_scale,
|
1285 |
+
negative_prompt=negative_prompt,
|
1286 |
+
generator=generator,
|
1287 |
+
latents=latents,
|
1288 |
+
strength=upscale_denoising_strength,
|
1289 |
+
sampler_name=sampler_name_hires,
|
1290 |
+
sampler_opt=sampler_opt_hires,
|
1291 |
+
region_map_state = region_map_state,
|
1292 |
+
latent_processing = latent_upscale_processing,
|
1293 |
+
width = int(target_width),
|
1294 |
+
height = int(target_height),
|
1295 |
+
seed = seed,
|
1296 |
+
ip_adapter_image = ip_adapter_image,
|
1297 |
+
control_img = control_img,
|
1298 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
|
1299 |
+
control_guidance_start = control_guidance_start_copy,
|
1300 |
+
control_guidance_end = control_guidance_end_copy,
|
1301 |
+
image_t2i_adapter= image_t2i_adapter,
|
1302 |
+
adapter_conditioning_scale = adapter_conditioning_scale,
|
1303 |
+
adapter_conditioning_factor = adapter_conditioning_factor,
|
1304 |
+
guidance_rescale = guidance_rescale,
|
1305 |
+
cross_attention_kwargs = cross_attention_kwargs,
|
1306 |
+
clip_skip = clip_skip,
|
1307 |
+
long_encode = long_encode,
|
1308 |
+
num_images_per_prompt = num_images_per_prompt,
|
1309 |
+
)
|
1310 |
+
'''if latent_processing == 1:
|
1311 |
+
latents = latents_process.copy()
|
1312 |
+
images = []
|
1313 |
+
for i in latents:
|
1314 |
+
images.append(self.decode_latents(i))
|
1315 |
+
image = []
|
1316 |
+
if output_type == "pil":
|
1317 |
+
for i in images:
|
1318 |
+
image.append(self.numpy_to_pil(i))
|
1319 |
+
image[-1] = latent_reisze
|
1320 |
+
return image'''
|
1321 |
+
if latent_processing == 1:
|
1322 |
+
latents_process= latents_process+latent_reisze
|
1323 |
+
return latents_process
|
1324 |
+
torch.cuda.empty_cache()
|
1325 |
+
gc.collect()
|
1326 |
+
return latent_reisze
|
1327 |
+
|
1328 |
+
# 8. Post-processing
|
1329 |
+
'''if latent_processing == 1:
|
1330 |
+
latents = latents_process.copy()
|
1331 |
+
images = []
|
1332 |
+
for i in latents:
|
1333 |
+
images.append(self.decode_latents(i))
|
1334 |
+
image = []
|
1335 |
+
# 10. Convert to PIL
|
1336 |
+
if output_type == "pil":
|
1337 |
+
for i in images:
|
1338 |
+
image.append(self.numpy_to_pil(i))
|
1339 |
+
else:
|
1340 |
+
image = self.decode_latents(latents)
|
1341 |
+
# 10. Convert to PIL
|
1342 |
+
if output_type == "pil":
|
1343 |
+
image = self.numpy_to_pil(image)'''
|
1344 |
+
if latent_processing == 1:
|
1345 |
+
return latents_process
|
1346 |
+
return [self.latent_to_image(latents,output_type)]
|
1347 |
+
|
1348 |
+
|
1349 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
1350 |
+
if isinstance(generator, list):
|
1351 |
+
image_latents = [
|
1352 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
1353 |
+
for i in range(image.shape[0])
|
1354 |
+
]
|
1355 |
+
image_latents = torch.cat(image_latents, dim=0)
|
1356 |
+
else:
|
1357 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
1358 |
+
|
1359 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
1360 |
+
|
1361 |
+
return image_latents
|
1362 |
+
|
1363 |
+
def prepare_mask_latents(
|
1364 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
1365 |
+
):
|
1366 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
1367 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
1368 |
+
# and half precision
|
1369 |
+
mask = torch.nn.functional.interpolate(
|
1370 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
1371 |
+
)
|
1372 |
+
mask = mask.to(device=device, dtype=dtype)
|
1373 |
+
|
1374 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
1375 |
+
|
1376 |
+
if masked_image.shape[1] == 4:
|
1377 |
+
masked_image_latents = masked_image
|
1378 |
+
else:
|
1379 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
1380 |
+
|
1381 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
1382 |
+
if mask.shape[0] < batch_size:
|
1383 |
+
if not batch_size % mask.shape[0] == 0:
|
1384 |
+
raise ValueError(
|
1385 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
1386 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
1387 |
+
" of masks that you pass is divisible by the total requested batch size."
|
1388 |
+
)
|
1389 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
1390 |
+
if masked_image_latents.shape[0] < batch_size:
|
1391 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
1392 |
+
raise ValueError(
|
1393 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
1394 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
1395 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
1396 |
+
)
|
1397 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
1398 |
+
|
1399 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
1400 |
+
masked_image_latents = (
|
1401 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
1405 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
1406 |
+
return mask, masked_image_latents
|
1407 |
+
|
1408 |
+
'''def get_image_latents(self,batch_size,image,device,dtype,generator):
|
1409 |
+
image = image.to(device=device, dtype=dtype)
|
1410 |
+
|
1411 |
+
if image.shape[1] == 4:
|
1412 |
+
image_latents = image
|
1413 |
+
else:
|
1414 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
1415 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
1416 |
+
return image_latents'''
|
1417 |
+
|
1418 |
+
def _sigma_to_alpha_sigma_t(self, sigma):
|
1419 |
+
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
|
1420 |
+
sigma_t = sigma * alpha_t
|
1421 |
+
|
1422 |
+
return alpha_t, sigma_t
|
1423 |
+
|
1424 |
+
def add_noise(self,init_latents_proper,noise,sigma):
|
1425 |
+
if isinstance(sigma, torch.Tensor) and sigma.numel() > 1:
|
1426 |
+
sigma,_ = sigma.sort(descending=True)
|
1427 |
+
sigma = sigma[0].item()
|
1428 |
+
#alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
1429 |
+
init_latents_proper = init_latents_proper + sigma * noise
|
1430 |
+
return init_latents_proper
|
1431 |
+
|
1432 |
+
def prepare_latents_inpating(
|
1433 |
+
self,
|
1434 |
+
batch_size,
|
1435 |
+
num_channels_latents,
|
1436 |
+
height,
|
1437 |
+
width,
|
1438 |
+
dtype,
|
1439 |
+
device,
|
1440 |
+
generator,
|
1441 |
+
latents=None,
|
1442 |
+
image=None,
|
1443 |
+
sigma=None,
|
1444 |
+
is_strength_max=True,
|
1445 |
+
return_noise=False,
|
1446 |
+
return_image_latents=False,
|
1447 |
+
):
|
1448 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
1449 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
1450 |
+
raise ValueError(
|
1451 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
1452 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
if (image is None or sigma is None) and not is_strength_max:
|
1456 |
+
raise ValueError(
|
1457 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
1458 |
+
"However, either the image or the noise sigma has not been provided."
|
1459 |
+
)
|
1460 |
+
|
1461 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
1462 |
+
image = image.to(device=device, dtype=dtype)
|
1463 |
+
|
1464 |
+
if image.shape[1] == 4:
|
1465 |
+
image_latents = image
|
1466 |
+
else:
|
1467 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
1468 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
1469 |
+
|
1470 |
+
if latents is None:
|
1471 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
1472 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
1473 |
+
latents = noise if is_strength_max else self.add_noise(image_latents, noise, sigma)
|
1474 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
1475 |
+
latents = latents * (sigma.item()**2 + 1) ** 0.5 if is_strength_max else latents
|
1476 |
+
#latents = latents * sigma.item() if is_strength_max else latents #Nearly
|
1477 |
+
else:
|
1478 |
+
noise = latents.to(device)
|
1479 |
+
latents = noise * (sigma.item()**2 + 1) ** 0.5
|
1480 |
+
#latents = noise * sigma.item() #Nearly
|
1481 |
+
|
1482 |
+
outputs = (latents,)
|
1483 |
+
|
1484 |
+
if return_noise:
|
1485 |
+
outputs += (noise,)
|
1486 |
+
|
1487 |
+
if return_image_latents:
|
1488 |
+
outputs += (image_latents,)
|
1489 |
+
|
1490 |
+
return outputs
|
1491 |
+
|
1492 |
+
@torch.no_grad()
|
1493 |
+
def inpaiting(
|
1494 |
+
self,
|
1495 |
+
prompt: Union[str, List[str]],
|
1496 |
+
height: int = 512,
|
1497 |
+
width: int = 512,
|
1498 |
+
num_inference_steps: int = 50,
|
1499 |
+
guidance_scale: float = 7.5,
|
1500 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1501 |
+
eta: float = 0.0,
|
1502 |
+
generator: Optional[torch.Generator] = None,
|
1503 |
+
latents: Optional[torch.Tensor] = None,
|
1504 |
+
output_type: Optional[str] = "pil",
|
1505 |
+
callback_steps: Optional[int] = 1,
|
1506 |
+
upscale=False,
|
1507 |
+
upscale_x: float = 2.0,
|
1508 |
+
upscale_method: str = "bicubic",
|
1509 |
+
upscale_antialias: bool = False,
|
1510 |
+
upscale_denoising_strength: int = 0.7,
|
1511 |
+
region_map_state=None,
|
1512 |
+
sampler_name="",
|
1513 |
+
sampler_opt={},
|
1514 |
+
start_time=-1,
|
1515 |
+
timeout=180,
|
1516 |
+
latent_processing = 0,
|
1517 |
+
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
|
1518 |
+
seed = 0,
|
1519 |
+
sampler_name_hires= "",
|
1520 |
+
sampler_opt_hires= {},
|
1521 |
+
latent_upscale_processing = False,
|
1522 |
+
ip_adapter_image = None,
|
1523 |
+
control_img = None,
|
1524 |
+
controlnet_conditioning_scale = None,
|
1525 |
+
control_guidance_start = None,
|
1526 |
+
control_guidance_end = None,
|
1527 |
+
image_t2i_adapter : Optional[PipelineImageInput] = None,
|
1528 |
+
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
1529 |
+
adapter_conditioning_factor: float = 1.0,
|
1530 |
+
guidance_rescale: float = 0.0,
|
1531 |
+
cross_attention_kwargs = None,
|
1532 |
+
clip_skip = None,
|
1533 |
+
long_encode = 0,
|
1534 |
+
num_images_per_prompt = 1,
|
1535 |
+
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
1536 |
+
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
1537 |
+
masked_image_latents: torch.Tensor = None,
|
1538 |
+
padding_mask_crop: Optional[int] = None,
|
1539 |
+
strength: float = 1.0,
|
1540 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1541 |
+
):
|
1542 |
+
height, width = self._default_height_width(height, width, None)
|
1543 |
+
if isinstance(sampler_name, str):
|
1544 |
+
sampler = self.get_scheduler(sampler_name)
|
1545 |
+
else:
|
1546 |
+
sampler = sampler_name
|
1547 |
+
# 1. Check inputs. Raise error if not correct
|
1548 |
+
if image_t2i_adapter is not None:
|
1549 |
+
height, width = default_height_width(self,height, width, image_t2i_adapter)
|
1550 |
+
#print(default_height_width(self,height, width, image_t2i_adapter))
|
1551 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
1552 |
+
# 2. Define call parameters
|
1553 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
1554 |
+
device = self._execution_device
|
1555 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1556 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1557 |
