RohitGandikota commited on
Commit
be0e3e1
·
verified ·
1 Parent(s): 989fccf

Adding FLUX schnell

Browse files
Files changed (1) hide show
  1. app.py +445 -65
app.py CHANGED
@@ -5,13 +5,46 @@ import os
5
  import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
- from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
9
  from huggingface_hub import hf_hub_download
10
  from safetensors.torch import load_file
11
  import sys
12
  sys.path.append('.')
13
  from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
16
  repo_name = "tianweiy/DMD2"
17
  ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
@@ -28,7 +61,7 @@ unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(devi
28
  unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
29
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
30
  pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
31
-
32
 
33
  unet = pipe.unet
34
 
@@ -55,6 +88,39 @@ MAX_SEED = np.iinfo(np.int32).max
55
  MAX_IMAGE_SIZE = 1024
56
 
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  @spaces.GPU #[uncomment to use ZeroGPU]
59
  def infer(
60
  prompt,
@@ -68,47 +134,77 @@ def infer(
68
  slider_space,
69
  discovered_directions,
70
  slider_scale,
 
71
  progress=gr.Progress(track_tqdm=True),
72
  ):
73
  if randomize_seed:
74
  seed = random.randint(0, MAX_SEED)
75
 
76
- sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- for net in networks:
79
- networks[net].load_state_dict(torch.load(sliderspace_path))
80
-
81
- for net in networks:
82
- networks[net].set_lora_slider(slider_scale)
83
-
84
- with networks[0]:
85
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
- # original image
88
- generator = torch.Generator().manual_seed(seed)
89
- image = pipe(
90
- prompt=prompt,
91
- negative_prompt=negative_prompt,
92
- guidance_scale=guidance_scale,
93
- num_inference_steps=num_inference_steps,
94
- width=width,
95
- height=height,
96
- generator=generator,
97
- ).images[0]
98
-
99
- # edited image
100
- generator = torch.Generator().manual_seed(seed)
101
- with networks[0]:
102
- slider_image = pipe(
103
- prompt=prompt,
104
- negative_prompt=negative_prompt,
105
- guidance_scale=guidance_scale,
106
- num_inference_steps=num_inference_steps,
107
- width=width,
108
- height=height,
109
- generator=generator,
110
- ).images[0]
111
-
112
 
113
  return image, slider_image, seed
114
 
@@ -153,35 +249,18 @@ with gr.Blocks(css=css) as demo:
153
 
154
  run_button = gr.Button("Run", scale=0, variant="primary")
155
 
156
-
 
 
 
 
 
157
  # New dropdowns side by side
158
  with gr.Row():
159
  slider_space = gr.Dropdown(
160
- choices= [
161
- "alien",
162
- "ancient ruins",
163
- "animal",
164
- "bike",
165
- "car",
166
- "Citadel",
167
- "coral",
168
- "cowboy",
169
- "face",
170
- "futuristic cities",
171
- "monster",
172
- "mystical creature",
173
- "planet",
174
- "plant",
175
- "robot",
176
- "sculpture",
177
- "spaceship",
178
- "statue",
179
- "studio",
180
- "video game",
181
- "wizard"
182
- ],
183
- label="SliderSpace",
184
- value="spaceship"
185
  )
186
  discovered_directions = gr.Dropdown(
187
  choices=[f"Slider {i}" for i in range(1, 11)],
@@ -253,7 +332,12 @@ with gr.Blocks(css=css) as demo:
253
  step=1,
254
  value=4, # Replace with defaults that work for your model
255
  )
256
-
 
 
 
 
 
257
  # gr.Examples(examples=examples, inputs=[prompt])
258
  gr.on(
259
  triggers=[run_button.click, prompt.submit],
@@ -269,10 +353,306 @@ with gr.Blocks(css=css) as demo:
269
  num_inference_steps,
270
  slider_space,
271
  discovered_directions,
272
- slider_scale
 
