Spaces:
Running
on
Zero
Running
on
Zero
Adding FLUX schnell
Browse files
app.py
CHANGED
@@ -5,13 +5,46 @@ import os
|
|
5 |
import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from safetensors.torch import load_file
|
11 |
import sys
|
12 |
sys.path.append('.')
|
13 |
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
16 |
repo_name = "tianweiy/DMD2"
|
17 |
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
|
@@ -28,7 +61,7 @@ unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(devi
|
|
28 |
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
|
29 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
|
30 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
31 |
-
|
32 |
|
33 |
unet = pipe.unet
|
34 |
|
@@ -55,6 +88,39 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
55 |
MAX_IMAGE_SIZE = 1024
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
@spaces.GPU #[uncomment to use ZeroGPU]
|
59 |
def infer(
|
60 |
prompt,
|
@@ -68,47 +134,77 @@ def infer(
|
|
68 |
slider_space,
|
69 |
discovered_directions,
|
70 |
slider_scale,
|
|
|
71 |
progress=gr.Progress(track_tqdm=True),
|
72 |
):
|
73 |
if randomize_seed:
|
74 |
seed = random.randint(0, MAX_SEED)
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# edited image
|
100 |
-
generator = torch.Generator().manual_seed(seed)
|
101 |
-
with networks[0]:
|
102 |
-
slider_image = pipe(
|
103 |
-
prompt=prompt,
|
104 |
-
negative_prompt=negative_prompt,
|
105 |
-
guidance_scale=guidance_scale,
|
106 |
-
num_inference_steps=num_inference_steps,
|
107 |
-
width=width,
|
108 |
-
height=height,
|
109 |
-
generator=generator,
|
110 |
-
).images[0]
|
111 |
-
|
112 |
|
113 |
return image, slider_image, seed
|
114 |
|
@@ -153,35 +249,18 @@ with gr.Blocks(css=css) as demo:
|
|
153 |
|
154 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
155 |
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
157 |
# New dropdowns side by side
|
158 |
with gr.Row():
|
159 |
slider_space = gr.Dropdown(
|
160 |
-
choices=
|
161 |
-
|
162 |
-
|
163 |
-
"animal",
|
164 |
-
"bike",
|
165 |
-
"car",
|
166 |
-
"Citadel",
|
167 |
-
"coral",
|
168 |
-
"cowboy",
|
169 |
-
"face",
|
170 |
-
"futuristic cities",
|
171 |
-
"monster",
|
172 |
-
"mystical creature",
|
173 |
-
"planet",
|
174 |
-
"plant",
|
175 |
-
"robot",
|
176 |
-
"sculpture",
|
177 |
-
"spaceship",
|
178 |
-
"statue",
|
179 |
-
"studio",
|
180 |
-
"video game",
|
181 |
-
"wizard"
|
182 |
-
],
|
183 |
-
label="SliderSpace",
|
184 |
-
value="spaceship"
|
185 |
)
|
186 |
discovered_directions = gr.Dropdown(
|
187 |
choices=[f"Slider {i}" for i in range(1, 11)],
|
@@ -253,7 +332,12 @@ with gr.Blocks(css=css) as demo:
|
|
253 |
step=1,
|
254 |
value=4, # Replace with defaults that work for your model
|
255 |
)
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
257 |
# gr.Examples(examples=examples, inputs=[prompt])
|
258 |
gr.on(
|
259 |
triggers=[run_button.click, prompt.submit],
|
@@ -269,10 +353,306 @@ with gr.Blocks(css=css) as demo:
|
|
269 |
num_inference_steps,
|
270 |
slider_space,
|
271 |
discovered_directions,
|
272 |
-
slider_scale
|
|
|
273 |
],
|
274 |
outputs=[result, slider_result, seed],
|
275 |
)
|
276 |
|
277 |
if __name__ == "__main__":
|
278 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderTiny
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from safetensors.torch import load_file
|
11 |
import sys
|
12 |
sys.path.append('.')
