Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,37 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
-
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
|
|
12 |
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
|
24 |
-
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
@@ -38,6 +49,7 @@ def infer(
|
|
38 |
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
|
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
@@ -151,4 +163,4 @@ with gr.Blocks(css=css) as demo:
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
+
import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from safetensors.torch import load_file
|
11 |
+
|
12 |
+
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
repo_name = "tianweiy/DMD2"
|
14 |
+
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
|
15 |
|
|
|
|
|
16 |
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
if torch.cuda.is_available():
|
19 |
+
torch_dtype = torch.bfloat16
|
20 |
else:
|
21 |
torch_dtype = torch.float32
|
22 |
|
23 |
+
# Load model.
|
24 |
+
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
|
25 |
+
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
|
26 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
|
27 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
28 |
+
|
29 |
+
|
30 |
|
31 |
MAX_SEED = np.iinfo(np.int32).max
|
32 |
MAX_IMAGE_SIZE = 1024
|
33 |
|
34 |
|
35 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
36 |
def infer(
|
37 |
prompt,
|
38 |
negative_prompt,
|
|
|
49 |
|
50 |
generator = torch.Generator().manual_seed(seed)
|
51 |
|
52 |
+
# with network:
|
53 |
image = pipe(
|
54 |
prompt=prompt,
|
55 |
negative_prompt=negative_prompt,
|
|
|
163 |
)
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
+
demo.launch()
|