IPL_Prediction / README.md
dine24's picture
Update README.md
716a83e verified
---
title: "๐Ÿ IPL Match Predictor & Simulator"
emoji: "๐Ÿ"
colorFrom: "yellow"
colorTo: "blue"
sdk: "streamlit"
sdk_version: "1.30.0"
app_file: "app.py"
pinned: false
license: "mit"
tags:
- cricket
- ipl
- deep-learning
- streamlit
- gru
- prediction
- sports
- commentary
---
\# ๐Ÿ IPL Match Predictor & Live Simulation App
Welcome to the \*\*IPL Match Predictor\*\* -- a powerful and interactive
Streamlit-based application that simulates and predicts IPL match
outcomes using machine learning, deep learning, and Generative AI
commentary.
\-\--
\## ๐Ÿš€ Key Features
\### ๐ŸŽฏ 1. IPL Score Prediction Dashboard (GRU-Based) - Predicts final
match score using a GRU deep learning model. - Inputs: Over-wise runs
and optional wickets (20 overs). - Model trained on synthetic match data
to mimic real T20 dynamics.
\### ๐Ÿง  2. GPT Commentary Generator (RAG-based, Optional) - Generate
multi-turn AI commentary based on match progression. - Integrates
GPT-3.5 (OpenAI) with retrieval-based chunked summaries. \*(Optional
deployment upgrade)\*
\### ๐Ÿงฎ 3. Match Scenario Simulator - Simulate custom match scenarios
based on user-input cumulative scores. - Get final score predictions
even with mid-match inputs.
\### ๐Ÿ“Š 4. IPL Match Simulation + Points Table Logic - Team vs Team
match generation with venue and status (Completed/In
Progress/Scheduled). - Dynamic scorecard visualization with runs,
wickets, and predicted outcomes.
\### ๐Ÿ“ˆ 5. Live Match Predictor - Simulate full match: generates random
over-wise runs + wickets. - Visualizes match progression and predicts
final score with model confidence.
\-\--
\## ๐Ÿ“ Project Structure
final_app/ โ”‚ โ”œโ”€โ”€ app.py \# โœ… Unified Streamlit app โ”œโ”€โ”€ requirements.txt
\# โœ… Dependencies for Hugging Face โ”œโ”€โ”€ trained_model/ \# โœ… GRU-based
models + scalers โ”œโ”€โ”€ match_live_predictor/ \# โœ… Live match predictor
files โ”œโ”€โ”€ match_simulator.py \# Scenario-based simulator โ”œโ”€โ”€ \*.h5 /
.keras \# DL models (GRU, BiLSTM, CNN, LSTM) โ”œโ”€โ”€ scaler\_.save \#
Input/output scalers โ”œโ”€โ”€ \*.csv \# Match data for commentary, points,
visuals โ”œโ”€โ”€ \*.gif \# Dashboard animations โ””โ”€โ”€ \*.ipynb \# Phase
notebooks and analysis
\-\--
\## ๐Ÿ”ง Requirements
Install dependencies using:
\`\`\`bash pip install -r requirements.txt
Model Info Model: GRU-based sequence predictor
Input: 20 timesteps (Runs, Wickets)
Output: Scaled prediction of final score
Scaler: MinMaxScaler fitted on input & target
GPT Commentary (Optional) To enable RAG-based GPT-3.5 commentary:
Set your OPENAI_API_KEY in Hugging Face secrets.
Add commentary loader and chunker for match summaries.
๐Ÿง‘โ€๐Ÿ’ป Built By ๐Ÿ‘จโ€๐Ÿ’ป Dinesh Kumar \| Powered by Streamlit, TensorFlow, NumPy,
Hugging Face, and Ope