File size: 21,328 Bytes
d7d90be
 
 
5f68bca
7ad90cf
d7d90be
 
7a90cda
7ad90cf
 
3bf9025
 
 
7ad90cf
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad90cf
 
 
d7d90be
 
7ad90cf
d7d90be
7ad90cf
d7d90be
 
 
7ad90cf
 
 
 
 
ca2e35f
7ad90cf
3bf9025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d90be
 
 
 
 
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5cd8c8
be0e3e1
 
 
 
 
 
 
 
 
 
 
85c8011
be0e3e1
85c8011
be0e3e1
 
 
7ad90cf
d7d90be
 
 
 
 
 
 
 
 
ee127cf
 
3bf9025
be0e3e1
d7d90be
 
 
 
 
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8d966
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee127cf
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
3bf9025
 
d7d90be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f25965f
 
 
 
 
 
 
d7d90be
 
f25965f
fc6a452
 
 
 
 
d7d90be
 
 
 
 
 
 
 
 
 
 
 
be0e3e1
 
 
 
 
 
3bf9025
 
 
be0e3e1
 
 
3bf9025
 
 
 
 
 
 
 
 
932f63b
 
3bf9025
 
 
 
 
 
 
 
d7d90be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee127cf
d7d90be
 
 
 
 
 
 
 
 
ee127cf
d7d90be
be0e3e1
 
 
 
 
 
f3e43f1
d7d90be
 
 
 
 
 
 
 
 
 
 
 
ee127cf
 
be0e3e1
 
d7d90be
3bf9025
d7d90be
 
 
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a90cda
be0e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import gradio as gr
import numpy as np
import random
import os
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderTiny, FluxPipeline
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import sys
sys.path.append('.')
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV



# Model configurations
SDXL_CONCEPTS = [
    "alien", "ancient ruins", "animal", "bike", "car", "Citadel",
    "coral", "cowboy", "face", "futuristic cities", "monster",
    "mystical creature", "planet", "plant", "robot", "sculpture",
    "spaceship", "statue", "studio", "video game", "wizard"
]

FLUX_CONCEPTS = [
    "alien",
    "ancient ruins",
    "animal",
    "bike",
    "car",
    "Citadel",
    "face",
    "futuristic cities",
    "mystical creature",
    "planet",
    "plant",
    "robot",
    "spaceship",
    "statue",
    "studio",
    "video game",
    "wizard"
]




model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"


device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

# Load model.
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch_dtype).to(device)

unet = pipe.unet

## Change these parameters based on how you trained your sliderspace sliders
train_method = 'xattn-strict'
rank = 1 
alpha =1 
networks = {}
modules = DEFAULT_TARGET_REPLACE
modules += UNET_TARGET_REPLACE_MODULE_CONV
for i in range(1):
    networks[i] = LoRANetwork(
        unet,
        rank=int(rank),
        multiplier=1.0,
        alpha=int(alpha),
        train_method=train_method,
        fast_init=True,
    ).to(device, dtype=torch_dtype)



MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


base_model_id = "black-forest-labs/FLUX.1-schnell"
max_sequence_length = 256
flux_pipe = FluxPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
flux_pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch_dtype)
flux_pipe = flux_pipe.to(device)
# pipe.enable_sequential_cpu_offload()
transformer = flux_pipe.transformer

## Change these parameters based on how you trained your sliderspace sliders
train_method = 'flux-attn'
rank = 1 
alpha =1 

flux_networks = {}
modules = DEFAULT_TARGET_REPLACE
modules += UNET_TARGET_REPLACE_MODULE_CONV
for i in range(1):
    flux_networks[i] = LoRANetwork(
        transformer,
        rank=int(rank),
        multiplier=1.0,
        alpha=int(alpha),
        train_method=train_method,
        fast_init=True,
    ).to(device, dtype=torch_dtype)


def update_sliderspace_choices(model_choice):
    return gr.Dropdown(
        choices=SDXL_CONCEPTS if model_choice == "SDXL-DMD" else FLUX_CONCEPTS,
        label="SliderSpace Concept",
        value=SDXL_CONCEPTS[0] if model_choice == "SDXL-DMD" else FLUX_CONCEPTS[0]
    )

@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    slider_space,
    discovered_directions,
    slider_scale,
    model_choice,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    if model_choice == 'SDXL-DMD':
        sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
        
        for net in networks:
            networks[net].load_state_dict(torch.load(sliderspace_path))
            networks[net].set_lora_slider(slider_scale)
        with networks[0]:
            pass