+
# corresponds to doing no classifier free guidance.
|
1558 |
+
'''do_classifier_free_guidance = True
|
1559 |
+
if guidance_scale <= 1.0:
|
1560 |
+
raise ValueError("has to use guidance_scale")'''
|
1561 |
+
|
1562 |
+
lora_scale = (
|
1563 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1564 |
+
)
|
1565 |
+
self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
|
1566 |
+
'''if guidance_scale <= 1.0:
|
1567 |
+
raise ValueError("has to use guidance_scale")'''
|
1568 |
+
# 3. Encode input prompt
|
1569 |
+
|
1570 |
+
text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
|
1571 |
+
self,
|
1572 |
+
prompt,
|
1573 |
+
device,
|
1574 |
+
num_images_per_prompt,
|
1575 |
+
self.do_classifier_free_guidance,
|
1576 |
+
negative_prompt,
|
1577 |
+
lora_scale = lora_scale,
|
1578 |
+
clip_skip = clip_skip,
|
1579 |
+
long_encode = long_encode,
|
1580 |
+
)
|
1581 |
+
if self.do_classifier_free_guidance:
|
1582 |
+
text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])
|
1583 |
+
|
1584 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
1585 |
+
|
1586 |
+
# 4. Prepare timesteps
|
1587 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
1588 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
1589 |
+
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
|
1590 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
1591 |
+
)
|
1592 |
+
sigmas = sigmas[t_start:] if strength >= 0 and strength < 1.0 else sigmas
|
1593 |
+
is_strength_max = strength == 1.0
|
1594 |
+
|
1595 |
+
'''if latents is None:
|
1596 |
+
noise_inpaiting = randn_tensor((batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8), generator=generator, device=device, dtype=text_embeddings.dtype)
|
1597 |
+
else:
|
1598 |
+
noise_inpaiting = latents.to(device)'''
|
1599 |
+
|
1600 |
+
|
1601 |
+
# 5. Prepare mask, image,
|
1602 |
+
if padding_mask_crop is not None:
|
1603 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1604 |
+
resize_mode = "fill"
|
1605 |
+
else:
|
1606 |
+
crops_coords = None
|
1607 |
+
resize_mode = "default"
|
1608 |
+
|
1609 |
+
original_image = image
|
1610 |
+
init_image = self.image_processor.preprocess(
|
1611 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1612 |
+
)
|
1613 |
+
init_image = init_image.to(dtype=torch.float32)
|
1614 |
+
|
1615 |
+
# 6. Prepare latent variables
|
1616 |
+
num_channels_latents = self.vae.config.latent_channels
|
1617 |
+
num_channels_unet = self.unet.config.in_channels
|
1618 |
+
return_image_latents = num_channels_unet == 4
|
1619 |
+
|
1620 |
+
image_latents = None
|
1621 |
+
noise_inpaiting = None
|
1622 |
+
|
1623 |
+
'''latents = self.prepare_latents(
|
1624 |
+
batch_size * num_images_per_prompt,
|
1625 |
+
num_channels_unet,
|
1626 |
+
height,
|
1627 |
+
width,
|
1628 |
+
text_embeddings.dtype,
|
1629 |
+
device,
|
1630 |
+
generator,
|
1631 |
+
latents,
|
1632 |
+
)'''
|
1633 |
+
#latents = latents * sigmas[0]
|
1634 |
+
|
1635 |
+
latents_outputs = self.prepare_latents_inpating(
|
1636 |
+
batch_size * num_images_per_prompt,
|
1637 |
+
num_channels_latents,
|
1638 |
+
height,
|
1639 |
+
width,
|
1640 |
+
text_embeddings.dtype,
|
1641 |
+
device,
|
1642 |
+
generator,
|
1643 |
+
latents,
|
1644 |
+
image=init_image,
|
1645 |
+
sigma=sigmas[0],
|
1646 |
+
is_strength_max=is_strength_max,
|
1647 |
+
return_noise=True,
|
1648 |
+
return_image_latents=return_image_latents,
|
1649 |
+
)
|
1650 |
+
|
1651 |
+
if return_image_latents:
|
1652 |
+
latents, noise_inpaiting, image_latents = latents_outputs
|
1653 |
+
else:
|
1654 |
+
latents, noise_inpaiting = latents_outputs
|
1655 |
+
|
1656 |
+
# 7. Prepare mask latent variables
|
1657 |
+
mask_condition = self.mask_processor.preprocess(
|
1658 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
if masked_image_latents is None:
|
1662 |
+
masked_image = init_image * (mask_condition < 0.5)
|
1663 |
+
else:
|
1664 |
+
masked_image = masked_image_latents
|
1665 |
+
|
1666 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1667 |
+
mask_condition,
|
1668 |
+
masked_image,
|
1669 |
+
batch_size * num_images_per_prompt,
|
1670 |
+
height,
|
1671 |
+
width,
|
1672 |
+
text_embeddings.dtype,
|
1673 |
+
device,
|
1674 |
+
generator,
|
1675 |
+
self.do_classifier_free_guidance,
|
1676 |
+
)
|
1677 |
+
|
1678 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1679 |
+
if num_channels_unet == 9:
|
1680 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1681 |
+
num_channels_mask = mask.shape[1]
|
1682 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1683 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1684 |
+
raise ValueError(
|
1685 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1686 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1687 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1688 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1689 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1690 |
+
)
|
1691 |
+
elif num_channels_unet != 4:
|
1692 |
+
raise ValueError(
|
1693 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
steps_denoising = len(sigmas)
|
1697 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
1698 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
1699 |
+
latents.device
|
1700 |
+
)
|
1701 |
+
|
1702 |
+
region_state = encode_region_map(
|
1703 |
+
self,
|
1704 |
+
region_map_state,
|
1705 |
+
width = width,
|
1706 |
+
height = height,
|
1707 |
+
num_images_per_prompt = num_images_per_prompt,
|
1708 |
+
text_ids=text_input_ids,
|
1709 |
+
)
|
1710 |
+
if cross_attention_kwargs is None:
|
1711 |
+
cross_attention_kwargs ={}
|
1712 |
+
controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale
|
1713 |
+
control_guidance_start_copy = control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start
|
1714 |
+
control_guidance_end_copy = control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end
|
1715 |
+
guess_mode = False
|
1716 |
+
|
1717 |
+
if self.controlnet is not None:
|
1718 |
+
img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,num_inference_steps,batch_size,num_images_per_prompt)
|
1719 |
+
#print(len(controlnet_keep))
|
1720 |
+
|
1721 |
+
#controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
|
1722 |
+
#sp_control = 1
|
1723 |
+
|
1724 |
+
|
1725 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1726 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1727 |
+
ip_adapter_image,
|
1728 |
+
ip_adapter_image_embeds,
|
1729 |
+
device,
|
1730 |
+
batch_size * num_images_per_prompt,
|
1731 |
+
self.do_classifier_free_guidance,
|
1732 |
+
)
|
1733 |
+
# 6.1 Add image embeds for IP-Adapter
|
1734 |
+
added_cond_kwargs = (
|
1735 |
+
{"image_embeds": image_embeds}
|
1736 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
1737 |
+
else None
|
1738 |
+
)
|
1739 |
+
#if controlnet_img is not None:
|
1740 |
+
#controlnet_img_processing = controlnet_img.convert("RGB")
|
1741 |
+
#transform = transforms.Compose([transforms.PILToTensor()])
|
1742 |
+
#controlnet_img_processing = transform(controlnet_img)
|
1743 |
+
#controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
|
1744 |
+
if latent_processing == 1:
|
1745 |
+
latents_process = [self.latent_to_image(latents,output_type)]
|
1746 |
+
#sp_find_new = None
|
1747 |
+
lst_latent_sigma = []
|
1748 |
+
step_control = -1
|
1749 |
+
adapter_state = None
|
1750 |
+
adapter_sp_count = []
|
1751 |
+
flag_add_noise_inpaiting = 0
|
1752 |
+
if image_t2i_adapter is not None:
|
1753 |
+
adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
|
1754 |
+
def model_fn(x, sigma):
|
1755 |
+
nonlocal step_control,lst_latent_sigma,adapter_sp_count,flag_add_noise_inpaiting
|
1756 |
+
|
1757 |
+
if start_time > 0 and timeout > 0:
|
1758 |
+
assert (time.time() - start_time) < timeout, "inference process timed out"
|
1759 |
+
|
1760 |
+
if num_channels_unet == 4 and flag_add_noise_inpaiting:
|
1761 |
+
init_latents_proper = image_latents
|
1762 |
+
if self.do_classifier_free_guidance:
|
1763 |
+
init_mask, _ = mask.chunk(2)
|
1764 |
+
else:
|
1765 |
+
init_mask = mask
|
1766 |
+
|
1767 |
+
if sigma.item() > sigmas[-1].item():
|
1768 |
+
#indices = torch.where(sigmas == sigma.item())[0]
|
1769 |
+
#sigma_next = sigmas[indices+1]
|
1770 |
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma.item())
|
1771 |
+
init_latents_proper = alpha_t * init_latents_proper + sigma_t * noise_inpaiting
|
1772 |
+
|
1773 |
+
rate_latent_timestep_sigma = (sigma**2 + 1) ** 0.5
|
1774 |
+
|
1775 |
+
x = ((1 - init_mask) * init_latents_proper + init_mask * x/ rate_latent_timestep_sigma ) * rate_latent_timestep_sigma
|
1776 |
+
|
1777 |
+
non_inpainting_latent_model_input = (
|
1778 |
+
torch.cat([x] * 2) if self.do_classifier_free_guidance else x
|
1779 |
+
)
|
1780 |
+
|
1781 |
+
inpainting_latent_model_input = torch.cat(
|
1782 |
+
[non_inpainting_latent_model_input,mask, masked_image_latents], dim=1
|
1783 |
+
) if num_channels_unet == 9 else non_inpainting_latent_model_input
|
1784 |
+
region_prompt = {
|
1785 |
+
"region_state": region_state,
|
1786 |
+
"sigma": sigma[0],
|
1787 |
+
"weight_func": weight_func,
|
1788 |
+
}
|
1789 |
+
cross_attention_kwargs["region_prompt"] = region_prompt
|
1790 |
+
|
1791 |
+
#print(self.k_diffusion_model.sigma_to_t(sigma[0]))
|
1792 |
+
|
1793 |
+
if non_inpainting_latent_model_input.dtype != text_embeddings.dtype:
|
1794 |
+
non_inpainting_latent_model_input = non_inpainting_latent_model_input.to(text_embeddings.dtype)
|
1795 |
+
|
1796 |
+
if inpainting_latent_model_input.dtype != text_embeddings.dtype:
|
1797 |
+
inpainting_latent_model_input = inpainting_latent_model_input.to(text_embeddings.dtype)
|
1798 |
+
ukwargs = {}
|
1799 |
+
|
1800 |
+
down_intrablock_additional_residuals = None
|
1801 |
+
if adapter_state is not None:
|
1802 |
+
if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
|
1803 |
+
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
|
1804 |
+
else:
|
1805 |
+
down_intrablock_additional_residuals = None
|
1806 |
+
sigma_string_t2i = str(sigma.item())
|
1807 |
+
if sigma_string_t2i not in adapter_sp_count:
|
1808 |
+
adapter_sp_count.append(sigma_string_t2i)
|
1809 |
+
|
1810 |
+
if self.controlnet is not None :
|
1811 |
+
sigma_string = str(sigma.item())
|
1812 |
+
if sigma_string not in lst_latent_sigma:
|
1813 |
+
#sigmas_sp = sigma.detach().clone()
|
1814 |
+
step_control+=1
|
1815 |
+
lst_latent_sigma.append(sigma_string)
|
1816 |
+
|
1817 |
+
if isinstance(controlnet_keep[step_control], list):
|
1818 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
|
1819 |
+
else:
|
1820 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1821 |
+
if isinstance(controlnet_cond_scale, list):
|
1822 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1823 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
|
1824 |
+
|
1825 |
+
down_block_res_samples = None
|
1826 |
+
mid_block_res_sample = None
|
1827 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1828 |
+
non_inpainting_latent_model_input / ((sigma**2 + 1) ** 0.5),
|
1829 |
+
self.k_diffusion_model.sigma_to_t(sigma),
|
1830 |
+
encoder_hidden_states=text_embeddings,
|
1831 |
+
controlnet_cond=img_control,
|
1832 |
+
conditioning_scale=cond_scale,
|
1833 |
+
guess_mode=guess_mode,
|
1834 |
+
return_dict=False,
|
1835 |
+
)
|
1836 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1837 |
+
# Infered ControlNet only for the conditional batch.
|
1838 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1839 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1840 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1841 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1842 |
+
ukwargs ={
|
1843 |
+
"down_block_additional_residuals": down_block_res_samples,
|
1844 |
+
"mid_block_additional_residual":mid_block_res_sample,
|
1845 |
+
}
|
1846 |
+
|
1847 |
+
|
1848 |
+
noise_pred = self.k_diffusion_model(
|
1849 |
+
inpainting_latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs=cross_attention_kwargs,down_intrablock_additional_residuals=down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
|
1850 |
+
)
|
1851 |
+
|
1852 |
+
|
1853 |
+
if self.do_classifier_free_guidance:
|
1854 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1855 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
1856 |
+
noise_pred_text - noise_pred_uncond
|
1857 |
+
)
|
1858 |
+
if guidance_rescale > 0.0:
|
1859 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1860 |
+
|
1861 |
+
|
1862 |
+
if latent_processing == 1:
|
1863 |
+
latents_process.append(self.latent_to_image(noise_pred,output_type))
|
1864 |
+
flag_add_noise_inpaiting = 1
|
1865 |
+
return noise_pred
|
1866 |
+
extra_args = self.get_sampler_extra_args_t2i(
|
1867 |
+
sigmas, eta, num_inference_steps,sampler_opt,latents,seed, sampler
|
1868 |
+
)
|
1869 |
+
latents = sampler(model_fn, latents, **extra_args)
|
1870 |
+
#latents = latents_process[0]
|
1871 |
+
#print(len(latents_process))
|
1872 |
+
self.maybe_free_model_hooks()
|
1873 |
+
torch.cuda.empty_cache()
|
1874 |
+
gc.collect()
|
1875 |
+
if upscale:
|
1876 |
+
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
1877 |
+
target_height = int(height * upscale_x // vae_scale_factor )* 8
|
1878 |
+
target_width = int(width * upscale_x // vae_scale_factor)*8
|
1879 |
+
latents = torch.nn.functional.interpolate(
|
1880 |
+
latents,
|
1881 |
+
size=(
|
1882 |
+
int(target_height // vae_scale_factor),
|
1883 |
+
int(target_width // vae_scale_factor),
|
1884 |
+
),
|
1885 |
+
mode=upscale_method,
|
1886 |
+
antialias=upscale_antialias,
|
1887 |
+
)
|
1888 |
+
|
1889 |
+
#if controlnet_img is not None:
|
1890 |
+
#controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
|
1891 |
+
#controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
|
1892 |
+
latent_reisze= self.img2img(
|
1893 |
+
prompt=prompt,
|
1894 |
+
num_inference_steps=num_inference_steps,
|
1895 |
+
guidance_scale=guidance_scale,
|
1896 |
+
negative_prompt=negative_prompt,
|
1897 |
+
generator=generator,
|
1898 |
+
latents=latents,
|
1899 |
+
strength=upscale_denoising_strength,
|
1900 |
+
sampler_name=sampler_name_hires,
|
1901 |
+
sampler_opt=sampler_opt_hires,
|
1902 |
+
region_map_state = region_map_state,
|
1903 |
+
latent_processing = latent_upscale_processing,
|
1904 |
+
width = int(target_width),
|
1905 |
+
height = int(target_height),
|
1906 |
+
seed = seed,
|
1907 |
+
ip_adapter_image = ip_adapter_image,
|
1908 |
+
control_img = control_img,
|
1909 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
|
1910 |
+
control_guidance_start = control_guidance_start_copy,
|
1911 |
+
control_guidance_end = control_guidance_end_copy,
|
1912 |
+
image_t2i_adapter= image_t2i_adapter,
|
1913 |
+
adapter_conditioning_scale = adapter_conditioning_scale,
|
1914 |
+
adapter_conditioning_factor = adapter_conditioning_factor,
|
1915 |
+
guidance_rescale = guidance_rescale,
|
1916 |
+
cross_attention_kwargs = cross_attention_kwargs,
|
1917 |
+
clip_skip = clip_skip,
|
1918 |
+
long_encode = long_encode,
|
1919 |
+
num_images_per_prompt = num_images_per_prompt,
|
1920 |
+
)
|
1921 |
+
'''if latent_processing == 1:
|
1922 |
+
latents = latents_process.copy()
|
1923 |
+
images = []
|
1924 |
+
for i in latents:
|
1925 |
+
images.append(self.decode_latents(i))
|
1926 |
+
image = []
|
1927 |
+
if output_type == "pil":
|
1928 |
+
for i in images:
|
1929 |
+
image.append(self.numpy_to_pil(i))
|
1930 |
+
image[-1] = latent_reisze
|
1931 |
+
return image'''
|
1932 |
+
if latent_processing == 1:
|
1933 |
+
latents_process= latents_process+latent_reisze
|
1934 |
+
return latents_process
|
1935 |
+
torch.cuda.empty_cache()
|
1936 |
+
gc.collect()
|
1937 |
+
return latent_reisze
|
1938 |
+
|
1939 |
+
# 8. Post-processing
|
1940 |
+
'''if latent_processing == 1:
|
1941 |
+
latents = latents_process.copy()
|
1942 |
+
images = []
|
1943 |
+
for i in latents:
|
1944 |
+
images.append(self.decode_latents(i))
|
1945 |
+
image = []
|
1946 |
+
# 10. Convert to PIL
|
1947 |
+
if output_type == "pil":
|
1948 |
+
for i in images:
|
1949 |
+
image.append(self.numpy_to_pil(i))
|
1950 |
+
else:
|
1951 |
+
image = self.decode_latents(latents)
|
1952 |
+
# 10. Convert to PIL
|
1953 |
+
if output_type == "pil":
|
1954 |
+
image = self.numpy_to_pil(image)'''
|
1955 |
+
if latent_processing == 1:
|
1956 |
+
return latents_process
|
1957 |
+
return [self.latent_to_image(latents,output_type)]
|
1958 |
+
|
1959 |
+
|
1960 |
+
|
modules/preprocessing_segmentation.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
6 |
+
import random
|
7 |
+
|
8 |
+
lst_model_segmentation = {
|
9 |
+
"Convnet tiny": "openmmlab/upernet-convnext-tiny",
|
10 |
+
"Convnet small": "openmmlab/upernet-convnext-small",
|
11 |
+
"Convnet base": "openmmlab/upernet-convnext-base",
|
12 |
+
"Convnet large": "openmmlab/upernet-convnext-large",
|
13 |
+
"Convnet xlarge": "openmmlab/upernet-convnext-xlarge",
|
14 |
+
"Swin tiny": "openmmlab/upernet-swin-tiny",
|
15 |
+
"Swin small": "openmmlab/upernet-swin-small",
|
16 |
+
"Swin base": "openmmlab/upernet-swin-base",
|
17 |
+
"Swin large": "openmmlab/upernet-swin-large",
|
18 |
+
}
|
19 |
+
|
20 |
+
def preprocessing_segmentation(method,image):
|
21 |
+
global lst_model_segmentation
|
22 |
+
method = lst_model_segmentation[method]
|
23 |
+
device = 'cpu'
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
device = 'cuda'
|
26 |
+
image_processor = AutoImageProcessor.from_pretrained(method)
|
27 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(method).to(device)
|
28 |
+
|
29 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values.to(device)
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = image_segmentor(pixel_values)
|
32 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
33 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
34 |
+
|
35 |
+
seg = seg.to('cpu')
|
36 |
+
unique_values = torch.unique(seg)
|
37 |
+
|
38 |
+
lst_color = []
|
39 |
+
for i in unique_values:
|
40 |
+
color = [random.randrange(0,256), random.randrange(0,256), random.randrange(0,256)]
|
41 |
+
while color in lst_color:
|
42 |
+
color = [random.randrange(0,256), random.randrange(0,256), random.randrange(0,256)]
|
43 |
+
color_seg[seg == i, :] = color
|
44 |
+
lst_color.append(color)
|
45 |
+
color_seg = color_seg.astype(np.uint8)
|
46 |
+
control_image = Image.fromarray(color_seg)
|
47 |
+
return control_image
|
modules/prompt_parser.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Code from https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/8e2aeee4a127b295bfc880800e4a312e0f049b85, modified.
