Spaces:
Sleeping
A newer version of the Streamlit SDK is available:
1.44.1
title: ๐ IPL Match Predictor & Simulator
emoji: ๐
colorFrom: yellow
colorTo: blue
sdk: streamlit
sdk_version: 1.30.0
app_file: app.py
pinned: false
license: mit
tags:
- cricket
- ipl
- deep-learning
- streamlit
- gru
- prediction
- sports
- commentary
# ๐ IPL Match Predictor & Live Simulation App
Welcome to the **IPL Match Predictor** -- a powerful and interactive Streamlit-based application that simulates and predicts IPL match outcomes using machine learning, deep learning, and Generative AI commentary.
---
## ๐ Key Features
### ๐ฏ 1. IPL Score Prediction Dashboard (GRU-Based) - Predicts final match score using a GRU deep learning model. - Inputs: Over-wise runs and optional wickets (20 overs). - Model trained on synthetic match data to mimic real T20 dynamics.
### ๐ง 2. GPT Commentary Generator (RAG-based, Optional) - Generate multi-turn AI commentary based on match progression. - Integrates GPT-3.5 (OpenAI) with retrieval-based chunked summaries. *(Optional deployment upgrade)*
### ๐งฎ 3. Match Scenario Simulator - Simulate custom match scenarios based on user-input cumulative scores. - Get final score predictions even with mid-match inputs.
### ๐ 4. IPL Match Simulation + Points Table Logic - Team vs Team match generation with venue and status (Completed/In Progress/Scheduled). - Dynamic scorecard visualization with runs, wickets, and predicted outcomes.
### ๐ 5. Live Match Predictor - Simulate full match: generates random over-wise runs + wickets. - Visualizes match progression and predicts final score with model confidence.
---
## ๐ Project Structure
final_app/ โ โโโ app.py # โ Unified Streamlit app โโโ requirements.txt # โ Dependencies for Hugging Face โโโ trained_model/ # โ GRU-based models + scalers โโโ match_live_predictor/ # โ Live match predictor files โโโ match_simulator.py # Scenario-based simulator โโโ *.h5 / .keras # DL models (GRU, BiLSTM, CNN, LSTM) โโโ scaler_.save # Input/output scalers โโโ *.csv # Match data for commentary, points, visuals โโโ *.gif # Dashboard animations โโโ *.ipynb # Phase notebooks and analysis
---
## ๐ง Requirements
Install dependencies using:
```bash pip install -r requirements.txt
Model Info Model: GRU-based sequence predictor
Input: 20 timesteps (Runs, Wickets)
Output: Scaled prediction of final score
Scaler: MinMaxScaler fitted on input & target
GPT Commentary (Optional) To enable RAG-based GPT-3.5 commentary:
Set your OPENAI_API_KEY in Hugging Face secrets.
Add commentary loader and chunker for match summaries.
๐งโ๐ป Built By ๐จโ๐ป Dinesh Kumar | Powered by Streamlit, TensorFlow, NumPy, Hugging Face, and Ope