        # original image
        generator = torch.Generator().manual_seed(seed)
        image = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
            ).images[0]
    
        # edited image
        generator = torch.Generator().manual_seed(seed)
        with networks[0]:
            slider_image = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
            ).images[0]
    else:
        sliderspace_path = f"flux_sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
        for net in flux_networks:
            flux_networks[net].load_state_dict(torch.load(sliderspace_path))
            flux_networks[net].set_lora_slider(slider_scale)
        with flux_networks[0]:
            pass

        # original image
        generator = torch.Generator().manual_seed(seed)
        image = flux_pipe(
                prompt=prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
                max_sequence_length = 256,
            ).images[0]
    
        # edited image
        generator = torch.Generator().manual_seed(seed)
        with flux_networks[0]:
            slider_image = flux_pipe(
                prompt=prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
                max_sequence_length = 256,
            ).images[0]
    
    return image, slider_image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
SPACE_ID = os.getenv('SPACE_ID')

SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
        # Adding links under the title
        gr.Markdown("""
        πŸ”— [Project Page](https://sliderspace.baulab.info) | 
        πŸ’» [GitHub Code](https://github.com/rohitgandikota/sliderspace)
        """)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        # Add model selection dropdown
        model_choice = gr.Dropdown(
            choices=["SDXL-DMD", "FLUX-Schnell"],
            label="Model",
            value="SDXL-DMD"
        )
        # New dropdowns side by side
        with gr.Row():
            slider_space = gr.Dropdown(
                choices=SDXL_CONCEPTS,
                label="SliderSpace Concept",
                value=SDXL_CONCEPTS[0]
            )
            discovered_directions = gr.Dropdown(
                choices=[f"Slider {i}" for i in range(1, 11)],
                label="Discovered Directions",
                value="Slider 1"
            )

            slider_scale =  gr.Slider(
                    label="Slider Scale",
                    minimum=-4,
                    maximum=4,
                    step=0.1,
                    value=1,  
                )
        
        with gr.Row():
            result = gr.Image(label="Original Image", show_label=True)
            slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
        

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,  # Replace with defaults that work for your model
                )
    # Add event handler for model selection
    model_choice.change(
        fn=update_sliderspace_choices,
        inputs=[model_choice],
        outputs=[slider_space]
    )
        # gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            slider_space,
            discovered_directions,
            slider_scale,
            model_choice
        ],
        outputs=[result, slider_result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)

















# import gradio as gr
# import numpy as np
# import random
# import os
# import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
# import torch
# from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
# from huggingface_hub import hf_hub_download
# from safetensors.torch import load_file
# import sys
# sys.path.append('.')
# from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV

# model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
# repo_name = "tianweiy/DMD2"
# ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"


# device = "cuda" if torch.cuda.is_available() else "cpu"
# if torch.cuda.is_available():
#     torch_dtype = torch.bfloat16
# else:
#     torch_dtype = torch.float32

# # Load model.
# unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
# unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
# pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)


# unet = pipe.unet

# ## Change these parameters based on how you trained your sliderspace sliders
# train_method = 'xattn-strict'
# rank = 1 
# alpha =1 
# networks = {}
# modules = DEFAULT_TARGET_REPLACE
# modules += UNET_TARGET_REPLACE_MODULE_CONV
# for i in range(1):
#     networks[i] = LoRANetwork(
#         unet,
#         rank=int(rank),
#         multiplier=1.0,
#         alpha=int(alpha),
#         train_method=train_method,
#         fast_init=True,
#     ).to(device, dtype=torch_dtype)



# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
# def infer(
#     prompt,
#     negative_prompt,
#     seed,
#     randomize_seed,
#     width,
#     height,
#     guidance_scale,
#     num_inference_steps,
#     slider_space,
#     discovered_directions,
#     slider_scale,
#     progress=gr.Progress(track_tqdm=True),
# ):
#     if randomize_seed:
#         seed = random.randint(0, MAX_SEED)

#     sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
    
#     for net in networks:
#         networks[net].load_state_dict(torch.load(sliderspace_path))

#     for net in networks:
#         networks[net].set_lora_slider(slider_scale)

#     with networks[0]:
#         pass
    
#     # original image
#     generator = torch.Generator().manual_seed(seed)
#     image = pipe(
#             prompt=prompt,
#             negative_prompt=negative_prompt,
#             guidance_scale=guidance_scale,
#             num_inference_steps=num_inference_steps,
#             width=width,
#             height=height,
#             generator=generator,
#         ).images[0]