|
8 |
+
|
9 |
+
class PromptChunk:
|
10 |
+
"""
|
11 |
+
This object contains token ids, weight (multipliers:1.4) and textual inversion embedding info for a chunk of prompt.
|
12 |
+
If a prompt is short, it is represented by one PromptChunk, otherwise, multiple are necessary.
|
13 |
+
Each PromptChunk contains an exact amount of tokens - 77, which includes one for start and end token,
|
14 |
+
so just 75 tokens from prompt.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.tokens = []
|
19 |
+
self.multipliers = []
|
20 |
+
self.fixes = []
|
21 |
+
|
22 |
+
|
23 |
+
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
24 |
+
"""A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
|
25 |
+
have unlimited prompt length and assign weights to tokens in prompt.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, text_encoder, enable_emphasis=True):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.device = lambda: text_encoder.device
|
32 |
+
self.enable_emphasis = enable_emphasis
|
33 |
+
"""Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
|
34 |
+
depending on model."""
|
35 |
+
|
36 |
+
self.chunk_length = 75
|
37 |
+
|
38 |
+
def empty_chunk(self):
|
39 |
+
"""creates an empty PromptChunk and returns it"""
|
40 |
+
|
41 |
+
chunk = PromptChunk()
|
42 |
+
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
|
43 |
+
chunk.multipliers = [1.0] * (self.chunk_length + 2)
|
44 |
+
return chunk
|
45 |
+
|
46 |
+
def get_target_prompt_token_count(self, token_count):
|
47 |
+
"""returns the maximum number of tokens a prompt of a known length can have before it requires one more PromptChunk to be represented"""
|
48 |
+
|
49 |
+
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
|
50 |
+
|
51 |
+
def tokenize_line(self, line):
|
52 |
+
"""
|
53 |
+
this transforms a single prompt into a list of PromptChunk objects - as many as needed to
|
54 |
+
represent the prompt.
|
55 |
+
Returns the list and the total number of tokens in the prompt.
|
56 |
+
"""
|
57 |
+
|
58 |
+
if self.enable_emphasis:
|
59 |
+
parsed = parse_prompt_attention(line)
|
60 |
+
else:
|
61 |
+
parsed = [[line, 1.0]]
|
62 |
+
|
63 |
+
tokenized = self.tokenize([text for text, _ in parsed])
|
64 |
+
|
65 |
+
chunks = []
|
66 |
+
chunk = PromptChunk()
|
67 |
+
token_count = 0
|
68 |
+
last_comma = -1
|
69 |
+
|
70 |
+
def next_chunk(is_last=False):
|
71 |
+
"""puts current chunk into the list of results and produces the next one - empty;
|
72 |
+
if is_last is true, tokens <end-of-text> tokens at the end won't add to token_count"""
|
73 |
+
nonlocal token_count
|
74 |
+
nonlocal last_comma
|
75 |
+
nonlocal chunk
|
76 |
+
|
77 |
+
if is_last:
|
78 |
+
token_count += len(chunk.tokens)
|
79 |
+
else:
|
80 |
+
token_count += self.chunk_length
|
81 |
+
|
82 |
+
to_add = self.chunk_length - len(chunk.tokens)
|
83 |
+
if to_add > 0:
|
84 |
+
chunk.tokens += [self.id_end] * to_add
|
85 |
+
chunk.multipliers += [1.0] * to_add
|
86 |
+
|
87 |
+
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
|
88 |
+
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
|
89 |
+
|
90 |
+
last_comma = -1
|
91 |
+
chunks.append(chunk)
|
92 |
+
chunk = PromptChunk()
|
93 |
+
|
94 |
+
comma_padding_backtrack = 20 # default value in https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/shared.py#L410
|
95 |
+
for tokens, (text, weight) in zip(tokenized, parsed):
|
96 |
+
if text == "BREAK" and weight == -1:
|
97 |
+
next_chunk()
|
98 |
+
continue
|
99 |
+
|
100 |
+
position = 0
|
101 |
+
while position < len(tokens):
|
102 |
+
token = tokens[position]
|
103 |
+
|
104 |
+
if token == self.comma_token:
|
105 |
+
last_comma = len(chunk.tokens)
|
106 |
+
|
107 |
+
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
108 |
+
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
|
109 |
+
elif (
|
110 |
+
comma_padding_backtrack != 0
|
111 |
+
and len(chunk.tokens) == self.chunk_length
|
112 |
+
and last_comma != -1
|
113 |
+
and len(chunk.tokens) - last_comma <= comma_padding_backtrack
|
114 |
+
):
|
115 |
+
break_location = last_comma + 1
|
116 |
+
|
117 |
+
reloc_tokens = chunk.tokens[break_location:]
|
118 |
+
reloc_mults = chunk.multipliers[break_location:]
|
119 |
+
|
120 |
+
chunk.tokens = chunk.tokens[:break_location]
|
121 |
+
chunk.multipliers = chunk.multipliers[:break_location]
|
122 |
+
|
123 |
+
next_chunk()
|
124 |
+
chunk.tokens = reloc_tokens
|
125 |
+
chunk.multipliers = reloc_mults
|
126 |
+
|
127 |
+
if len(chunk.tokens) == self.chunk_length:
|
128 |
+
next_chunk()
|
129 |
+
|
130 |
+
chunk.tokens.append(token)
|
131 |
+
chunk.multipliers.append(weight)
|
132 |
+
position += 1
|
133 |
+
|
134 |
+
if len(chunk.tokens) > 0 or len(chunks) == 0:
|
135 |
+
next_chunk(is_last=True)
|
136 |
+
|
137 |
+
return chunks, token_count
|
138 |
+
|
139 |
+
def process_texts(self, texts):
|
140 |
+
"""
|
141 |
+
Accepts a list of texts and calls tokenize_line() on each, with cache. Returns the list of results and maximum
|
142 |
+
length, in tokens, of all texts.
|
143 |
+
"""
|
144 |
+
|
145 |
+
token_count = 0
|
146 |
+
|
147 |
+
cache = {}
|
148 |
+
batch_chunks = []
|
149 |
+
for line in texts:
|
150 |
+
if line in cache:
|
151 |
+
chunks = cache[line]
|
152 |
+
else:
|
153 |
+
chunks, current_token_count = self.tokenize_line(line)
|
154 |
+
token_count = max(current_token_count, token_count)
|
155 |
+
|
156 |
+
cache[line] = chunks
|
157 |
+
|
158 |
+
batch_chunks.append(chunks)
|
159 |
+
|
160 |
+
return batch_chunks, token_count
|
161 |
+
|
162 |
+
def forward(self, texts):
|
163 |
+
"""
|
164 |
+
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
|
165 |
+
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
|
166 |
+
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024.
|
167 |
+
An example shape returned by this function can be: (2, 77, 768).
|
168 |
+
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
|
169 |
+
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
170 |
+
"""
|
171 |
+
|
172 |
+
batch_chunks, token_count = self.process_texts(texts)
|
173 |
+
chunk_count = max([len(x) for x in batch_chunks])
|
174 |
+
|
175 |
+
zs = []
|
176 |
+
ts = []
|
177 |
+
for i in range(chunk_count):
|
178 |
+
batch_chunk = [
|
179 |
+
chunks[i] if i < len(chunks) else self.empty_chunk()
|
180 |
+
for chunks in batch_chunks
|
181 |
+
]
|
182 |
+
|
183 |
+
tokens = [x.tokens for x in batch_chunk]
|
184 |
+
multipliers = [x.multipliers for x in batch_chunk]
|
185 |
+
# self.embeddings.fixes = [x.fixes for x in batch_chunk]
|
186 |
+
|
187 |
+
# for fixes in self.embeddings.fixes:
|
188 |
+
# for position, embedding in fixes:
|
189 |
+
# used_embeddings[embedding.name] = embedding
|
190 |
+
|
191 |
+
z = self.process_tokens(tokens, multipliers)
|
192 |
+
zs.append(z)
|
193 |
+
ts.append(tokens)
|
194 |
+
|
195 |
+
return np.hstack(ts), torch.hstack(zs)
|
196 |
+
|
197 |
+
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
198 |
+
"""
|
199 |
+
sends one single prompt chunk to be encoded by transformers neural network.
|
200 |
+
remade_batch_tokens is a batch of tokens - a list, where every element is a list of tokens; usually
|
201 |
+
there are exactly 77 tokens in the list. batch_multipliers is the same but for multipliers instead of tokens.
|
202 |
+
Multipliers are used to give more or less weight to the outputs of transformers network. Each multiplier
|
203 |
+
corresponds to one token.
|
204 |
+
"""
|
205 |
+
tokens = torch.asarray(remade_batch_tokens).to(self.device())
|
206 |
+
|
207 |
+
# this is for SD2: SD1 uses the same token for padding and end of text, while SD2 uses different ones.
|
208 |
+
if self.id_end != self.id_pad:
|
209 |
+
for batch_pos in range(len(remade_batch_tokens)):
|
210 |
+
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
211 |
+
tokens[batch_pos, index + 1 : tokens.shape[1]] = self.id_pad
|
212 |
+
|
213 |
+
z = self.encode_with_transformers(tokens)
|
214 |
+
|
215 |
+
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
216 |
+
batch_multipliers = torch.asarray(batch_multipliers).to(self.device())
|
217 |
+
original_mean = z.mean()
|
218 |
+
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
219 |
+
new_mean = z.mean()
|
220 |
+
z = z * (original_mean / new_mean)
|
221 |
+
|
222 |
+
return z
|
223 |
+
|
224 |
+
|
225 |
+
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
226 |
+
def __init__(self, tokenizer, text_encoder,CLIP_stop_at_last_layers):
|
227 |
+
super().__init__(text_encoder)
|
228 |
+
self.tokenizer = tokenizer
|
229 |
+
self.text_encoder = text_encoder
|
230 |
+
self.CLIP_stop_at_last_layers = CLIP_stop_at_last_layers
|
231 |
+
|
232 |
+
vocab = self.tokenizer.get_vocab()
|
233 |
+
|
234 |
+
self.comma_token = vocab.get(",</w>", None)
|
235 |
+
|
236 |
+
self.token_mults = {}
|
237 |
+
tokens_with_parens = [
|
238 |
+
(k, v)
|
239 |
+
for k, v in vocab.items()
|
240 |
+
if "(" in k or ")" in k or "[" in k or "]" in k
|
241 |
+
]
|
242 |
+
for text, ident in tokens_with_parens:
|
243 |
+
mult = 1.0
|
244 |
+
for c in text:
|
245 |
+
if c == "[":
|
246 |
+
mult /= 1.1
|
247 |
+
if c == "]":
|
248 |
+
mult *= 1.1
|
249 |
+
if c == "(":
|
250 |
+
mult *= 1.1
|
251 |
+
if c == ")":
|
252 |
+
mult /= 1.1
|
253 |
+
|
254 |
+
if mult != 1.0:
|
255 |
+
self.token_mults[ident] = mult
|
256 |
+
|
257 |
+
self.id_start = self.tokenizer.bos_token_id
|
258 |
+
self.id_end = self.tokenizer.eos_token_id
|
259 |
+
self.id_pad = self.id_end
|
260 |
+
|
261 |
+
def tokenize(self, texts):
|
262 |
+
tokenized = self.tokenizer(
|
263 |
+
texts, truncation=False, add_special_tokens=False
|
264 |
+
)["input_ids"]
|
265 |
+
|
266 |
+
return tokenized
|
267 |
+
|
268 |
+
def encode_with_transformers(self, tokens):
|
269 |
+
CLIP_stop_at_last_layers = self.CLIP_stop_at_last_layers
|
270 |
+
tokens = tokens.to(self.text_encoder.device)
|
271 |
+
outputs = self.text_encoder(tokens, output_hidden_states=True)
|
272 |
+
|
273 |
+
if CLIP_stop_at_last_layers > 1:
|
274 |
+
z = outputs.hidden_states[-CLIP_stop_at_last_layers]
|
275 |
+
z = self.text_encoder.text_model.final_layer_norm(z)
|
276 |
+
else:
|
277 |
+
z = outputs.last_hidden_state
|
278 |
+
|
279 |
+
return z
|
280 |
+
|
281 |
+
|
282 |
+
re_attention = re.compile(
|
283 |
+
r"""
|
284 |
+
\\\(|
|
285 |
+
\\\)|
|
286 |
+
\\\[|
|
287 |
+
\\]|
|
288 |
+
\\\\|
|
289 |
+
\\|
|
290 |
+
\(|
|
291 |
+
\[|
|
292 |
+
:([+-]?[.\d]+)\)|
|
293 |
+
\)|
|
294 |
+
]|
|
295 |
+
[^\\()\[\]:]+|
|
296 |
+
:
|
297 |
+
""",
|
298 |
+
re.X,
|
299 |
+
)
|
300 |
+
|
301 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
302 |
+
|
303 |
+
|
304 |
+
def parse_prompt_attention(text):
|
305 |
+
"""
|
306 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
307 |
+
Accepted tokens are:
|
308 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
309 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
310 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
311 |
+
\( - literal character '('
|
312 |
+
\[ - literal character '['
|
313 |
+
\) - literal character ')'
|
314 |
+
\] - literal character ']'
|
315 |
+
\\ - literal character '\'
|
316 |
+
anything else - just text
|
317 |
+
|
318 |
+
>>> parse_prompt_attention('normal text')
|
319 |
+
[['normal text', 1.0]]
|
320 |
+
>>> parse_prompt_attention('an (important) word')
|
321 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
322 |
+
>>> parse_prompt_attention('(unbalanced')
|
323 |
+
[['unbalanced', 1.1]]
|
324 |
+
>>> parse_prompt_attention('\(literal\]')
|
325 |
+
[['(literal]', 1.0]]
|
326 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
327 |
+
[['unnecessaryparens', 1.1]]
|
328 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
329 |
+
[['a ', 1.0],
|
330 |
+
['house', 1.5730000000000004],
|
331 |
+
[' ', 1.1],
|
332 |
+
['on', 1.0],
|
333 |
+
[' a ', 1.1],
|
334 |
+
['hill', 0.55],
|
335 |
+
[', sun, ', 1.1],
|
336 |
+
['sky', 1.4641000000000006],
|
337 |
+
['.', 1.1]]
|
338 |
+
"""
|
339 |
+
|
340 |
+
res = []
|
341 |
+
round_brackets = []
|
342 |
+
square_brackets = []
|
343 |
+
|
344 |
+
round_bracket_multiplier = 1.1
|
345 |
+
square_bracket_multiplier = 1 / 1.1
|
346 |
+
|
347 |
+
def multiply_range(start_position, multiplier):
|
348 |
+
for p in range(start_position, len(res)):
|
349 |
+
res[p][1] *= multiplier
|
350 |
+
|
351 |
+
for m in re_attention.finditer(text):
|
352 |
+
text = m.group(0)
|
353 |
+
weight = m.group(1)
|
354 |
+
|
355 |
+
if text.startswith("\\"):
|
356 |
+
res.append([text[1:], 1.0])
|
357 |
+
elif text == "(":
|
358 |
+
round_brackets.append(len(res))
|
359 |
+
elif text == "[":
|
360 |
+
square_brackets.append(len(res))
|
361 |
+
elif weight is not None and len(round_brackets) > 0:
|
362 |
+
multiply_range(round_brackets.pop(), float(weight))
|
363 |
+
elif text == ")" and len(round_brackets) > 0:
|
364 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
365 |
+
elif text == "]" and len(square_brackets) > 0:
|
366 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
367 |
+
else:
|
368 |
+
parts = re.split(re_break, text)
|
369 |
+
for i, part in enumerate(parts):
|
370 |
+
if i > 0:
|
371 |
+
res.append(["BREAK", -1])
|
372 |
+
res.append([part, 1.0])
|
373 |
+
|
374 |
+
for pos in round_brackets:
|
375 |
+
multiply_range(pos, round_bracket_multiplier)
|
376 |
+
|
377 |
+
for pos in square_brackets:
|
378 |
+
multiply_range(pos, square_bracket_multiplier)
|
379 |
+
|
380 |
+
if len(res) == 0:
|
381 |
+
res = [["", 1.0]]
|
382 |
+
|
383 |
+
# merge runs of identical weights
|
384 |
+
i = 0
|
385 |
+
while i + 1 < len(res):
|
386 |
+
if res[i][1] == res[i + 1][1]:
|
387 |
+
res[i][0] += res[i + 1][0]
|
388 |
+
res.pop(i + 1)
|
389 |
+
else:
|
390 |
+
i += 1
|
391 |
+
|
392 |
+
return res
|
modules/safe.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this code is adapted from the script contributed by anon from /h/
|
2 |
+
# modified, from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/safe.py
|
3 |
+
|
4 |
+
import io
|
5 |
+
import pickle
|
6 |
+
import collections
|
7 |
+
import sys
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import numpy
|
12 |
+
import _codecs
|
13 |
+
import zipfile
|
14 |
+
import re
|
15 |
+
|
16 |
+
|
17 |
+
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
|
18 |
+
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
|
19 |
+
|
20 |
+
|
21 |
+
def encode(*args):
|
22 |
+
out = _codecs.encode(*args)
|
23 |
+
return out
|
24 |
+
|
25 |
+
|
26 |
+
class RestrictedUnpickler(pickle.Unpickler):
|
27 |
+
extra_handler = None
|
28 |
+
|
29 |
+
def persistent_load(self, saved_id):
|
30 |
+
assert saved_id[0] == 'storage'
|
31 |
+
return TypedStorage()
|
32 |
+
|
33 |
+
def find_class(self, module, name):
|
34 |
+
if self.extra_handler is not None:
|
35 |
+
res = self.extra_handler(module, name)
|
36 |
+
if res is not None:
|
37 |
+
return res
|
38 |
+
|
39 |
+
if module == 'collections' and name == 'OrderedDict':
|
40 |
+
return getattr(collections, name)
|
41 |
+
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
|
42 |
+
return getattr(torch._utils, name)
|
43 |
+
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
|
44 |
+
return getattr(torch, name)
|
45 |
+
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
46 |
+
return getattr(torch.nn.modules.container, name)
|
47 |
+
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
|
48 |
+
return getattr(numpy.core.multiarray, name)
|
49 |
+
if module == 'numpy' and name in ['dtype', 'ndarray']:
|
50 |
+
return getattr(numpy, name)
|
51 |
+
if module == '_codecs' and name == 'encode':
|
52 |
+
return encode
|
53 |
+
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
54 |
+
import pytorch_lightning.callbacks
|
55 |
+
return pytorch_lightning.callbacks.model_checkpoint
|
56 |
+
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
|
57 |
+
import pytorch_lightning.callbacks.model_checkpoint
|
58 |
+
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
|
59 |
+
if module == "__builtin__" and name == 'set':