|
13 |
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
14 |
|
15 |
+
|
16 |
+
|
17 |
+
# Model configurations
|
18 |
+
SDXL_CONCEPTS = [
|
19 |
+
"alien", "ancient ruins", "animal", "bike", "car", "Citadel",
|
20 |
+
"coral", "cowboy", "face", "futuristic cities", "monster",
|
21 |
+
"mystical creature", "planet", "plant", "robot", "sculpture",
|
22 |
+
"spaceship", "statue", "studio", "video game", "wizard"
|
23 |
+
]
|
24 |
+
|
25 |
+
FLUX_CONCEPTS = [
|
26 |
+
"alien",
|
27 |
+
"ancient ruins",
|
28 |
+
"animal",
|
29 |
+
"bike",
|
30 |
+
"car",
|
31 |
+
"Citadel",
|
32 |
+
"face",
|
33 |
+
"futuristic cities",
|
34 |
+
"mystical creature",
|
35 |
+
"planet",
|
36 |
+
"plant",
|
37 |
+
"robot",
|
38 |
+
"spaceship",
|
39 |
+
"statue",
|
40 |
+
"studio",
|
41 |
+
"video game",
|
42 |
+
"wizard"
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
49 |
repo_name = "tianweiy/DMD2"
|
50 |
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
|
|
|
61 |
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
|
62 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
|
63 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
64 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch_dtype).to(devoce)
|
65 |
|
66 |
unet = pipe.unet
|
67 |
|
|
|
88 |
MAX_IMAGE_SIZE = 1024
|
89 |
|
90 |
|
91 |
+
base_model_id = "black-forest-labs/FLUX.1-schnell"
|
92 |
+
max_sequence_length = 256
|
93 |
+
flux_pipe = FluxPipeline.from_pretrained(base_model_id, torch_dtype=torch_dtype)
|
94 |
+
flux_pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch_dtype)
|
95 |
+
flux_pipe = flux_pipe.to(device)
|
96 |
+
# pipe.enable_sequential_cpu_offload()
|
97 |
+
transformer = flux_pipe.transformer
|
98 |
+
|
99 |
+
## Change these parameters based on how you trained your sliderspace sliders
|
100 |
+
train_method = 'flux-attn'
|
101 |
+
rank = 1
|
102 |
+
alpha =1
|
103 |
+
|
104 |
+
flux_networks = {}
|
105 |
+
modules = DEFAULT_TARGET_REPLACE
|
106 |
+
modules += UNET_TARGET_REPLACE_MODULE_CONV
|
107 |
+
for i in range(numsliders_to_sample):
|
108 |
+
flux_networks[i] = LoRANetwork(
|
109 |
+
transformer,
|
110 |
+
rank=int(rank),
|
111 |
+
multiplier=1.0,
|
112 |
+
alpha=int(alpha),
|
113 |
+
train_method=train_method,
|
114 |
+
fast_init=True,
|
115 |
+
).to(device, dtype=torch_dtype)
|
116 |
+
|
117 |
+
|
118 |
+
def update_sliderspace_choices(model_choice):
|
119 |
+
return gr.Dropdown.update(
|
120 |
+
choices=SDXL_CONCEPTS if model_choice == "SDXL-DMD" else FLUX_CONCEPTS,
|
121 |
+
value=SDXL_CONCEPTS[0] if model_choice == "SDXL-DMD" else FLUX_CONCEPTS[0]
|
122 |
+
)
|
123 |
+
|
124 |
@spaces.GPU #[uncomment to use ZeroGPU]
|
125 |
def infer(
|
126 |
prompt,
|
|
|
134 |
slider_space,
|
135 |
discovered_directions,
|
136 |
slider_scale,
|
137 |
+
model_choice,
|
138 |
progress=gr.Progress(track_tqdm=True),
|
139 |
):
|
140 |
if randomize_seed:
|
141 |
seed = random.randint(0, MAX_SEED)
|
142 |
|
143 |
+
if model_choice == 'SDXL-DMD':
|
144 |
+
sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
|
145 |
+
|
146 |
+
for net in networks:
|
147 |
+
networks[net].load_state_dict(torch.load(sliderspace_path))
|
148 |
+
networks[net].set_lora_slider(slider_scale)
|
149 |
+
with networks[0]:
|
150 |
+
pass
|
151 |
+
|
152 |
+
# original image
|