273
  ],
274
  outputs=[result, slider_result, seed],
275
  )
276
 
277
  if __name__ == "__main__":
278
- demo.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
+ from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderTiny
9
  from huggingface_hub import hf_hub_download
10
  from safetensors.torch import load_file
11
  import sys
12
  sys.path.append('.')
13
  from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
14
 
15
+
16
+
17
+ # Model configurations
18
+ SDXL_CONCEPTS = [
19
+ "alien", "ancient ruins", "animal", "bike", "car", "Citadel",
20
+ "coral", "cowboy", "face", "futuristic cities", "monster",
21
+ "mystical creature", "planet", "plant", "robot", "sculpture",
22
+ "spaceship", "statue", "studio", "video game", "wizard"
23
+ ]
24
+
25
+ FLUX_CONCEPTS = [
26
+ "alien",
27
+ "ancient ruins",
28
+ "animal",
29
+ "bike",
30
+ "car",
31
+ "Citadel",
32
+ "face",
33
+ "futuristic cities",
34
+ "mystical creature",
35
+ "planet",
36
+ "plant",
37
+ "robot",
38
+ "spaceship",
39
+ "statue",
40
+ "studio",
41
+ "video game",
42
+ "wizard"
43
+ ]
44
+
45
+
46
+
47
+
48
  model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
49
  repo_name = "tianweiy/DMD2"
50
  ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
 
61
  unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
62
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
63
  pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
64
+ pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch_dtype).to(devoce)
65
 
66
  unet = pipe.unet
67
 
 
88
  MAX_IMAGE_SIZE = 1024
89
 
90
 
91
+ base_model_id = "black-forest-labs/FLUX.1-schnell"
92
+ max_sequence_length = 256
93
+ flux_pipe = FluxPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
94
+ flux_pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch_dtype)
95
+ flux_pipe = flux_pipe.to(device)
96
+ # pipe.enable_sequential_cpu_offload()
97
+ transformer = flux_pipe.transformer
98
+
99
+ ## Change these parameters based on how you trained your sliderspace sliders
100
+ train_method = 'flux-attn'
101
+ rank = 1
102
+ alpha =1
103
+
104
+ flux_networks = {}
105
+ modules = DEFAULT_TARGET_REPLACE
106
+ modules += UNET_TARGET_REPLACE_MODULE_CONV
107
+ for i in range(numsliders_to_sample):
108
+ flux_networks[i] = LoRANetwork(
109
+ transformer,
110
+ rank=int(rank),
111
+ multiplier=1.0,
112
+ alpha=int(alpha),
113
+ train_method=train_method,
114
+ fast_init=True,
115
+ ).to(device, dtype=torch_dtype)
116
+
117
+
118
+ def update_sliderspace_choices(model_choice):
119
+ return gr.Dropdown.update(
120
+ choices=SDXL_CONCEPTS if model_choice == "SDXL-DMD" else FLUX_CONCEPTS,
121
+ value=SDXL_CONCEPTS[0] if model_choice == "SDXL-DMD" else FLUX_CONCEPTS[0]
122
+ )
123
+
124
  @spaces.GPU #[uncomment to use ZeroGPU]
125
  def infer(
126
  prompt,
 
134
  slider_space,
135
  discovered_directions,
136
  slider_scale,
137
+ model_choice,
138
  progress=gr.Progress(track_tqdm=True),
139
  ):
140
  if randomize_seed:
141
  seed = random.randint(0, MAX_SEED)
142
 
143
+ if model_choice == 'SDXL-DMD':
144
+ sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
145
+
146
+ for net in networks:
147
+ networks[net].load_state_dict(torch.load(sliderspace_path))
148
+ networks[net].set_lora_slider(slider_scale)
149
+ with networks[0]:
150
+ pass
151
+
152
+ # original image
153
+ generator = torch.Generator().manual_seed(seed)
154
+ image = pipe(
155
+ prompt=prompt,
156
+ negative_prompt=negative_prompt,
157
+ guidance_scale=guidance_scale,
158
+ num_inference_steps=num_inference_steps,
159
+ width=width,
160
+ height=height,
161
+ generator=generator,
162
+ ).images[0]
163
 