|
60 |
+
return set
|
61 |
+
|
62 |
+
# Forbid everything else.
|
63 |
+
raise Exception(f"global '{module}/{name}' is forbidden")
|
64 |
+
|
65 |
+
|
66 |
+
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
|
67 |
+
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
|
68 |
+
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
|
69 |
+
|
70 |
+
def check_zip_filenames(filename, names):
|
71 |
+
for name in names:
|
72 |
+
if allowed_zip_names_re.match(name):
|
73 |
+
continue
|
74 |
+
|
75 |
+
raise Exception(f"bad file inside {filename}: {name}")
|
76 |
+
|
77 |
+
|
78 |
+
def check_pt(filename, extra_handler):
|
79 |
+
try:
|
80 |
+
|
81 |
+
# new pytorch format is a zip file
|
82 |
+
with zipfile.ZipFile(filename) as z:
|
83 |
+
check_zip_filenames(filename, z.namelist())
|
84 |
+
|
85 |
+
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
|
86 |
+
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
|
87 |
+
if len(data_pkl_filenames) == 0:
|
88 |
+
raise Exception(f"data.pkl not found in {filename}")
|
89 |
+
if len(data_pkl_filenames) > 1:
|
90 |
+
raise Exception(f"Multiple data.pkl found in {filename}")
|
91 |
+
with z.open(data_pkl_filenames[0]) as file:
|
92 |
+
unpickler = RestrictedUnpickler(file)
|
93 |
+
unpickler.extra_handler = extra_handler
|
94 |
+
unpickler.load()
|
95 |
+
|
96 |
+
except zipfile.BadZipfile:
|
97 |
+
|
98 |
+
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
99 |
+
with open(filename, "rb") as file:
|
100 |
+
unpickler = RestrictedUnpickler(file)
|
101 |
+
unpickler.extra_handler = extra_handler
|
102 |
+
for i in range(5):
|
103 |
+
unpickler.load()
|
104 |
+
|
105 |
+
|
106 |
+
def load(filename, *args, **kwargs):
|
107 |
+
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
|
108 |
+
|
109 |
+
|
110 |
+
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
|
111 |
+
"""
|
112 |
+
this function is intended to be used by extensions that want to load models with
|
113 |
+
some extra classes in them that the usual unpickler would find suspicious.
|
114 |
+
|
115 |
+
Use the extra_handler argument to specify a function that takes module and field name as text,
|
116 |
+
and returns that field's value:
|
117 |
+
|
118 |
+
```python
|
119 |
+
def extra(module, name):
|
120 |
+
if module == 'collections' and name == 'OrderedDict':
|
121 |
+
return collections.OrderedDict
|
122 |
+
|
123 |
+
return None
|
124 |
+
|
125 |
+
safe.load_with_extra('model.pt', extra_handler=extra)
|
126 |
+
```
|
127 |
+
|
128 |
+
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is
|
129 |
+
definitely unsafe.
|
130 |
+
"""
|
131 |
+
|
132 |
+
try:
|
133 |
+
check_pt(filename, extra_handler)
|
134 |
+
|
135 |
+
except pickle.UnpicklingError:
|
136 |
+
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
137 |
+
print(traceback.format_exc(), file=sys.stderr)
|
138 |
+
print("The file is most likely corrupted.", file=sys.stderr)
|
139 |
+
return None
|
140 |
+
|
141 |
+
except Exception:
|
142 |
+
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
143 |
+
print(traceback.format_exc(), file=sys.stderr)
|
144 |
+
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
145 |
+
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
146 |
+
return None
|
147 |
+
|
148 |
+
return unsafe_torch_load(filename, *args, **kwargs)
|
149 |
+
|
150 |
+
|
151 |
+
class Extra:
|
152 |
+
"""
|
153 |
+
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
|
154 |
+
(because it's not your code making the torch.load call). The intended use is like this:
|
155 |
+
|
156 |
+
```
|
157 |
+
import torch
|
158 |
+
from modules import safe
|
159 |
+
|
160 |
+
def handler(module, name):
|
161 |
+
if module == 'torch' and name in ['float64', 'float16']:
|
162 |
+
return getattr(torch, name)
|
163 |
+
|
164 |
+
return None
|
165 |
+
|
166 |
+
with safe.Extra(handler):
|
167 |
+
x = torch.load('model.pt')
|
168 |
+
```
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, handler):
|
172 |
+
self.handler = handler
|
173 |
+
|
174 |
+
def __enter__(self):
|
175 |
+
global global_extra_handler
|
176 |
+
|
177 |
+
assert global_extra_handler is None, 'already inside an Extra() block'
|
178 |
+
global_extra_handler = self.handler
|
179 |
+
|
180 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
181 |
+
global global_extra_handler
|
182 |
+
|
183 |
+
global_extra_handler = None
|
184 |
+
|
185 |
+
|
186 |
+
unsafe_torch_load = torch.load
|
187 |
+
torch.load = load
|
188 |
+
global_extra_handler = None
|
modules/samplers_extra_k_diffusion.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import tqdm
|
3 |
+
import k_diffusion.sampling
|
4 |
+
from k_diffusion.sampling import default_noise_sampler,to_d, get_sigmas_karras
|
5 |
+
from tqdm.auto import trange
|
6 |
+
@torch.no_grad()
|
7 |
+
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
|
8 |
+
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
|
9 |
+
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
|
10 |
+
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
|
11 |
+
"""
|
12 |
+
extra_args = {} if extra_args is None else extra_args
|
13 |
+
s_in = x.new_ones([x.shape[0]])
|
14 |
+
step_id = 0
|
15 |
+
|
16 |
+
def heun_step(x, old_sigma, new_sigma, second_order=True):
|
17 |
+
nonlocal step_id
|
18 |
+
denoised = model(x, old_sigma * s_in, **extra_args)
|
19 |
+
d = to_d(x, old_sigma, denoised)
|
20 |
+
if callback is not None:
|
21 |
+
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
|
22 |
+
dt = new_sigma - old_sigma
|
23 |
+
if new_sigma == 0 or not second_order:
|
24 |
+
# Euler method
|
25 |
+
x = x + d * dt
|
26 |
+
else:
|
27 |
+
# Heun's method
|
28 |
+
x_2 = x + d * dt
|
29 |
+
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
|
30 |
+
d_2 = to_d(x_2, new_sigma, denoised_2)
|
31 |
+
d_prime = (d + d_2) / 2
|
32 |
+
x = x + d_prime * dt
|
33 |
+
step_id += 1
|
34 |
+
return x
|
35 |
+
|
36 |
+
steps = sigmas.shape[0] - 1
|
37 |
+
if restart_list is None:
|
38 |
+
if steps >= 20:
|
39 |
+
restart_steps = 9
|
40 |
+
restart_times = 1
|
41 |
+
if steps >= 36:
|
42 |
+
restart_steps = steps // 4
|
43 |
+
restart_times = 2
|
44 |
+
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
45 |
+
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
46 |
+
else:
|
47 |
+
restart_list = {}
|
48 |
+
|
49 |
+
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
|
50 |
+
|
51 |
+
step_list = []
|
52 |
+
for i in range(len(sigmas) - 1):
|
53 |
+
step_list.append((sigmas[i], sigmas[i + 1]))
|
54 |
+
if i + 1 in restart_list:
|
55 |
+
restart_steps, restart_times, restart_max = restart_list[i + 1]
|
56 |
+
min_idx = i + 1
|
57 |
+
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
58 |
+
if max_idx < min_idx:
|
59 |
+
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
|
60 |
+
while restart_times > 0:
|
61 |
+
restart_times -= 1
|
62 |
+
step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
|
63 |
+
|
64 |
+
last_sigma = None
|
65 |
+
for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
|
66 |
+
if last_sigma is None:
|
67 |
+
last_sigma = old_sigma
|
68 |
+
elif last_sigma < old_sigma:
|
69 |
+
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
|
70 |
+
x = heun_step(x, old_sigma, new_sigma)
|
71 |
+
last_sigma = new_sigma
|
72 |
+
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
|
77 |
+
alpha_cumprod = 1 / ((sigma * sigma) + 1)
|
78 |
+
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
|
79 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
80 |
+
|
81 |
+
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
|
82 |
+
if sigma_prev > 0:
|
83 |
+
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
|
84 |
+
return mu
|
85 |
+
|
86 |
+
|
87 |
+
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
|
88 |
+
extra_args = {} if extra_args is None else extra_args
|
89 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
90 |
+
s_in = x.new_ones([x.shape[0]])
|
91 |
+
|
92 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
93 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
94 |
+
if callback is not None:
|
95 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
96 |
+
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
|
97 |
+
if sigmas[i + 1] != 0:
|
98 |
+
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
|
99 |
+
return x
|
100 |
+
|
101 |
+
|
102 |
+
@torch.no_grad()
|
103 |
+
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
104 |
+
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
109 |
+
extra_args = {} if extra_args is None else extra_args
|
110 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
111 |
+
s_in = x.new_ones([x.shape[0]])
|
112 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
113 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
114 |
+
if callback is not None:
|
115 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
116 |
+
|
117 |
+
x = denoised
|
118 |
+
if sigmas[i + 1] > 0:
|
119 |
+
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
|
120 |
+
return x
|
121 |
+
|
122 |
+
@torch.no_grad()
|
123 |
+
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
124 |
+
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
|
125 |
+
extra_args = {} if extra_args is None else extra_args
|
126 |
+
s_in = x.new_ones([x.shape[0]])
|
127 |
+
s_end = sigmas[-1]
|
128 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
129 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
130 |
+
eps = torch.randn_like(x) * s_noise
|
131 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
132 |
+
if gamma > 0:
|
133 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
134 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
135 |
+
d = to_d(x, sigma_hat, denoised)
|
136 |
+
if callback is not None:
|
137 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
138 |
+
dt = sigmas[i + 1] - sigma_hat
|
139 |
+
if sigmas[i + 1] == s_end:
|
140 |
+
# Euler method
|
141 |
+
x = x + d * dt
|
142 |
+
elif sigmas[i + 2] == s_end:
|
143 |
+
|
144 |
+
# Heun's method
|
145 |
+
x_2 = x + d * dt
|
146 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
147 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
148 |
+
|
149 |
+
w = 2 * sigmas[0]
|
150 |
+
w2 = sigmas[i+1]/w
|
151 |
+
w1 = 1 - w2
|
152 |
+
|
153 |
+
d_prime = d * w1 + d_2 * w2
|
154 |
+
|
155 |
+
|
156 |
+
x = x + d_prime * dt
|
157 |
+
|
158 |
+
else:
|
159 |
+
# Heun++
|
160 |
+
x_2 = x + d * dt
|
161 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
162 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
163 |
+
dt_2 = sigmas[i + 2] - sigmas[i + 1]
|
164 |
+
|
165 |
+
x_3 = x_2 + d_2 * dt_2
|
166 |
+
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
|
167 |
+
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
|
168 |
+
|
169 |
+
w = 3 * sigmas[0]
|
170 |
+
w2 = sigmas[i + 1] / w
|
171 |
+
w3 = sigmas[i + 2] / w
|
172 |
+
w1 = 1 - w2 - w3
|
173 |
+
|
174 |
+
d_prime = w1 * d + w2 * d_2 + w3 * d_3
|
175 |
+
x = x + d_prime * dt
|
176 |
+
return x
|
modules/t2i_adapter.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
import cv2
|
9 |
+
import time
|
10 |
+
import k_diffusion
|
11 |
+
import numpy as np
|
12 |
+
import PIL
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from einops import rearrange
|
17 |
+
from .external_k_diffusion import CompVisDenoiser, CompVisVDenoiser
|
18 |
+
from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
|
19 |
+
from torch import einsum
|
20 |
+
from torch.autograd.function import Function
|
21 |
+
|
22 |
+
from diffusers import DiffusionPipeline
|
23 |
+
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
|
24 |
+
from diffusers.utils import logging
|
25 |
+
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module,is_torch_version
|
26 |
+
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
|
27 |
+
from safetensors.torch import load_file
|
28 |
+
from diffusers import ControlNetModel
|
29 |
+
from PIL import Image
|
30 |
+
import torchvision.transforms as transforms
|
31 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
32 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
33 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
34 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler
|
35 |
+
from .u_net_condition_modify import UNet2DConditionModel
|
36 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
37 |
+
from diffusers.models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter
|
38 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
39 |
+
from diffusers.utils import (
|
40 |
+
PIL_INTERPOLATION,
|
41 |
+
USE_PEFT_BACKEND,
|
42 |
+
BaseOutput,
|
43 |
+
deprecate,
|
44 |
+
logging,
|
45 |
+
replace_example_docstring,
|
46 |
+
scale_lora_layers,
|
47 |
+
unscale_lora_layers,
|
48 |
+
)
|
49 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
50 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
51 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
52 |
+
from packaging import version
|
53 |
+
from diffusers.configuration_utils import FrozenDict
|
54 |
+
|
55 |
+
def _preprocess_adapter_image(image, height, width):
|
56 |
+
if isinstance(image, torch.Tensor):
|
57 |
+
return image
|
58 |
+
elif isinstance(image, PIL.Image.Image):
|
59 |
+
image = [image]
|
60 |
+
|
61 |
+
if isinstance(image[0], PIL.Image.Image):