153 |
+
generator = torch.Generator().manual_seed(seed)
|
154 |
+
image = pipe(
|
155 |
+
prompt=prompt,
|
156 |
+
negative_prompt=negative_prompt,
|
157 |
+
guidance_scale=guidance_scale,
|
158 |
+
num_inference_steps=num_inference_steps,
|
159 |
+
width=width,
|
160 |
+
height=height,
|
161 |
+
generator=generator,
|
162 |
+
).images[0]
|
163 |
|
164 |
+
# edited image
|
165 |
+
generator = torch.Generator().manual_seed(seed)
|
166 |
+
with networks[0]:
|
167 |
+
slider_image = pipe(
|
168 |
+
prompt=prompt,
|
169 |
+
negative_prompt=negative_prompt,
|
170 |
+
guidance_scale=guidance_scale,
|
171 |
+
num_inference_steps=num_inference_steps,
|
172 |
+
width=width,
|
173 |
+
height=height,
|
174 |
+
generator=generator,
|
175 |
+
).images[0]
|
176 |
+
else:
|
177 |
+
sliderspace_path = f"flux_sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
|
178 |
+
for net in flux_networks:
|
179 |
+
flux_networks[net].load_state_dict(torch.load(sliderspace_path))
|
180 |
+
flux_networks[net].set_lora_slider(slider_scale)
|
181 |
+
with flux_networks[0]:
|
182 |
+
pass
|
183 |
+
|
184 |
+
# original image
|
185 |
+
generator = torch.Generator().manual_seed(seed)
|
186 |
+
image = flux_pipe(
|
187 |
+
prompt=prompt,
|
188 |
+
guidance_scale=guidance_scale,
|
189 |
+
num_inference_steps=num_inference_steps,
|
190 |
+
width=width,
|
191 |
+
height=height,
|
192 |
+
generator=generator,
|
193 |
+
max_sequence_length = 256,
|
194 |
+
).images[0]
|
195 |
|
196 |
+
# edited image
|
197 |
+
generator = torch.Generator().manual_seed(seed)
|
198 |
+
with flux_networks[0]:
|
199 |
+
slider_image = flux_pipe(
|
200 |
+
prompt=prompt,
|
201 |
+
guidance_scale=guidance_scale,
|
202 |
+
num_inference_steps=num_inference_steps,
|
203 |
+
width=width,
|
204 |
+
height=height,
|
205 |
+
generator=generator,
|
206 |
+
max_sequence_length = 256,
|
207 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
return image, slider_image, seed
|
210 |
|
|
|
249 |
|
250 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
251 |
|
252 |
+
# Add model selection dropdown
|
253 |
+
model_choice = gr.Dropdown(
|
254 |
+
choices=["SDXL-DMD", "FLUX-Schnell"],
|
255 |
+
label="Model",
|
256 |
+
value="SDXL-DMD"
|
257 |
+
)
|
258 |
# New dropdowns side by side
|
259 |
with gr.Row():
|
260 |
slider_space = gr.Dropdown(
|
261 |
+
choices=SDXL_CONCEPTS,
|
262 |
+
label="SliderSpace Concept",
|
263 |
+
value=SDXL_CONCEPTS[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
)
|
265 |
discovered_directions = gr.Dropdown(
|
266 |
choices=[f"Slider {i}" for i in range(1, 11)],
|
|
|
332 |
step=1,
|
333 |
value=4, # Replace with defaults that work for your model
|
334 |
)
|
335 |
+
# Add event handler for model selection
|
336 |
+
model_choice.change(
|
337 |
+
fn=update_sliderspace_choices,
|
338 |
+
inputs=[model_choice],
|
339 |
+
outputs=[slider_space]
|
340 |
+
)
|
341 |
# gr.Examples(examples=examples, inputs=[prompt])
|
342 |
gr.on(
|
343 |
triggers=[run_button.click, prompt.submit],
|
|
|
353 |
num_inference_steps,
|
354 |
slider_space,
|
355 |
discovered_directions,
|
356 |
+
slider_scale,
|
357 |
+
model_choice
|
358 |
],
|
359 |
outputs=[result, slider_result, seed],
|
360 |
)
|
361 |
|
362 |
if __name__ == "__main__":
|
363 |
+
demo.launch(share=True)