164
+ # edited image
165
+ generator = torch.Generator().manual_seed(seed)
166
+ with networks[0]:
167
+ slider_image = pipe(
168
+ prompt=prompt,
169
+ negative_prompt=negative_prompt,
170
+ guidance_scale=guidance_scale,
171
+ num_inference_steps=num_inference_steps,
172
+ width=width,
173
+ height=height,
174
+ generator=generator,
175
+ ).images[0]
176
+ else:
177
+ sliderspace_path = f"flux_sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
178
+ for net in flux_networks:
179
+ flux_networks[net].load_state_dict(torch.load(sliderspace_path))
180
+ flux_networks[net].set_lora_slider(slider_scale)
181
+ with flux_networks[0]:
182
+ pass
183
+
184
+ # original image
185
+ generator = torch.Generator().manual_seed(seed)
186
+ image = flux_pipe(
187
+ prompt=prompt,
188
+ guidance_scale=guidance_scale,
189
+ num_inference_steps=num_inference_steps,
190
+ width=width,
191
+ height=height,
192
+ generator=generator,
193
+ max_sequence_length = 256,
194
+ ).images[0]
195
 
196
+ # edited image
197
+ generator = torch.Generator().manual_seed(seed)
198
+ with flux_networks[0]:
199
+ slider_image = flux_pipe(
200
+ prompt=prompt,
201
+ guidance_scale=guidance_scale,
202
+ num_inference_steps=num_inference_steps,
203
+ width=width,
204
+ height=height,
205
+ generator=generator,
206
+ max_sequence_length = 256,
207
+ ).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
  return image, slider_image, seed
210
 
 
249
 
250
  run_button = gr.Button("Run", scale=0, variant="primary")
251
 
252
+ # Add model selection dropdown
253
+ model_choice = gr.Dropdown(
254
+ choices=["SDXL-DMD", "FLUX-Schnell"],
255
+ label="Model",
256
+ value="SDXL-DMD"
257
+ )
258
  # New dropdowns side by side
259
  with gr.Row():
260
  slider_space = gr.Dropdown(
261
+ choices=SDXL_CONCEPTS,
262
+ label="SliderSpace Concept",
263
+ value=SDXL_CONCEPTS[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
  )
265
  discovered_directions = gr.Dropdown(
266
  choices=[f"Slider {i}" for i in range(1, 11)],
 
332
  step=1,
333
  value=4, # Replace with defaults that work for your model
334
  )
335
+ # Add event handler for model selection
336
+ model_choice.change(
337
+ fn=update_sliderspace_choices,
338
+ inputs=[model_choice],
339
+ outputs=[slider_space]
340
+ )
341
  # gr.Examples(examples=examples, inputs=[prompt])
342
  gr.on(
343
  triggers=[run_button.click, prompt.submit],
 
353
  num_inference_steps,
354
  slider_space,
355
  discovered_directions,
356
+ slider_scale,
357
+ model_choice
358
  ],
359
  outputs=[result, slider_result, seed],
360
  )
361
 