|
62 |
+
image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image]
|
63 |
+
image = [
|
64 |
+
i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image
|
65 |
+
] # expand [h, w] or [h, w, c] to [b, h, w, c]
|
66 |
+
image = np.concatenate(image, axis=0)
|
67 |
+
image = np.array(image).astype(np.float32) / 255.0
|
68 |
+
image = image.transpose(0, 3, 1, 2)
|
69 |
+
image = torch.from_numpy(image)
|
70 |
+
elif isinstance(image[0], torch.Tensor):
|
71 |
+
if image[0].ndim == 3:
|
72 |
+
image = torch.stack(image, dim=0)
|
73 |
+
elif image[0].ndim == 4:
|
74 |
+
image = torch.cat(image, dim=0)
|
75 |
+
else:
|
76 |
+
raise ValueError(
|
77 |
+
f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
|
78 |
+
)
|
79 |
+
return image
|
80 |
+
|
81 |
+
#t2i_adapter setup
|
82 |
+
def setup_model_t2i_adapter(class_name,adapter = None):
|
83 |
+
if isinstance(adapter, (list, tuple)):
|
84 |
+
adapter = MultiAdapter(adapter)
|
85 |
+
class_name.adapter = adapter
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
def preprocessing_t2i_adapter(class_name,image,width,height,adapter_conditioning_scale,num_images_per_prompt = 1):
|
90 |
+
if isinstance(class_name.adapter, MultiAdapter):
|
91 |
+
adapter_input = []
|
92 |
+
for one_image in image:
|
93 |
+
one_image = _preprocess_adapter_image(one_image, height, width)
|
94 |
+
one_image = one_image.to(device=class_name.device, dtype=class_name.adapter.dtype)
|
95 |
+
adapter_input.append(one_image)
|
96 |
+
else:
|
97 |
+
adapter_input = _preprocess_adapter_image(image, height, width)
|
98 |
+
adapter_input = adapter_input.to(device=class_name.device, dtype=class_name.adapter.dtype)
|
99 |
+
|
100 |
+
if isinstance(class_name.adapter, MultiAdapter):
|
101 |
+
adapter_state = class_name.adapter(adapter_input, adapter_conditioning_scale)
|
102 |
+
for k, v in enumerate(adapter_state):
|
103 |
+
adapter_state[k] = v
|
104 |
+
else:
|
105 |
+
adapter_state = class_name.adapter(adapter_input)
|
106 |
+
for k, v in enumerate(adapter_state):
|
107 |
+
adapter_state[k] = v * adapter_conditioning_scale
|
108 |
+
|
109 |
+
|
110 |
+
if num_images_per_prompt > 1:
|
111 |
+
for k, v in enumerate(adapter_state):
|
112 |
+
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
|
113 |
+
if class_name.do_classifier_free_guidance:
|
114 |
+
for k, v in enumerate(adapter_state):
|
115 |
+
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
116 |
+
return adapter_state
|
117 |
+
|
118 |
+
|
119 |
+
def default_height_width(class_name, height, width, image):
|
120 |
+
# NOTE: It is possible that a list of images have different
|
121 |
+
# dimensions for each image, so just checking the first image
|
122 |
+
# is not _exactly_ correct, but it is simple.
|
123 |
+
while isinstance(image, list):
|
124 |
+
image = image[0]
|
125 |
+
|
126 |
+
if height is None:
|
127 |
+
if isinstance(image, PIL.Image.Image):
|
128 |
+
height = image.height
|
129 |
+
elif isinstance(image, torch.Tensor):
|
130 |
+
height = image.shape[-2]
|
131 |
+
|
132 |
+
# round down to nearest multiple of `self.adapter.downscale_factor`
|
133 |
+
height = (height // class_name.adapter.downscale_factor) * class_name.adapter.downscale_factor
|
134 |
+
|
135 |
+
if width is None:
|
136 |
+
if isinstance(image, PIL.Image.Image):
|
137 |
+
width = image.width
|
138 |
+
elif isinstance(image, torch.Tensor):
|
139 |
+
width = image.shape[-1]
|
140 |
+
|
141 |
+
# round down to nearest multiple of `self.adapter.downscale_factor`
|
142 |
+
width = (width // class_name.adapter.downscale_factor) * class_name.adapter.downscale_factor
|
143 |
+
|
144 |
+
return height, width
|
modules/u_net_condition_modify.py
ADDED
@@ -0,0 +1,1318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin
|
23 |
+
from .u_net_modify import UNet2DConditionLoadersMixin_modify
|
24 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
25 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
26 |
+
from diffusers.models.activations import get_activation
|
27 |
+
from diffusers.models.attention_processor import (
|
28 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
29 |
+
CROSS_ATTENTION_PROCESSORS,
|
30 |
+
Attention,
|
31 |
+
AttentionProcessor,
|
32 |
+
AttnAddedKVProcessor,
|
33 |
+
AttnProcessor,
|
34 |
+
)
|
35 |
+
|
36 |
+
from diffusers.models.embeddings import (
|
37 |
+
GaussianFourierProjection,
|
38 |
+
GLIGENTextBoundingboxProjection,
|
39 |
+
ImageHintTimeEmbedding,
|
40 |
+
ImageProjection,
|
41 |
+
ImageTimeEmbedding,
|
42 |
+
TextImageProjection,
|
43 |
+
TextImageTimeEmbedding,
|
44 |
+
TextTimeEmbedding,
|
45 |
+
TimestepEmbedding,
|
46 |
+
Timesteps,
|
47 |
+
)
|
48 |
+
from diffusers.models.modeling_utils import ModelMixin
|
49 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
50 |
+
get_down_block,
|
51 |
+
get_mid_block,
|
52 |
+
get_up_block,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class UNet2DConditionOutput(BaseOutput):
|
61 |
+
"""
|
62 |
+
The output of [`UNet2DConditionModel`].
|
63 |
+
|
64 |
+
Args:
|
65 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
66 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
67 |
+
"""
|
68 |
+
|
69 |
+
sample: torch.Tensor = None
|
70 |
+
|
71 |
+
|
72 |
+
class UNet2DConditionModel(
|
73 |
+
ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin_modify, PeftAdapterMixin
|
74 |
+
):
|
75 |
+
r"""
|
76 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
77 |
+
shaped output.
|
78 |
+
|
79 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
80 |
+
for all models (such as downloading or saving).
|
81 |
+
|
82 |
+
Parameters:
|
83 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
84 |
+
Height and width of input/output sample.
|
85 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
86 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
87 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
88 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether to flip the sin to cos in the time embedding.
|
90 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
91 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
92 |
+
The tuple of downsample blocks to use.
|
93 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
94 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
95 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
96 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
97 |
+
The tuple of upsample blocks to use.
|
98 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
99 |
+
Whether to include self-attention in the basic transformer blocks, see
|
100 |
+
[`~models.attention.BasicTransformerBlock`].
|
101 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
102 |
+
The tuple of output channels for each block.
|
103 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
104 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
105 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
106 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
107 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
108 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
109 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
110 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
111 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
112 |
+
The dimension of the cross attention features.
|
113 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
114 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
115 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
116 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
117 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
118 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
119 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
120 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
121 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
122 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
123 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
124 |
+
dimension to `cross_attention_dim`.
|
125 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
126 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
127 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
128 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
129 |
+
num_attention_heads (`int`, *optional*):
|
130 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
131 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
132 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
133 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
134 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
135 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
136 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
137 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
138 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
139 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
140 |
+
Dimension for the timestep embeddings.
|
141 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
142 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
143 |
+
class conditioning with `class_embed_type` equal to `None`.
|
144 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
145 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
146 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
147 |
+
An optional override for the dimension of the projected time embedding.
|
148 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
149 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
150 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
151 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
152 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
153 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
154 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
155 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
156 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
157 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
158 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
159 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
160 |
+
embeddings with the class embeddings.
|
161 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
162 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
163 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
164 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
165 |
+
otherwise.
|
166 |
+
"""
|
167 |
+
|
168 |
+
_supports_gradient_checkpointing = True
|
169 |
+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
170 |
+
|
171 |
+
@register_to_config
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
sample_size: Optional[int] = None,
|
175 |
+
in_channels: int = 4,
|
176 |
+
out_channels: int = 4,
|
177 |
+
center_input_sample: bool = False,
|
178 |
+
flip_sin_to_cos: bool = True,
|
179 |
+
freq_shift: int = 0,
|
180 |
+
down_block_types: Tuple[str] = (
|
181 |
+
"CrossAttnDownBlock2D",
|
182 |
+
"CrossAttnDownBlock2D",
|
183 |
+
"CrossAttnDownBlock2D",
|
184 |
+
"DownBlock2D",
|
185 |
+
),
|
186 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
187 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
188 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
189 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
190 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
191 |
+
downsample_padding: int = 1,
|
192 |
+
mid_block_scale_factor: float = 1,
|
193 |
+
dropout: float = 0.0,
|
194 |
+
act_fn: str = "silu",
|
195 |
+
norm_num_groups: Optional[int] = 32,
|
196 |
+
norm_eps: float = 1e-5,
|
197 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
198 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
199 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
200 |
+
encoder_hid_dim: Optional[int] = None,
|
201 |
+
encoder_hid_dim_type: Optional[str] = None,
|
202 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
203 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
204 |
+
dual_cross_attention: bool = False,
|
205 |
+
use_linear_projection: bool = False,
|
206 |
+
class_embed_type: Optional[str] = None,
|
207 |
+
addition_embed_type: Optional[str] = None,
|
208 |
+
addition_time_embed_dim: Optional[int] = None,
|
209 |
+
num_class_embeds: Optional[int] = None,
|
210 |
+
upcast_attention: bool = False,
|
211 |
+
resnet_time_scale_shift: str = "default",
|
212 |
+
resnet_skip_time_act: bool = False,
|
213 |
+
resnet_out_scale_factor: float = 1.0,
|
214 |
+
time_embedding_type: str = "positional",
|
215 |
+
time_embedding_dim: Optional[int] = None,
|
216 |
+
time_embedding_act_fn: Optional[str] = None,
|
217 |
+
timestep_post_act: Optional[str] = None,
|
218 |
+
time_cond_proj_dim: Optional[int] = None,
|
219 |
+
conv_in_kernel: int = 3,
|
220 |
+
conv_out_kernel: int = 3,
|
221 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
222 |
+
attention_type: str = "default",
|
223 |
+
class_embeddings_concat: bool = False,
|
224 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
225 |
+
cross_attention_norm: Optional[str] = None,
|
226 |
+
addition_embed_type_num_heads: int = 64,
|
227 |
+
):
|
228 |
+
super().__init__()
|
229 |
+
|
230 |
+
self.sample_size = sample_size
|
231 |
+
|
232 |
+
if num_attention_heads is not None:
|
233 |
+
raise ValueError(
|
234 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
235 |
+
)