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
# import gradio as gr
|
382 |
+
# import numpy as np
|
383 |
+
# import random
|
384 |
+
# import os
|
385 |
+
# import spaces #[uncomment to use ZeroGPU]
|
386 |
+
# from diffusers import DiffusionPipeline
|
387 |
+
# import torch
|
388 |
+
# from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
389 |
+
# from huggingface_hub import hf_hub_download
|
390 |
+
# from safetensors.torch import load_file
|
391 |
+
# import sys
|
392 |
+
# sys.path.append('.')
|
393 |
+
# from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
394 |
+
|
395 |
+
# model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
396 |
+
# repo_name = "tianweiy/DMD2"
|
397 |
+
# ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
|
398 |
+
|
399 |
+
|
400 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
401 |
+
# if torch.cuda.is_available():
|
402 |
+
# torch_dtype = torch.bfloat16
|
403 |
+
# else:
|
404 |
+
# torch_dtype = torch.float32
|
405 |
+
|
406 |
+
# # Load model.
|
407 |
+
# unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
|
408 |
+
# unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
|
409 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
|
410 |
+
# pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
411 |
+
|
412 |
+
|
413 |
+
# unet = pipe.unet
|
414 |
+
|
415 |
+
# ## Change these parameters based on how you trained your sliderspace sliders
|
416 |
+
# train_method = 'xattn-strict'
|
417 |
+
# rank = 1
|
418 |
+
# alpha =1
|
419 |
+
# networks = {}
|
420 |
+
# modules = DEFAULT_TARGET_REPLACE
|
421 |
+
# modules += UNET_TARGET_REPLACE_MODULE_CONV
|
422 |
+
# for i in range(1):
|
423 |
+
# networks[i] = LoRANetwork(
|
424 |
+
# unet,
|
425 |
+
# rank=int(rank),
|
426 |
+
# multiplier=1.0,
|
427 |
+
# alpha=int(alpha),
|
428 |
+
# train_method=train_method,
|
429 |
+
# fast_init=True,
|
430 |
+
# ).to(device, dtype=torch_dtype)
|
431 |
+
|
432 |
+
|
433 |
+
|
434 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
435 |
+
# MAX_IMAGE_SIZE = 1024
|
436 |
+
|
437 |
+
|
438 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
439 |
+
# def infer(
|
440 |
+
# prompt,
|
441 |
+
# negative_prompt,
|
442 |
+
# seed,
|
443 |
+
# randomize_seed,
|
444 |
+
# width,
|
445 |
+
# height,
|
446 |
+
# guidance_scale,
|
447 |
+
# num_inference_steps,
|
448 |
+
# slider_space,
|
449 |
+
# discovered_directions,
|
450 |
+
# slider_scale,
|
451 |
+
# progress=gr.Progress(track_tqdm=True),
|
452 |
+
# ):
|
453 |
+
# if randomize_seed:
|
454 |
+
# seed = random.randint(0, MAX_SEED)
|
455 |
+
|
456 |
+
# sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions.split(' ')[-1])-1}.pt"
|
457 |
+
|
458 |
+
# for net in networks:
|
459 |
+
# networks[net].load_state_dict(torch.load(sliderspace_path))
|
460 |
+
|
461 |
+
# for net in networks:
|
462 |
+
# networks[net].set_lora_slider(slider_scale)
|