362
  if __name__ == "__main__":
363
+ demo.launch(share=True)
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+ # import gradio as gr
382
+ # import numpy as np
383
+ # import random
384
+ # import os
385
+ # import spaces #[uncomment to use ZeroGPU]
386
+ # from diffusers import DiffusionPipeline
387
+ # import torch
388
+ # from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
389
+ # from huggingface_hub import hf_hub_download
390
+ # from safetensors.torch import load_file
391
+ # import sys
392
+ # sys.path.append('.')
393
+ # from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
394
+
395
+ # model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
396
+ # repo_name = "tianweiy/DMD2"
397
+ # ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
398
+
399
+
400
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
401
+ # if torch.cuda.is_available():
402
+ # torch_dtype = torch.bfloat16
403
+ # else:
404
+ # torch_dtype = torch.float32
405
+
406
+ # # Load model.
407
+ # unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
408
+ # unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
409
+ # pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
410
+ # pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
411
+
412
+
413
+ # unet = pipe.unet
414
+
415
+ # ## Change these parameters based on how you trained your sliderspace sliders
416
+ # train_method = 'xattn-strict'
417
+ # rank = 1
418
+ # alpha =1
419
+ # networks = {}
420
+ # modules = DEFAULT_TARGET_REPLACE
421
+ # modules += UNET_TARGET_REPLACE_MODULE_CONV
422
+ # for i in range(1):
423
+ # networks[i] = LoRANetwork(
424
+ # unet,
425
+ # rank=int(rank),
426
+ # multiplier=1.0,
427
+ # alpha=int(alpha),
428
+ # train_method=train_method,
429
+ # fast_init=True,
430
+ # ).to(device, dtype=torch_dtype)
431
+
432
+
433
+
434
+ # MAX_SEED = np.iinfo(np.int32).max
435
+ # MAX_IMAGE_SIZE = 1024
436
+
437
+
438
+ # @spaces.GPU #[uncomment to use ZeroGPU]
439
+ # def infer(
440
+ # prompt,
441
+ # negative_prompt,
442
+ # seed,
443
+ # randomize_seed,
444
+ # width,
445
+ # height,
446
+ # guidance_scale,
447
+ # num_inference_steps,
448
+ # slider_space,
449
+ # discovered_directions,
450
+ # slider_scale,
451
+ # progress=gr.Progress(track_tqdm=True),
452
+ # ):
453
+ # if randomize_seed:
454
+ # seed = random.randint(0, MAX_SEED)
455
+
456
+ # sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
457
+
458
+ # for net in networks:
459
+ # networks[net].load_state_dict(torch.load(sliderspace_path))
460
+
461
+ # for net in networks:
462
+ # networks[net].set_lora_slider(slider_scale)
463
+
464
+ # with networks[0]:
465
+ # pass
466
+
467
+ # # original image
468
+ # generator = torch.Generator().manual_seed(seed)
469
+ # image = pipe(
470
+ # prompt=prompt,
471
+ # negative_prompt=negative_prompt,
472
+ # guidance_scale=guidance_scale,
473
+ # num_inference_steps=num_inference_steps,
474
+ # width=width,
475
+ # height=height,
476
+ # generator=generator,
477
+ # ).images[0]
478
+
479
+ # # edited image
480
+ # generator = torch.Generator().manual_seed(seed)
481
+ # with networks[0]:
482
+ # slider_image = pipe(
483
+ # prompt=prompt,
484
+ # negative_prompt=negative_prompt,
485
+ # guidance_scale=guidance_scale,
486
+ # num_inference_steps=num_inference_steps,
487
+ # width=width,
488
+ # height=height,
489
+ # generator=generator,
490
+ # ).images[0]
491
+
492
+
493
+ # return image, slider_image, seed
494
+
495
+
496
+ # examples = [
497
+ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
498
+ # "An astronaut riding a green horse",
499
+ # "A delicious ceviche cheesecake slice",
500
+ # ]
501
+
502
+ # css = """
503
+ # #col-container {
504
+ # margin: 0 auto;
505
+ # max-width: 640px;
506
+ # }
507
+ # """
508
+
509
+ # ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