|
236 |
+
|
237 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
238 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
239 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
240 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
241 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
242 |
+
# which is why we correct for the naming here.
|
243 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
244 |
+
|
245 |
+
# Check inputs
|
246 |
+
self._check_config(
|
247 |
+
down_block_types=down_block_types,
|
248 |
+
up_block_types=up_block_types,
|
249 |
+
only_cross_attention=only_cross_attention,
|
250 |
+
block_out_channels=block_out_channels,
|
251 |
+
layers_per_block=layers_per_block,
|
252 |
+
cross_attention_dim=cross_attention_dim,
|
253 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
254 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
255 |
+
attention_head_dim=attention_head_dim,
|
256 |
+
num_attention_heads=num_attention_heads,
|
257 |
+
)
|
258 |
+
|
259 |
+
# input
|
260 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
261 |
+
self.conv_in = nn.Conv2d(
|
262 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
263 |
+
)
|
264 |
+
|
265 |
+
# time
|
266 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
267 |
+
time_embedding_type,
|
268 |
+
block_out_channels=block_out_channels,
|
269 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
270 |
+
freq_shift=freq_shift,
|
271 |
+
time_embedding_dim=time_embedding_dim,
|
272 |
+
)
|
273 |
+
|
274 |
+
self.time_embedding = TimestepEmbedding(
|
275 |
+
timestep_input_dim,
|
276 |
+
time_embed_dim,
|
277 |
+
act_fn=act_fn,
|
278 |
+
post_act_fn=timestep_post_act,
|
279 |
+
cond_proj_dim=time_cond_proj_dim,
|
280 |
+
)
|
281 |
+
|
282 |
+
self._set_encoder_hid_proj(
|
283 |
+
encoder_hid_dim_type,
|
284 |
+
cross_attention_dim=cross_attention_dim,
|
285 |
+
encoder_hid_dim=encoder_hid_dim,
|
286 |
+
)
|
287 |
+
|
288 |
+
# class embedding
|
289 |
+
self._set_class_embedding(
|
290 |
+
class_embed_type,
|
291 |
+
act_fn=act_fn,
|
292 |
+
num_class_embeds=num_class_embeds,
|
293 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
294 |
+
time_embed_dim=time_embed_dim,
|
295 |
+
timestep_input_dim=timestep_input_dim,
|
296 |
+
)
|
297 |
+
|
298 |
+
self._set_add_embedding(
|
299 |
+
addition_embed_type,
|
300 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
301 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
302 |
+
cross_attention_dim=cross_attention_dim,
|
303 |
+
encoder_hid_dim=encoder_hid_dim,
|
304 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
305 |
+
freq_shift=freq_shift,
|
306 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
307 |
+
time_embed_dim=time_embed_dim,
|
308 |
+
)
|
309 |
+
|
310 |
+
if time_embedding_act_fn is None:
|
311 |
+
self.time_embed_act = None
|
312 |
+
else:
|
313 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
314 |
+
|
315 |
+
self.down_blocks = nn.ModuleList([])
|
316 |
+
self.up_blocks = nn.ModuleList([])
|
317 |
+
|
318 |
+
if isinstance(only_cross_attention, bool):
|
319 |
+
if mid_block_only_cross_attention is None:
|
320 |
+
mid_block_only_cross_attention = only_cross_attention
|
321 |
+
|
322 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
323 |
+
|
324 |
+
if mid_block_only_cross_attention is None:
|
325 |
+
mid_block_only_cross_attention = False
|
326 |
+
|
327 |
+
if isinstance(num_attention_heads, int):
|
328 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
329 |
+
|
330 |
+
if isinstance(attention_head_dim, int):
|
331 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
332 |
+
|
333 |
+
if isinstance(cross_attention_dim, int):
|
334 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
335 |
+
|
336 |
+
if isinstance(layers_per_block, int):
|
337 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
338 |
+
|
339 |
+
if isinstance(transformer_layers_per_block, int):
|
340 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
341 |
+
|
342 |
+
if class_embeddings_concat:
|
343 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
344 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
345 |
+
# regular time embeddings
|
346 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
347 |
+
else:
|
348 |
+
blocks_time_embed_dim = time_embed_dim
|
349 |
+
|
350 |
+
# down
|
351 |
+
output_channel = block_out_channels[0]
|
352 |
+
for i, down_block_type in enumerate(down_block_types):
|
353 |
+
input_channel = output_channel
|
354 |
+
output_channel = block_out_channels[i]
|
355 |
+
is_final_block = i == len(block_out_channels) - 1
|
356 |
+
|
357 |
+
down_block = get_down_block(
|
358 |
+
down_block_type,
|
359 |
+
num_layers=layers_per_block[i],
|
360 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
361 |
+
in_channels=input_channel,
|
362 |
+
out_channels=output_channel,
|
363 |
+
temb_channels=blocks_time_embed_dim,
|
364 |
+
add_downsample=not is_final_block,
|
365 |
+
resnet_eps=norm_eps,
|
366 |
+
resnet_act_fn=act_fn,
|
367 |
+
resnet_groups=norm_num_groups,
|
368 |
+
cross_attention_dim=cross_attention_dim[i],
|
369 |
+
num_attention_heads=num_attention_heads[i],
|
370 |
+
downsample_padding=downsample_padding,
|
371 |
+
dual_cross_attention=dual_cross_attention,
|
372 |
+
use_linear_projection=use_linear_projection,
|
373 |
+
only_cross_attention=only_cross_attention[i],
|
374 |
+
upcast_attention=upcast_attention,
|
375 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
376 |
+
attention_type=attention_type,
|
377 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
378 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
379 |
+
cross_attention_norm=cross_attention_norm,
|
380 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
381 |
+
dropout=dropout,
|
382 |
+
)
|
383 |
+
self.down_blocks.append(down_block)
|
384 |
+
|
385 |
+
# mid
|
386 |
+
self.mid_block = get_mid_block(
|
387 |
+
mid_block_type,
|
388 |
+
temb_channels=blocks_time_embed_dim,
|
389 |
+
in_channels=block_out_channels[-1],
|
390 |
+
resnet_eps=norm_eps,
|
391 |
+
resnet_act_fn=act_fn,
|
392 |
+
resnet_groups=norm_num_groups,
|
393 |
+
output_scale_factor=mid_block_scale_factor,
|
394 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
395 |
+
num_attention_heads=num_attention_heads[-1],
|
396 |
+
cross_attention_dim=cross_attention_dim[-1],
|
397 |
+
dual_cross_attention=dual_cross_attention,
|
398 |
+
use_linear_projection=use_linear_projection,
|
399 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
400 |
+
upcast_attention=upcast_attention,
|
401 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
402 |
+
attention_type=attention_type,
|
403 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
404 |
+
cross_attention_norm=cross_attention_norm,
|
405 |
+
attention_head_dim=attention_head_dim[-1],
|
406 |
+
dropout=dropout,
|
407 |
+
)
|
408 |
+
|
409 |
+
# count how many layers upsample the images
|
410 |
+
self.num_upsamplers = 0
|
411 |
+
|
412 |
+
# up
|
413 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
414 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
415 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
416 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
417 |
+
reversed_transformer_layers_per_block = (
|
418 |
+
list(reversed(transformer_layers_per_block))
|
419 |
+
if reverse_transformer_layers_per_block is None
|
420 |
+
else reverse_transformer_layers_per_block
|
421 |
+
)
|
422 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
423 |
+
|
424 |
+
output_channel = reversed_block_out_channels[0]
|
425 |
+
for i, up_block_type in enumerate(up_block_types):
|
426 |
+
is_final_block = i == len(block_out_channels) - 1
|
427 |
+
|
428 |
+
prev_output_channel = output_channel
|
429 |
+
output_channel = reversed_block_out_channels[i]
|
430 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
431 |
+
|
432 |
+
# add upsample block for all BUT final layer
|
433 |
+
if not is_final_block:
|
434 |
+
add_upsample = True
|
435 |
+
self.num_upsamplers += 1
|
436 |
+
else:
|
437 |
+
add_upsample = False
|
438 |
+
|
439 |
+
up_block = get_up_block(
|
440 |
+
up_block_type,
|
441 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
442 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
443 |
+
in_channels=input_channel,
|
444 |
+
out_channels=output_channel,
|
445 |
+
prev_output_channel=prev_output_channel,
|
446 |
+
temb_channels=blocks_time_embed_dim,
|
447 |
+
add_upsample=add_upsample,
|
448 |
+
resnet_eps=norm_eps,
|
449 |
+
resnet_act_fn=act_fn,
|
450 |
+
resolution_idx=i,
|
451 |
+
resnet_groups=norm_num_groups,
|
452 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
453 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
454 |
+
dual_cross_attention=dual_cross_attention,
|
455 |
+
use_linear_projection=use_linear_projection,
|
456 |
+
only_cross_attention=only_cross_attention[i],
|
457 |
+
upcast_attention=upcast_attention,
|
458 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
459 |
+
attention_type=attention_type,
|
460 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
461 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
462 |
+
cross_attention_norm=cross_attention_norm,
|
463 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
464 |
+
dropout=dropout,
|
465 |
+
)
|
466 |
+
self.up_blocks.append(up_block)
|
467 |
+
prev_output_channel = output_channel
|
468 |
+
|
469 |
+
# out
|
470 |
+
if norm_num_groups is not None:
|
471 |
+
self.conv_norm_out = nn.GroupNorm(
|
472 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
473 |
+
)
|
474 |
+
|
475 |
+
self.conv_act = get_activation(act_fn)
|
476 |
+
|
477 |
+
else:
|
478 |
+
self.conv_norm_out = None
|
479 |
+
self.conv_act = None
|
480 |
+
|
481 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
482 |
+
self.conv_out = nn.Conv2d(
|
483 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
484 |
+
)
|
485 |
+
|
486 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
487 |
+
|
488 |
+
def _check_config(
|
489 |
+
self,
|
490 |
+
down_block_types: Tuple[str],
|
491 |
+
up_block_types: Tuple[str],
|
492 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
493 |
+
block_out_channels: Tuple[int],
|
494 |
+
layers_per_block: Union[int, Tuple[int]],
|
495 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
496 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
497 |
+
reverse_transformer_layers_per_block: bool,
|
498 |
+
attention_head_dim: int,
|
499 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
500 |
+
):
|
501 |
+
if len(down_block_types) != len(up_block_types):
|
502 |
+
raise ValueError(
|
503 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
504 |
+
)
|
505 |
+
|
506 |
+
if len(block_out_channels) != len(down_block_types):
|
507 |
+
raise ValueError(
|
508 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
509 |
+
)
|
510 |
+
|
511 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
512 |
+
raise ValueError(
|
513 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
514 |
+
)
|
515 |
+
|
516 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
517 |
+
raise ValueError(
|
518 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
519 |
+
)
|
520 |
+
|
521 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
522 |
+
raise ValueError(
|
523 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
524 |
+
)
|
525 |
+
|
526 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
527 |
+
raise ValueError(
|
528 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
529 |
+
)
|
530 |
+
|
531 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
532 |
+
raise ValueError(
|
533 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
534 |
+
)
|
535 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
536 |
+
for layer_number_per_block in transformer_layers_per_block:
|
537 |
+
if isinstance(layer_number_per_block, list):
|
538 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
539 |
+
|
540 |
+
def _set_time_proj(
|
541 |
+
self,
|
542 |
+
time_embedding_type: str,
|
543 |
+
block_out_channels: int,
|
544 |
+
flip_sin_to_cos: bool,
|
545 |
+
freq_shift: float,
|
546 |
+
time_embedding_dim: int,
|
547 |
+
) -> Tuple[int, int]:
|
548 |
+
if time_embedding_type == "fourier":
|
549 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
550 |
+
if time_embed_dim % 2 != 0:
|
551 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
552 |
+
self.time_proj = GaussianFourierProjection(
|
553 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
554 |
+
)
|
555 |
+
timestep_input_dim = time_embed_dim
|
556 |
+
elif time_embedding_type == "positional":
|
557 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
558 |
+
|
559 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
560 |
+
timestep_input_dim = block_out_channels[0]
|
561 |
+
else:
|
562 |
+
raise ValueError(
|
563 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
564 |
+
)
|
565 |
+
|
566 |
+
return time_embed_dim, timestep_input_dim
|
567 |
+
|
568 |
+
def _set_encoder_hid_proj(
|
569 |
+
self,
|
570 |
+
encoder_hid_dim_type: Optional[str],
|
571 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
572 |
+
encoder_hid_dim: Optional[int],
|
573 |
+
):
|
574 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
575 |
+
encoder_hid_dim_type = "text_proj"
|
576 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
577 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
578 |
+
|
579 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
580 |
+
raise ValueError(
|
581 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
582 |
+
)
|
583 |
+
|
584 |
+
if encoder_hid_dim_type == "text_proj":
|
585 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
586 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
587 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
588 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
589 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
590 |
+
self.encoder_hid_proj = TextImageProjection(
|
591 |
+
text_embed_dim=encoder_hid_dim,
|
592 |
+
image_embed_dim=cross_attention_dim,
|
593 |
+
cross_attention_dim=cross_attention_dim,
|
594 |
+
)
|
595 |
+
elif encoder_hid_dim_type == "image_proj":
|
596 |
+
# Kandinsky 2.2
|
597 |
+
self.encoder_hid_proj = ImageProjection(
|
598 |
+
image_embed_dim=encoder_hid_dim,
|
599 |
+
cross_attention_dim=cross_attention_dim,
|
600 |
+
)
|
601 |
+
elif encoder_hid_dim_type is not None:
|
602 |
+
raise ValueError(
|
603 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
604 |
+
)
|
605 |
+
else:
|
606 |
+
self.encoder_hid_proj = None
|
607 |
+
|
608 |
+
def _set_class_embedding(
|
609 |
+
self,
|
610 |
+
class_embed_type: Optional[str],
|
611 |
+
act_fn: str,
|
612 |
+
num_class_embeds: Optional[int],
|
613 |
+
projection_class_embeddings_input_dim: Optional[int],
|
614 |
+
time_embed_dim: int,
|
615 |
+
timestep_input_dim: int,
|
616 |
+
):
|
617 |
+
if class_embed_type is None and num_class_embeds is not None:
|
618 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
619 |
+
elif class_embed_type == "timestep":
|
620 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
621 |
+
elif class_embed_type == "identity":
|
622 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
623 |
+
elif class_embed_type == "projection":
|
624 |
+
if projection_class_embeddings_input_dim is None:
|
625 |
+
raise ValueError(
|
626 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
627 |
+
)
|
628 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
629 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
630 |
+
# 2. it projects from an arbitrary input dimension.
|
631 |
+
#
|
632 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
633 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
634 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
635 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
636 |
+
elif class_embed_type == "simple_projection":
|
637 |
+
if projection_class_embeddings_input_dim is None:
|
638 |
+
raise ValueError(
|
639 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
640 |
+
)
|
641 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
642 |
+
else:
|
643 |
+
self.class_embedding = None
|
644 |
+
|
645 |
+
def _set_add_embedding(
|
646 |
+
self,
|
647 |
+
addition_embed_type: str,
|
648 |
+
addition_embed_type_num_heads: int,
|
649 |
+
addition_time_embed_dim: Optional[int],
|
650 |
+
flip_sin_to_cos: bool,
|
651 |
+
freq_shift: float,
|
652 |
+
cross_attention_dim: Optional[int],
|
653 |
+
encoder_hid_dim: Optional[int],
|
654 |
+
projection_class_embeddings_input_dim: Optional[int],
|
655 |
+
time_embed_dim: int,
|
656 |
+
):
|
657 |
+
if addition_embed_type == "text":
|
658 |
+
if encoder_hid_dim is not None:
|
659 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
660 |
+
else:
|
661 |
+
text_time_embedding_from_dim = cross_attention_dim
|
662 |
+
|
663 |
+
self.add_embedding = TextTimeEmbedding(
|
664 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
665 |
+
)
|
666 |
+
elif addition_embed_type == "text_image":
|
667 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
668 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
669 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
670 |
+
self.add_embedding = TextImageTimeEmbedding(
|
671 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
672 |
+
)
|
673 |
+
elif addition_embed_type == "text_time":
|
674 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
675 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
676 |
+
elif addition_embed_type == "image":
|
677 |
+
# Kandinsky 2.2
|
678 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
679 |
+
elif addition_embed_type == "image_hint":
|
680 |
+
# Kandinsky 2.2 ControlNet
|
681 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
682 |
+
elif addition_embed_type is not None:
|
683 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
684 |
+
|
685 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
686 |
+
if attention_type in ["gated", "gated-text-image"]:
|
687 |
+
positive_len = 768
|
688 |
+
if isinstance(cross_attention_dim, int):
|
689 |
+
positive_len = cross_attention_dim
|
690 |
+
elif isinstance(cross_attention_dim, (list, tuple)):
|
691 |
+
positive_len = cross_attention_dim[0]
|
692 |
+
|
693 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
694 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
695 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
696 |
+
)
|
697 |
+
|
698 |
+
@property
|
699 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
700 |
+
r"""
|
701 |
+
Returns:
|
702 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
703 |
+
indexed by its weight name.
|
704 |
+
"""
|
705 |
+
# set recursively
|
706 |
+
processors = {}
|
707 |
+
|
708 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
709 |
+
if hasattr(module, "get_processor"):
|
710 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
711 |
+
|
712 |
+
for sub_name, child in module.named_children():
|
713 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
714 |
+
|
715 |
+
return processors
|
716 |
+
|
717 |
+
for name, module in self.named_children():
|
718 |
+
fn_recursive_add_processors(name, module, processors)
|
719 |
+
|
720 |
+
return processors
|
721 |
+
|
722 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
723 |
+
r"""
|
724 |
+
Sets the attention processor to use to compute attention.
|
725 |
+
|
726 |
+
Parameters:
|
727 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
728 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
729 |
+
for **all** `Attention` layers.
|
730 |
+
|
731 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
732 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
733 |
+
|
734 |
+
"""
|
735 |
+
count = len(self.attn_processors.keys())
|
736 |
+
|
737 |
+
if isinstance(processor, dict) and len(processor) != count:
|
738 |
+
raise ValueError(
|
739 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
740 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
741 |
+
)
|
742 |
+
|
743 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
744 |
+
if hasattr(module, "set_processor"):
|
745 |
+
if not isinstance(processor, dict):
|
746 |
+
module.set_processor(processor)
|
747 |
+
else:
|
748 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
749 |
+
|
750 |
+
for sub_name, child in module.named_children():
|
751 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
752 |
+
|
753 |
+
for name, module in self.named_children():
|
754 |
+
fn_recursive_attn_processor(name, module, processor)
|
755 |
+
|
756 |
+
def set_default_attn_processor(self):
|
757 |
+
"""
|
758 |
+
Disables custom attention processors and sets the default attention implementation.