463 |
+
|
464 |
+
# with networks[0]:
|
465 |
+
# pass
|
466 |
+
|
467 |
+
# # original image
|
468 |
+
# generator = torch.Generator().manual_seed(seed)
|
469 |
+
# image = pipe(
|
470 |
+
# prompt=prompt,
|
471 |
+
# negative_prompt=negative_prompt,
|
472 |
+
# guidance_scale=guidance_scale,
|
473 |
+
# num_inference_steps=num_inference_steps,
|
474 |
+
# width=width,
|
475 |
+
# height=height,
|
476 |
+
# generator=generator,
|
477 |
+
# ).images[0]
|
478 |
+
|
479 |
+
# # edited image
|
480 |
+
# generator = torch.Generator().manual_seed(seed)
|
481 |
+
# with networks[0]:
|
482 |
+
# slider_image = pipe(
|
483 |
+
# prompt=prompt,
|
484 |
+
# negative_prompt=negative_prompt,
|
485 |
+
# guidance_scale=guidance_scale,
|
486 |
+
# num_inference_steps=num_inference_steps,
|
487 |
+
# width=width,
|
488 |
+
# height=height,
|
489 |
+
# generator=generator,
|
490 |
+
# ).images[0]
|
491 |
+
|
492 |
+
|
493 |
+
# return image, slider_image, seed
|
494 |
+
|
495 |
+
|
496 |
+
# examples = [
|
497 |
+
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
498 |
+
# "An astronaut riding a green horse",
|
499 |
+
# "A delicious ceviche cheesecake slice",
|
500 |
+
# ]
|
501 |
+
|
502 |
+
# css = """
|
503 |
+
# #col-container {
|
504 |
+
# margin: 0 auto;
|
505 |
+
# max-width: 640px;
|
506 |
+
# }
|
507 |
+
# """
|
508 |
+
|
509 |
+
# ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
|
510 |
+
# SPACE_ID = os.getenv('SPACE_ID')
|
511 |
+
|
512 |
+
# SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
|
513 |
+
# <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
514 |
+
# '''
|
515 |
+
|
516 |
+
# with gr.Blocks(css=css) as demo:
|
517 |
+
# with gr.Column(elem_id="col-container"):
|
518 |
+
# gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
|
519 |
+
# # Adding links under the title
|
520 |
+
# gr.Markdown("""
|
521 |
+
# 🔗 [Project Page](https://sliderspace.baulab.info) |
|
522 |
+
# 💻 [GitHub Code](https://github.com/rohitgandikota/sliderspace)
|
523 |
+
# """)
|
524 |
+
|
525 |
+
# with gr.Row():
|
526 |
+
# prompt = gr.Text(
|
527 |
+
# label="Prompt",
|
528 |
+
# show_label=False,
|
529 |
+
# max_lines=1,
|
530 |
+
# placeholder="Enter your prompt",
|
531 |
+
# container=False,
|
532 |
+
# )
|
533 |
+
|
534 |
+
# run_button = gr.Button("Run", scale=0, variant="primary")
|
535 |
+
|
536 |
+
|
537 |
+
# # New dropdowns side by side
|
538 |
+
# with gr.Row():
|
539 |
+
# slider_space = gr.Dropdown(
|
540 |
+
# choices= [
|
541 |
+
# "alien",
|
542 |
+
# "ancient ruins",
|
543 |
+
# "animal",
|
544 |
+
# "bike",
|
545 |
+
# "car",
|
546 |
+
# "Citadel",
|
547 |
+
# "coral",
|
548 |
+
# "cowboy",
|
549 |
+
# "face",
|
550 |
+
# "futuristic cities",
|
551 |
+
# "monster",
|
552 |
+
# "mystical creature",
|
553 |
+
# "planet",
|
554 |
+
# "plant",
|
555 |
+
# "robot",
|
556 |
+
# "sculpture",
|
557 |
+
# "spaceship",
|
558 |
+
# "statue",
|