510
+ # SPACE_ID = os.getenv('SPACE_ID')
511
+
512
+ # SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
513
+ # <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
514
+ # '''
515
+
516
+ # with gr.Blocks(css=css) as demo:
517
+ # with gr.Column(elem_id="col-container"):
518
+ # gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
519
+ # # Adding links under the title
520
+ # gr.Markdown("""
521
+ # 🔗 [Project Page](https://sliderspace.baulab.info) |
522
+ # 💻 [GitHub Code](https://github.com/rohitgandikota/sliderspace)
523
+ # """)
524
+
525
+ # with gr.Row():
526
+ # prompt = gr.Text(
527
+ # label="Prompt",
528
+ # show_label=False,
529
+ # max_lines=1,
530
+ # placeholder="Enter your prompt",
531
+ # container=False,
532
+ # )
533
+
534
+ # run_button = gr.Button("Run", scale=0, variant="primary")
535
+
536
+
537
+ # # New dropdowns side by side
538
+ # with gr.Row():
539
+ # slider_space = gr.Dropdown(
540
+ # choices= [
541
+ # "alien",
542
+ # "ancient ruins",
543
+ # "animal",
544
+ # "bike",
545
+ # "car",
546
+ # "Citadel",
547
+ # "coral",
548
+ # "cowboy",
549
+ # "face",
550
+ # "futuristic cities",
551
+ # "monster",
552
+ # "mystical creature",
553
+ # "planet",
554
+ # "plant",
555
+ # "robot",
556
+ # "sculpture",
557
+ # "spaceship",
558
+ # "statue",
559
+ # "studio",
560
+ # "video game",
561
+ # "wizard"
562
+ # ],
563
+ # label="SliderSpace",
564
+ # value="spaceship"
565
+ # )
566
+ # discovered_directions = gr.Dropdown(
567
+ # choices=[f"Slider {i}" for i in range(1, 11)],
568
+ # label="Discovered Directions",
569
+ # value="Slider 1"
570
+ # )
571
+
572
+ # slider_scale = gr.Slider(
573
+ # label="Slider Scale",
574
+ # minimum=-4,
575
+ # maximum=4,
576
+ # step=0.1,
577
+ # value=1,
578
+ # )
579
+
580
+ # with gr.Row():
581
+ # result = gr.Image(label="Original Image", show_label=True)
582
+ # slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
583
+
584
+
585
+ # with gr.Accordion("Advanced Settings", open=False):
586
+ # negative_prompt = gr.Text(
587
+ # label="Negative prompt",
588
+ # max_lines=1,
589
+ # placeholder="Enter a negative prompt",
590
+ # visible=False,
591
+ # )
592
+
593
+ # seed = gr.Slider(
594
+ # label="Seed",
595
+ # minimum=0,
596
+ # maximum=MAX_SEED,
597
+ # step=1,
598
+ # value=0,
599
+ # )
600
+
601
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
602
+
603
+ # with gr.Row():
604
+ # width = gr.Slider(
605
+ # label="Width",
606
+ # minimum=256,
607
+ # maximum=MAX_IMAGE_SIZE,
608
+ # step=32,
609
+ # value=1024, # Replace with defaults that work for your model
610
+ # )
611
+
612
+ # height = gr.Slider(
613
+ # label="Height",
614
+ # minimum=256,
615
+ # maximum=MAX_IMAGE_SIZE,
616
+ # step=32,
617
+ # value=1024, # Replace with defaults that work for your model
618
+ # )
619
+
620
+ # with gr.Row():
621
+ # guidance_scale = gr.Slider(
622
+ # label="Guidance scale",
623
+ # minimum=0.0,
624
+ # maximum=2.0,
625
+ # step=0.1,
626
+ # value=0.0, # Replace with defaults that work for your model
627
+ # )
628
+
629
+ # num_inference_steps = gr.Slider(
630
+ # label="Number of inference steps",
631
+ # minimum=1,
632
+ # maximum=50,
633
+ # step=1,
634
+ # value=4, # Replace with defaults that work for your model
635
+ # )
636
+
637
+ # # gr.Examples(examples=examples, inputs=[prompt])
638
+ # gr.on(
639
+ # triggers=[run_button.click, prompt.submit],
640
+ # fn=infer,
641
+ # inputs=[
642
+ # prompt,
643
+ # negative_prompt,
644
+ # seed,
645
+ # randomize_seed,
646
+ # width,
647
+ # height,
648
+ # guidance_scale,
649
+ # num_inference_steps,
650
+ # slider_space,
651
+ # discovered_directions,
652
+ # slider_scale
653
+ # ],
654
+ # outputs=[result, slider_result, seed],
655
+ # )
656
+
657
+ # if __name__ == "__main__":
658
+ # demo.launch(share=True)