#     # edited image
#     generator = torch.Generator().manual_seed(seed)
#     with  networks[0]:
#         slider_image = pipe(
#             prompt=prompt,
#             negative_prompt=negative_prompt,
#             guidance_scale=guidance_scale,
#             num_inference_steps=num_inference_steps,
#             width=width,
#             height=height,
#             generator=generator,
#         ).images[0]

    
#     return image, slider_image, seed


# examples = [
#     "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
#     "An astronaut riding a green horse",
#     "A delicious ceviche cheesecake slice",
# ]

# css = """
# #col-container {
#     margin: 0 auto;
#     max-width: 640px;
# }
# """

# ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
# SPACE_ID = os.getenv('SPACE_ID')

# SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
# <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
# '''

# with gr.Blocks(css=css) as demo:
#     with gr.Column(elem_id="col-container"):
#         gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
#         # Adding links under the title
#         gr.Markdown("""
#         πŸ”— [Project Page](https://sliderspace.baulab.info) | 
#         πŸ’» [GitHub Code](https://github.com/rohitgandikota/sliderspace)
#         """)

#         with gr.Row():
#             prompt = gr.Text(
#                 label="Prompt",
#                 show_label=False,
#                 max_lines=1,
#                 placeholder="Enter your prompt",
#                 container=False,
#             )

#             run_button = gr.Button("Run", scale=0, variant="primary")


#         # New dropdowns side by side
#         with gr.Row():
#             slider_space = gr.Dropdown(
#                 choices= [
#                             "alien",
#                             "ancient ruins",
#                             "animal",
#                             "bike",
#                             "car",
#                             "Citadel",
#                             "coral",
#                             "cowboy",
#                             "face",
#                             "futuristic cities",
#                             "monster",
#                             "mystical creature",
#                             "planet",
#                             "plant",
#                             "robot",
#                             "sculpture",
#                             "spaceship",
#                             "statue",
#                             "studio",
#                             "video game",
#                             "wizard"
#                         ],
#                 label="SliderSpace",
#                 value="spaceship"
#             )
#             discovered_directions = gr.Dropdown(
#                 choices=[f"Slider {i}" for i in range(1, 11)],
#                 label="Discovered Directions",
#                 value="Slider 1"
#             )

#             slider_scale =  gr.Slider(
#                     label="Slider Scale",
#                     minimum=-4,
#                     maximum=4,
#                     step=0.1,
#                     value=1,  
#                 )
        
#         with gr.Row():
#             result = gr.Image(label="Original Image", show_label=True)
#             slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
        

#         with gr.Accordion("Advanced Settings", open=False):
#             negative_prompt = gr.Text(
#                 label="Negative prompt",
#                 max_lines=1,
#                 placeholder="Enter a negative prompt",
#                 visible=False,
#             )

#             seed = gr.Slider(
#                 label="Seed",
#                 minimum=0,
#                 maximum=MAX_SEED,
#                 step=1,
#                 value=0,
#             )

#             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

#             with gr.Row():
#                 width = gr.Slider(
#                     label="Width",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=1024,  # Replace with defaults that work for your model
#                 )

#                 height = gr.Slider(
#                     label="Height",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=1024,  # Replace with defaults that work for your model
#                 )

#             with gr.Row():
#                 guidance_scale = gr.Slider(
#                     label="Guidance scale",
#                     minimum=0.0,
#                     maximum=2.0,
#                     step=0.1,
#                     value=0.0,  # Replace with defaults that work for your model
#                 )

#                 num_inference_steps = gr.Slider(
#                     label="Number of inference steps",
#                     minimum=1,
#                     maximum=50,
#                     step=1,
#                     value=4,  # Replace with defaults that work for your model
#                 )

#         # gr.Examples(examples=examples, inputs=[prompt])
#     gr.on(
#         triggers=[run_button.click, prompt.submit],
#         fn=infer,
#         inputs=[
#             prompt,
#             negative_prompt,
#             seed,
#             randomize_seed,
#             width,
#             height,
#             guidance_scale,
#             num_inference_steps,
#             slider_space,
#             discovered_directions,
#             slider_scale
#         ],
#         outputs=[result, slider_result, seed],
#     )

# if __name__ == "__main__":
#     demo.launch(share=True)