559 |
+
# "studio",
|
560 |
+
# "video game",
|
561 |
+
# "wizard"
|
562 |
+
# ],
|
563 |
+
# label="SliderSpace",
|
564 |
+
# value="spaceship"
|
565 |
+
# )
|
566 |
+
# discovered_directions = gr.Dropdown(
|
567 |
+
# choices=[f"Slider {i}" for i in range(1, 11)],
|
568 |
+
# label="Discovered Directions",
|
569 |
+
# value="Slider 1"
|
570 |
+
# )
|
571 |
+
|
572 |
+
# slider_scale = gr.Slider(
|
573 |
+
# label="Slider Scale",
|
574 |
+
# minimum=-4,
|
575 |
+
# maximum=4,
|
576 |
+
# step=0.1,
|
577 |
+
# value=1,
|
578 |
+
# )
|
579 |
+
|
580 |
+
# with gr.Row():
|
581 |
+
# result = gr.Image(label="Original Image", show_label=True)
|
582 |
+
# slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
|
583 |
+
|
584 |
+
|
585 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
586 |
+
# negative_prompt = gr.Text(
|
587 |
+
# label="Negative prompt",
|
588 |
+
# max_lines=1,
|
589 |
+
# placeholder="Enter a negative prompt",
|
590 |
+
# visible=False,
|
591 |
+
# )
|
592 |
+
|
593 |
+
# seed = gr.Slider(
|
594 |
+
# label="Seed",
|
595 |
+
# minimum=0,
|
596 |
+
# maximum=MAX_SEED,
|
597 |
+
# step=1,
|
598 |
+
# value=0,
|
599 |
+
# )
|
600 |
+
|
601 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
602 |
+
|
603 |
+
# with gr.Row():
|
604 |
+
# width = gr.Slider(
|
605 |
+
# label="Width",
|
606 |
+
# minimum=256,
|
607 |
+
# maximum=MAX_IMAGE_SIZE,
|
608 |
+
# step=32,
|
609 |
+
# value=1024, # Replace with defaults that work for your model
|
610 |
+
# )
|
611 |
+
|
612 |
+
# height = gr.Slider(
|
613 |
+
# label="Height",
|
614 |
+
# minimum=256,
|
615 |
+
# maximum=MAX_IMAGE_SIZE,
|
616 |
+
# step=32,
|
617 |
+
# value=1024, # Replace with defaults that work for your model
|
618 |
+
# )
|
619 |
+
|
620 |
+
# with gr.Row():
|
621 |
+
# guidance_scale = gr.Slider(
|
622 |
+
# label="Guidance scale",
|
623 |
+
# minimum=0.0,
|
624 |
+
# maximum=2.0,
|
625 |
+
# step=0.1,
|
626 |
+
# value=0.0, # Replace with defaults that work for your model
|
627 |
+
# )
|
628 |
+
|
629 |
+
# num_inference_steps = gr.Slider(
|
630 |
+
# label="Number of inference steps",
|
631 |
+
# minimum=1,
|
632 |
+
# maximum=50,
|
633 |
+
# step=1,
|
634 |
+
# value=4, # Replace with defaults that work for your model
|
635 |
+
# )
|
636 |
+
|
637 |
+
# # gr.Examples(examples=examples, inputs=[prompt])
|
638 |
+
# gr.on(
|
639 |
+
# triggers=[run_button.click, prompt.submit],
|
640 |
+
# fn=infer,
|
641 |
+
# inputs=[
|
642 |
+
# prompt,
|
643 |
+
# negative_prompt,
|
644 |
+
# seed,
|
645 |
+
# randomize_seed,
|
646 |
+
# width,
|
647 |
+
# height,
|
648 |
+
# guidance_scale,
|
649 |
+
# num_inference_steps,
|
650 |
+
# slider_space,
|
651 |
+
# discovered_directions,
|
652 |
+
# slider_scale
|
653 |
+
# ],
|
654 |
+
# outputs=[result, slider_result, seed],
|
655 |
+
# )
|
656 |
+
|
657 |
+
# if __name__ == "__main__":
|
658 |
+
# demo.launch(share=True)
|