|
759 |
+
"""
|
760 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
761 |
+
processor = AttnAddedKVProcessor()
|
762 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
763 |
+
processor = AttnProcessor()
|
764 |
+
else:
|
765 |
+
raise ValueError(
|
766 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
767 |
+
)
|
768 |
+
|
769 |
+
self.set_attn_processor(processor)
|
770 |
+
|
771 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
772 |
+
r"""
|
773 |
+
Enable sliced attention computation.
|
774 |
+
|
775 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
776 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
780 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
781 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
782 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
783 |
+
must be a multiple of `slice_size`.
|
784 |
+
"""
|
785 |
+
sliceable_head_dims = []
|
786 |
+
|
787 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
788 |
+
if hasattr(module, "set_attention_slice"):
|
789 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
790 |
+
|
791 |
+
for child in module.children():
|
792 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
793 |
+
|
794 |
+
# retrieve number of attention layers
|
795 |
+
for module in self.children():
|
796 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
797 |
+
|
798 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
799 |
+
|
800 |
+
if slice_size == "auto":
|
801 |
+
# half the attention head size is usually a good trade-off between
|
802 |
+
# speed and memory
|
803 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
804 |
+
elif slice_size == "max":
|
805 |
+
# make smallest slice possible
|
806 |
+
slice_size = num_sliceable_layers * [1]
|
807 |
+
|
808 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
809 |
+
|
810 |
+
if len(slice_size) != len(sliceable_head_dims):
|
811 |
+
raise ValueError(
|
812 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
813 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
814 |
+
)
|
815 |
+
|
816 |
+
for i in range(len(slice_size)):
|
817 |
+
size = slice_size[i]
|
818 |
+
dim = sliceable_head_dims[i]
|
819 |
+
if size is not None and size > dim:
|
820 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
821 |
+
|
822 |
+
# Recursively walk through all the children.
|
823 |
+
# Any children which exposes the set_attention_slice method
|
824 |
+
# gets the message
|
825 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
826 |
+
if hasattr(module, "set_attention_slice"):
|
827 |
+
module.set_attention_slice(slice_size.pop())
|
828 |
+
|
829 |
+
for child in module.children():
|
830 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
831 |
+
|
832 |
+
reversed_slice_size = list(reversed(slice_size))
|
833 |
+
for module in self.children():
|
834 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
835 |
+
|
836 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
837 |
+
if hasattr(module, "gradient_checkpointing"):
|
838 |
+
module.gradient_checkpointing = value
|
839 |
+
|
840 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
841 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
842 |
+
|
843 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
844 |
+
|
845 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
846 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
847 |
+
|
848 |
+
Args:
|
849 |
+
s1 (`float`):
|
850 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
851 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
852 |
+
s2 (`float`):
|
853 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
854 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
855 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
856 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
857 |
+
"""
|
858 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
859 |
+
setattr(upsample_block, "s1", s1)
|
860 |
+
setattr(upsample_block, "s2", s2)
|
861 |
+
setattr(upsample_block, "b1", b1)
|
862 |
+
setattr(upsample_block, "b2", b2)
|
863 |
+
|
864 |
+
def disable_freeu(self):
|
865 |
+
"""Disables the FreeU mechanism."""
|
866 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
867 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
868 |
+
for k in freeu_keys:
|
869 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
870 |
+
setattr(upsample_block, k, None)
|
871 |
+
|
872 |
+
def fuse_qkv_projections(self):
|
873 |
+
"""
|
874 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
875 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
876 |
+
|
877 |
+
<Tip warning={true}>
|
878 |
+
|
879 |
+
This API is 🧪 experimental.
|
880 |
+
|
881 |
+
</Tip>
|
882 |
+
"""
|
883 |
+
self.original_attn_processors = None
|
884 |
+
|
885 |
+
for _, attn_processor in self.attn_processors.items():
|
886 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
887 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
888 |
+
|
889 |
+
self.original_attn_processors = self.attn_processors
|
890 |
+
|
891 |
+
for module in self.modules():
|
892 |
+
if isinstance(module, Attention):
|
893 |
+
module.fuse_projections(fuse=True)
|
894 |
+
|
895 |
+
def unfuse_qkv_projections(self):
|
896 |
+
"""Disables the fused QKV projection if enabled.
|
897 |
+
|
898 |
+
<Tip warning={true}>
|
899 |
+
|
900 |
+
This API is 🧪 experimental.
|
901 |
+
|
902 |
+
</Tip>
|
903 |
+
|
904 |
+
"""
|
905 |
+
if self.original_attn_processors is not None:
|
906 |
+
self.set_attn_processor(self.original_attn_processors)
|
907 |
+
|
908 |
+
def unload_lora(self):
|
909 |
+
"""Unloads LoRA weights."""
|
910 |
+
deprecate(
|
911 |
+
"unload_lora",
|
912 |
+
"0.28.0",
|
913 |
+
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
|
914 |
+
)
|
915 |
+
for module in self.modules():
|
916 |
+
if hasattr(module, "set_lora_layer"):
|
917 |
+
module.set_lora_layer(None)
|
918 |
+
|
919 |
+
def get_time_embed(
|
920 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
921 |
+
) -> Optional[torch.Tensor]:
|
922 |
+
timesteps = timestep
|
923 |
+
if not torch.is_tensor(timesteps):
|
924 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
925 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
926 |
+
is_mps = sample.device.type == "mps"
|
927 |
+
if isinstance(timestep, float):
|
928 |
+
dtype = torch.float32 if is_mps else torch.float64
|
929 |
+
else:
|
930 |
+
dtype = torch.int32 if is_mps else torch.int64
|
931 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
932 |
+
elif len(timesteps.shape) == 0:
|
933 |
+
timesteps = timesteps[None].to(sample.device)
|
934 |
+
|
935 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
936 |
+
timesteps = timesteps.expand(sample.shape[0])
|
937 |
+
|
938 |
+
t_emb = self.time_proj(timesteps)
|
939 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
940 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
941 |
+
# there might be better ways to encapsulate this.
|
942 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
943 |
+
return t_emb
|
944 |
+
|
945 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
946 |
+
class_emb = None
|
947 |
+
if self.class_embedding is not None:
|
948 |
+
if class_labels is None:
|
949 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
950 |
+
|
951 |
+
if self.config.class_embed_type == "timestep":
|
952 |
+
class_labels = self.time_proj(class_labels)
|
953 |
+
|
954 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
955 |
+
# there might be better ways to encapsulate this.
|
956 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
957 |
+
|
958 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
959 |
+
return class_emb
|
960 |
+
|
961 |
+
def get_aug_embed(
|
962 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
963 |
+
) -> Optional[torch.Tensor]:
|
964 |
+
aug_emb = None
|
965 |
+
if self.config.addition_embed_type == "text":
|
966 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
967 |
+
elif self.config.addition_embed_type == "text_image":
|
968 |
+
# Kandinsky 2.1 - style
|
969 |
+
if "image_embeds" not in added_cond_kwargs:
|
970 |
+
raise ValueError(
|
971 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
972 |
+
)
|
973 |
+
|
974 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
975 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
976 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
977 |
+
elif self.config.addition_embed_type == "text_time":
|
978 |
+
# SDXL - style
|
979 |
+
if "text_embeds" not in added_cond_kwargs:
|
980 |
+
raise ValueError(
|
981 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
982 |
+
)
|
983 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
984 |
+
if "time_ids" not in added_cond_kwargs:
|
985 |
+
raise ValueError(
|
986 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
987 |
+
)
|
988 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
989 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
990 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
991 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
992 |
+
add_embeds = add_embeds.to(emb.dtype)
|
993 |
+
aug_emb = self.add_embedding(add_embeds)
|
994 |
+
elif self.config.addition_embed_type == "image":
|
995 |
+
# Kandinsky 2.2 - style
|
996 |
+
if "image_embeds" not in added_cond_kwargs:
|
997 |
+
raise ValueError(
|
998 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
999 |
+
)
|
1000 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1001 |
+
aug_emb = self.add_embedding(image_embs)
|
1002 |
+
elif self.config.addition_embed_type == "image_hint":
|
1003 |
+
# Kandinsky 2.2 - style
|
1004 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1005 |
+
raise ValueError(
|
1006 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1007 |
+
)
|
1008 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1009 |
+
hint = added_cond_kwargs.get("hint")
|
1010 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1011 |
+
return aug_emb
|
1012 |
+
|
1013 |
+
def process_encoder_hidden_states(
|
1014 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1015 |
+
) -> torch.Tensor:
|
1016 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1017 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1018 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1019 |
+
# Kandinsky 2.1 - style
|
1020 |
+
if "image_embeds" not in added_cond_kwargs:
|
1021 |
+
raise ValueError(
|
1022 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1026 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1027 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1028 |
+
# Kandinsky 2.2 - style
|
1029 |
+
if "image_embeds" not in added_cond_kwargs:
|
1030 |
+
raise ValueError(
|
1031 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1032 |
+
)
|
1033 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1034 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1035 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1036 |
+
if "image_embeds" not in added_cond_kwargs:
|
1037 |
+
raise ValueError(
|
1038 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1039 |
+
)
|
1040 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1041 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1042 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1043 |
+
return encoder_hidden_states
|
1044 |
+
|
1045 |
+
def forward(
|
1046 |
+
self,
|
1047 |
+
sample: torch.Tensor,
|
1048 |
+
timestep: Union[torch.Tensor, float, int],
|
1049 |
+
encoder_hidden_states: torch.Tensor,
|
1050 |
+
class_labels: Optional[torch.Tensor] = None,
|
1051 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1052 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1053 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1054 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1055 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1056 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1057 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1058 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1059 |
+
return_dict: bool = True,
|
1060 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1061 |
+
r"""
|
1062 |
+
The [`UNet2DConditionModel`] forward method.
|
1063 |
+
|
1064 |
+
Args:
|
1065 |
+
sample (`torch.Tensor`):
|
1066 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1067 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1068 |
+
encoder_hidden_states (`torch.Tensor`):
|
1069 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1070 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1071 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1072 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1073 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1074 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1075 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1076 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1077 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1078 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1079 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1080 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1081 |
+
`self.processor` in
|
1082 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1083 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1084 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1085 |
+
are passed along to the UNet blocks.
|
1086 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1087 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1088 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1089 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1090 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1091 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1092 |
+
encoder_attention_mask (`torch.Tensor`):
|
1093 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1094 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1095 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1096 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1097 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1098 |
+
tuple.
|
1099 |
+
|
1100 |
+
Returns:
|
1101 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1102 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1103 |
+
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1104 |
+
"""
|
1105 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1106 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1107 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1108 |
+
# on the fly if necessary.
|
1109 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1110 |
+
|
1111 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1112 |
+
forward_upsample_size = False
|
1113 |
+
upsample_size = None
|
1114 |
+
|
1115 |
+
for dim in sample.shape[-2:]:
|
1116 |
+
if dim % default_overall_up_factor != 0:
|
1117 |
+
# Forward upsample size to force interpolation output size.
|
1118 |
+
forward_upsample_size = True
|
1119 |
+
break
|
1120 |
+
|
1121 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1122 |
+
# expects mask of shape:
|
1123 |
+
# [batch, key_tokens]
|
1124 |
+
# adds singleton query_tokens dimension:
|
1125 |
+
# [batch, 1, key_tokens]
|
1126 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1127 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1128 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1129 |
+
if attention_mask is not None:
|
1130 |
+
# assume that mask is expressed as:
|
1131 |
+
# (1 = keep, 0 = discard)
|
1132 |
+
# convert mask into a bias that can be added to attention scores:
|
1133 |
+
# (keep = +0, discard = -10000.0)
|
1134 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1135 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1136 |
+
|
1137 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1138 |
+
if encoder_attention_mask is not None:
|
1139 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1140 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1141 |
+
|
1142 |
+
# 0. center input if necessary
|
1143 |
+
if self.config.center_input_sample:
|
1144 |
+
sample = 2 * sample - 1.0
|
1145 |
+
|
1146 |
+
# 1. time
|
1147 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1148 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1149 |
+
aug_emb = None
|
1150 |
+
|
1151 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1152 |
+
if class_emb is not None:
|
1153 |
+
if self.config.class_embeddings_concat:
|
1154 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1155 |
+
else:
|
1156 |
+
emb = emb + class_emb
|
1157 |
+
|
1158 |
+
aug_emb = self.get_aug_embed(
|
1159 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1160 |
+
)
|
1161 |
+
if self.config.addition_embed_type == "image_hint":
|
1162 |
+
aug_emb, hint = aug_emb
|
1163 |
+
sample = torch.cat([sample, hint], dim=1)
|
1164 |
+
|
1165 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1166 |
+
|
1167 |
+
if self.time_embed_act is not None:
|
1168 |
+
emb = self.time_embed_act(emb)
|
1169 |
+
|
1170 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1171 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1172 |
+
)
|
1173 |
+
|
1174 |
+
# 2. pre-process
|
1175 |
+
sample = self.conv_in(sample)
|
1176 |
+
|
1177 |
+
# 2.5 GLIGEN position net
|
1178 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1179 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1180 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1181 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1182 |
+
|
1183 |
+
# 3. down
|
1184 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1185 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1186 |
+
if cross_attention_kwargs is not None:
|
1187 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1188 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1189 |
+
else:
|
1190 |
+
lora_scale = 1.0
|
1191 |
+
|
1192 |
+
if USE_PEFT_BACKEND:
|
1193 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1194 |
+
scale_lora_layers(self, lora_scale)
|
1195 |
+
|
1196 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1197 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1198 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1199 |
+
# maintain backward compatibility for legacy usage, where
|
1200 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1201 |
+
# but can only use one or the other
|
1202 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1203 |
+
deprecate(
|
1204 |
+
"T2I should not use down_block_additional_residuals",
|
1205 |
+
"1.3.0",
|
1206 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1207 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1208 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1209 |
+
standard_warn=False,
|
1210 |
+
)
|
1211 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1212 |
+
is_adapter = True
|
1213 |
+
|
1214 |
+
down_block_res_samples = (sample,)
|
1215 |
+
for downsample_block in self.down_blocks:
|
1216 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1217 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1218 |
+
additional_residuals = {}
|
1219 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1220 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1221 |
+
|
1222 |
+
sample, res_samples = downsample_block(
|
1223 |
+
hidden_states=sample,
|
1224 |
+
temb=emb,
|
1225 |
+
encoder_hidden_states=encoder_hidden_states,
|
1226 |
+
attention_mask=attention_mask,
|
1227 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1228 |
+
encoder_attention_mask=encoder_attention_mask,
|
1229 |
+
**additional_residuals,
|
1230 |
+
)
|
1231 |
+
else:
|
1232 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1233 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1234 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1235 |
+
|
1236 |
+
down_block_res_samples += res_samples
|
1237 |
+
|
1238 |
+
if is_controlnet:
|
1239 |
+
new_down_block_res_samples = ()
|
1240 |
+
|
1241 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1242 |
+
down_block_res_samples, down_block_additional_residuals
|
1243 |
+
):
|
1244 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1245 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1246 |
+
|
1247 |
+
down_block_res_samples = new_down_block_res_samples
|
1248 |
+
|
1249 |
+
# 4. mid
|
1250 |
+
if self.mid_block is not None:
|
1251 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1252 |
+
sample = self.mid_block(
|
1253 |
+
sample,
|
1254 |
+
emb,
|
1255 |
+
encoder_hidden_states=encoder_hidden_states,
|
1256 |
+
attention_mask=attention_mask,
|
1257 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1258 |
+
encoder_attention_mask=encoder_attention_mask,
|
1259 |
+
)
|
1260 |
+
else:
|
1261 |
+
sample = self.mid_block(sample, emb)
|
1262 |
+
|
1263 |
+
# To support T2I-Adapter-XL
|
1264 |
+
if (
|
1265 |
+
is_adapter
|
1266 |
+
and len(down_intrablock_additional_residuals) > 0
|
1267 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1268 |
+
):
|
1269 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1270 |
+
|
1271 |
+
if is_controlnet:
|
1272 |
+
sample = sample + mid_block_additional_residual
|
1273 |
+
|
1274 |
+
# 5. up
|
1275 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1276 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1277 |
+
|
1278 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1279 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1280 |
+
|
1281 |
+
# if we have not reached the final block and need to forward the
|
1282 |
+
# upsample size, we do it here
|
1283 |
+
if not is_final_block and forward_upsample_size:
|
1284 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1285 |
+
|
1286 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1287 |
+
sample = upsample_block(
|
1288 |
+
hidden_states=sample,
|
1289 |
+
temb=emb,
|
1290 |
+
res_hidden_states_tuple=res_samples,
|
1291 |
+
encoder_hidden_states=encoder_hidden_states,
|
1292 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1293 |
+
upsample_size=upsample_size,
|
1294 |
+
attention_mask=attention_mask,
|
1295 |
+
encoder_attention_mask=encoder_attention_mask,
|
1296 |
+
)
|
1297 |
+
else:
|
1298 |
+
sample = upsample_block(
|
1299 |
+
hidden_states=sample,
|
1300 |
+
temb=emb,
|
1301 |
+
res_hidden_states_tuple=res_samples,
|
1302 |
+
upsample_size=upsample_size,
|
1303 |
+
)
|
1304 |
+
|
1305 |
+
# 6. post-process
|
1306 |
+
if self.conv_norm_out:
|
1307 |
+
sample = self.conv_norm_out(sample)
|
1308 |
+
sample = self.conv_act(sample)
|
1309 |
+
sample = self.conv_out(sample)
|
1310 |
+
|
1311 |
+
if USE_PEFT_BACKEND:
|
1312 |
+
# remove `lora_scale` from each PEFT layer
|
1313 |
+
unscale_lora_layers(self, lora_scale)
|
1314 |
+
|
1315 |
+
if not return_dict:
|
1316 |
+
return (sample,)
|
1317 |
+
|
1318 |
+
return UNet2DConditionOutput(sample=sample)
|
modules/u_net_modify.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import inspect
|
3 |
+
import os
|
4 |
+
from collections import defaultdict
|
5 |
+
from contextlib import nullcontext
|
6 |
+
from functools import partial
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Callable, Dict, List, Optional, Union
|
9 |
+
|
10 |
+
|
11 |
+
import safetensors
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
from diffusers.models.embeddings import (
|
18 |
+
ImageProjection,
|
19 |
+
IPAdapterFaceIDImageProjection,
|
20 |
+
IPAdapterFaceIDPlusImageProjection,
|
21 |
+
IPAdapterFullImageProjection,
|
22 |
+
IPAdapterPlusImageProjection,
|
23 |
+
MultiIPAdapterImageProjection,
|
24 |
+
)
|
25 |
+
|
26 |
+
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta, load_state_dict
|
27 |
+
|
28 |
+
from diffusers.loaders.unet import UNet2DConditionLoadersMixin
|
29 |
+
from diffusers.utils import (
|
30 |
+
USE_PEFT_BACKEND,
|
31 |
+
_get_model_file,
|
32 |
+
delete_adapter_layers,
|
33 |
+
is_accelerate_available,
|
34 |
+
is_torch_version,
|
35 |
+
logging,
|
36 |
+
set_adapter_layers,
|
37 |
+
set_weights_and_activate_adapters,
|
38 |
+
)
|
39 |
+
|
40 |
+
from diffusers.loaders.utils import AttnProcsLayers
|
41 |
+
|
42 |
+
from .attention_modify import AttnProcessor,IPAdapterAttnProcessor,AttnProcessor2_0,IPAdapterAttnProcessor2_0
|
43 |
+
|
44 |
+
if is_accelerate_available():
|
45 |
+
from accelerate import init_empty_weights
|
46 |
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
class UNet2DConditionLoadersMixin_modify(UNet2DConditionLoadersMixin):
|
53 |
+
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
|
54 |
+
|
55 |
+
if low_cpu_mem_usage:
|
56 |
+
if is_accelerate_available():
|
57 |
+
from accelerate import init_empty_weights
|
58 |
+
|
59 |
+
else:
|
60 |
+
low_cpu_mem_usage = False
|
61 |
+
logger.warning(
|
62 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
63 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
64 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
65 |
+
" install accelerate\n```\n."
|
66 |
+
)
|
67 |
+
|
68 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
69 |
+
raise NotImplementedError(
|
70 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
71 |
+
" `low_cpu_mem_usage=False`."
|
72 |
+
)
|
73 |
+
|
74 |
+
# set ip-adapter cross-attention processors & load state_dict
|
75 |
+
attn_procs = {}
|
76 |
+
key_id = 1
|
77 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
78 |
+
for name in self.attn_processors.keys():
|
79 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
|
80 |
+
if name.startswith("mid_block"):
|
81 |
+
hidden_size = self.config.block_out_channels[-1]
|
82 |
+
elif name.startswith("up_blocks"):
|
83 |
+
block_id = int(name[len("up_blocks.")])
|
84 |
+
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
|
85 |
+
elif name.startswith("down_blocks"):
|
86 |
+
block_id = int(name[len("down_blocks.")])
|
87 |
+
hidden_size = self.config.block_out_channels[block_id]
|
88 |
+
|
89 |
+
if cross_attention_dim is None or "motion_modules" in name:
|
90 |
+
attn_processor_class = (
|
91 |
+
AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
|
92 |
+
)
|
93 |
+
attn_procs[name] = attn_processor_class()
|
94 |
+
|
95 |
+
else:
|
96 |
+
attn_processor_class = (
|
97 |
+
IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
|
98 |
+
)
|
99 |
+
num_image_text_embeds = []
|
100 |
+
for state_dict in state_dicts:
|
101 |
+
if "proj.weight" in state_dict["image_proj"]:
|
102 |
+
# IP-Adapter
|
103 |
+
num_image_text_embeds += [4]
|
104 |
+
elif "proj.3.weight" in state_dict["image_proj"]:
|
105 |
+
# IP-Adapter Full Face
|
106 |
+
num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token
|
107 |
+
elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]:
|
108 |
+
# IP-Adapter Face ID Plus
|
109 |
+
num_image_text_embeds += [4]
|
110 |
+
elif "norm.weight" in state_dict["image_proj"]:
|
111 |
+
# IP-Adapter Face ID
|
112 |
+
num_image_text_embeds += [4]
|
113 |
+
else:
|
114 |
+
# IP-Adapter Plus
|
115 |
+
num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]
|
116 |
+
|
117 |
+
with init_context():
|
118 |
+
attn_procs[name] = attn_processor_class(
|
119 |
+
hidden_size=hidden_size,
|
120 |
+
cross_attention_dim=cross_attention_dim,
|
121 |
+
scale=1.0,
|
122 |
+
num_tokens=num_image_text_embeds,
|
123 |
+
)
|
124 |
+
|
125 |
+
value_dict = {}
|
126 |
+
for i, state_dict in enumerate(state_dicts):
|
127 |
+
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
|
128 |
+
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
|
129 |
+
|
130 |
+
if not low_cpu_mem_usage:
|
131 |
+
attn_procs[name].load_state_dict(value_dict)
|
132 |
+
else:
|
133 |
+
device = next(iter(value_dict.values())).device
|
134 |
+
dtype = next(iter(value_dict.values())).dtype
|
135 |
+
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
|
136 |
+
|
137 |
+
key_id += 2
|
138 |
+
|
139 |
+
return attn_procs
|
140 |
+
|
141 |
+
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
|
142 |
+
if not isinstance(state_dicts, list):
|
143 |
+
state_dicts = [state_dicts]
|
144 |
+
# Set encoder_hid_proj after loading ip_adapter weights,
|
145 |
+
# because `IPAdapterPlusImageProjection` also has `attn_processors`.
|
146 |
+
self.encoder_hid_proj = None
|
147 |
+
|
148 |
+
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
149 |
+
self.set_attn_processor(attn_procs)
|
150 |
+
|
151 |
+
# convert IP-Adapter Image Projection layers to diffusers
|
152 |
+
image_projection_layers = []
|
153 |
+
for state_dict in state_dicts:
|
154 |
+
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
|
155 |
+
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
|
156 |
+
)
|
157 |
+
image_projection_layers.append(image_projection_layer)
|
158 |
+
|
159 |
+
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
|
160 |
+
self.config.encoder_hid_dim_type = "ip_image_proj"
|
161 |
+
|
162 |
+
self.to(dtype=self.dtype, device=self.device)
|
163 |
+
|
164 |
+
def _load_ip_adapter_loras(self, state_dicts):
|
165 |
+
lora_dicts = {}
|
166 |
+
for key_id, name in enumerate(self.attn_processors.keys()):
|
167 |
+
for i, state_dict in enumerate(state_dicts):
|
168 |
+
if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]:
|
169 |
+
if i not in lora_dicts:
|
170 |
+
lora_dicts[i] = {}
|
171 |
+
lora_dicts[i].update(
|
172 |
+
{
|
173 |
+
f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][
|
174 |
+
f"{key_id}.to_k_lora.down.weight"
|
175 |
+
]
|
176 |
+
}
|
177 |
+
)
|
178 |
+
lora_dicts[i].update(
|
179 |
+
{
|
180 |
+
f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][
|
181 |
+
f"{key_id}.to_q_lora.down.weight"
|
182 |
+
]
|
183 |
+
}
|
184 |
+
)
|
185 |
+
lora_dicts[i].update(
|
186 |
+
{
|
187 |
+
f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][
|
188 |
+
f"{key_id}.to_v_lora.down.weight"
|
189 |
+
]
|
190 |
+
}
|
191 |
+
)
|
192 |
+
lora_dicts[i].update(
|
193 |
+
{
|
194 |
+
f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][
|
195 |
+
f"{key_id}.to_out_lora.down.weight"
|
196 |
+
]
|
197 |
+
}
|
198 |
+
)
|
199 |
+
lora_dicts[i].update(
|
200 |
+
{f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]}
|
201 |
+
)
|
202 |
+
lora_dicts[i].update(
|
203 |
+
{f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]}
|
204 |
+
)
|
205 |
+
lora_dicts[i].update(
|
206 |
+
{f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]}
|
207 |
+
)
|
208 |
+
lora_dicts[i].update(
|
209 |
+
{
|
210 |
+
f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][
|
211 |
+
f"{key_id}.to_out_lora.up.weight"
|
212 |
+
]
|
213 |
+
}
|
214 |
+
)
|
215 |
+
return lora_dicts
|
216 |
+
|
217 |
+
|
218 |
+
class FromOriginalUNetMixin:
|
219 |
+
"""
|
220 |
+
Load pretrained UNet model weights saved in the `.ckpt` or `.safetensors` format into a [`StableCascadeUNet`].
|
221 |
+
"""
|
222 |
+
|
223 |
+
@classmethod
|
224 |
+
@validate_hf_hub_args
|
225 |
+
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
226 |
+
r"""
|
227 |
+
Instantiate a [`StableCascadeUNet`] from pretrained StableCascadeUNet weights saved in the original `.ckpt` or
|
228 |
+
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
229 |
+
|
230 |
+
Parameters:
|
231 |
+
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
232 |
+
Can be either:
|
233 |
+
- A link to the `.ckpt` file (for example
|
234 |
+
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
235 |
+
- A path to a *file* containing all pipeline weights.
|
236 |
+
config: (`dict`, *optional*):
|
237 |
+
Dictionary containing the configuration of the model:
|
238 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
239 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
240 |
+
dtype is automatically derived from the model's weights.
|
241 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
242 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
243 |
+
cached versions if they exist.
|
244 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
245 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
246 |
+
is not used.
|
247 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
248 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
249 |
+
incompletely downloaded files are deleted.
|
250 |
+
proxies (`Dict[str, str]`, *optional*):
|
251 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
252 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
253 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
254 |
+
Whether to only load local model weights and configuration files or not. If set to True, the model
|
255 |
+
won't be downloaded from the Hub.
|
256 |
+
token (`str` or *bool*, *optional*):
|
257 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
258 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
259 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
260 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
261 |
+
allowed by Git.
|
262 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
263 |
+
Can be used to overwrite load and saveable variables of the model.
|
264 |
+
|
265 |
+
"""
|
266 |
+
class_name = cls.__name__
|
267 |
+
if class_name != "StableCascadeUNet":
|
268 |
+
raise ValueError("FromOriginalUNetMixin is currently only compatible with StableCascadeUNet")
|
269 |
+
|
270 |
+
config = kwargs.pop("config", None)
|
271 |
+
resume_download = kwargs.pop("resume_download", False)
|
272 |
+
force_download = kwargs.pop("force_download", False)
|
273 |
+
proxies = kwargs.pop("proxies", None)
|
274 |
+
token = kwargs.pop("token", None)
|
275 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
276 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
277 |
+
revision = kwargs.pop("revision", None)
|
278 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
279 |
+
|
280 |
+
checkpoint = load_single_file_model_checkpoint(
|
281 |
+
pretrained_model_link_or_path,
|
282 |
+
resume_download=resume_download,
|
283 |
+
force_download=force_download,
|
284 |
+
proxies=proxies,
|
285 |
+
token=token,
|
286 |
+
cache_dir=cache_dir,
|
287 |
+
local_files_only=local_files_only,
|
288 |
+
revision=revision,
|
289 |
+
)
|
290 |
+
|
291 |
+
if config is None:
|
292 |
+
config = infer_stable_cascade_single_file_config(checkpoint)
|
293 |
+
model_config = cls.load_config(**config, **kwargs)
|
294 |
+
else:
|
295 |
+
model_config = config
|
296 |
+
|
297 |
+
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
298 |
+
with ctx():
|
299 |
+
model = cls.from_config(model_config, **kwargs)
|
300 |
+
|
301 |
+
diffusers_format_checkpoint = convert_stable_cascade_unet_single_file_to_diffusers(checkpoint)
|
302 |
+
if is_accelerate_available():
|
303 |
+
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
|
304 |
+
if len(unexpected_keys) > 0:
|
305 |
+
logger.warn(
|
306 |
+
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
|
307 |
+
)
|
308 |
+
|
309 |
+
else:
|
310 |
+
model.load_state_dict(diffusers_format_checkpoint)
|
311 |
+
|
312 |
+
if torch_dtype is not None:
|
313 |
+
model.to(torch_dtype)
|
314 |
+
|
315 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
einops==0.8.0
|
3 |
+
diffusers==0.29.0
|
4 |
+
transformers==4.41.2
|
5 |
+
k_diffusion==0.1.1.post1
|
6 |
+
safetensors==0.4.3
|
7 |
+
gradio==3.44.4
|
8 |
+
timm==0.6.7
|
9 |
+
basicsr==1.4.2
|
10 |
+
controlnet-aux==0.0.9
|
11 |
+
mediapipe==0.10.14
|
12 |
+
kaleido==0.2.1
|
13 |
+
insightface==0.7.3
|
14 |
+
onnxruntime-gpu
|
15 |
+
peft
|
16 |
+
pytorch_lightning==2.2.5
|