fast_detect_gpt / fast_detect_gpt.py
azra-kml's picture
Upload 30 files
aefc9ef verified
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import argparse
import json
from data_builder import load_data
from model import load_tokenizer, load_model
from metrics import get_roc_metrics, get_precision_recall_metrics
def get_samples(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
nsamples = 10000
lprobs = torch.log_softmax(logits, dim=-1)
distrib = torch.distributions.categorical.Categorical(logits=lprobs)
samples = distrib.sample([nsamples]).permute([1, 2, 0])
return samples
def get_likelihood(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
labels = labels.unsqueeze(-1) if labels.ndim == logits.ndim - 1 else labels
lprobs = torch.log_softmax(logits, dim=-1)
log_likelihood = lprobs.gather(dim=-1, index=labels)
return log_likelihood.mean(dim=1)
def get_sampling_discrepancy(logits_ref, logits_score, labels):
assert logits_ref.shape[0] == 1
assert logits_score.shape[0] == 1
assert labels.shape[0] == 1
if logits_ref.size(-1) != logits_score.size(-1):
# print(f"WARNING: vocabulary size mismatch {logits_ref.size(-1)} vs {logits_score.size(-1)}.")
vocab_size = min(logits_ref.size(-1), logits_score.size(-1))
logits_ref = logits_ref[:, :, :vocab_size]
logits_score = logits_score[:, :, :vocab_size]
samples = get_samples(logits_ref, labels)
log_likelihood_x = get_likelihood(logits_score, labels)
log_likelihood_x_tilde = get_likelihood(logits_score, samples)
miu_tilde = log_likelihood_x_tilde.mean(dim=-1)
sigma_tilde = log_likelihood_x_tilde.std(dim=-1)
discrepancy = (log_likelihood_x.squeeze(-1) - miu_tilde) / sigma_tilde
return discrepancy.item()
def get_sampling_discrepancy_analytic(logits_ref, logits_score, labels):
assert logits_ref.shape[0] == 1
assert logits_score.shape[0] == 1
assert labels.shape[0] == 1
if logits_ref.size(-1) != logits_score.size(-1):
# print(f"WARNING: vocabulary size mismatch {logits_ref.size(-1)} vs {logits_score.size(-1)}.")
vocab_size = min(logits_ref.size(-1), logits_score.size(-1))
logits_ref = logits_ref[:, :, :vocab_size]
logits_score = logits_score[:, :, :vocab_size]
labels = labels.unsqueeze(-1) if labels.ndim == logits_score.ndim - 1 else labels
lprobs_score = torch.log_softmax(logits_score, dim=-1)
probs_ref = torch.softmax(logits_ref, dim=-1)
log_likelihood = lprobs_score.gather(dim=-1, index=labels).squeeze(-1)
mean_ref = (probs_ref * lprobs_score).sum(dim=-1)
var_ref = (probs_ref * torch.square(lprobs_score)).sum(dim=-1) - torch.square(mean_ref)
discrepancy = (log_likelihood.sum(dim=-1) - mean_ref.sum(dim=-1)) / var_ref.sum(dim=-1).sqrt()
discrepancy = discrepancy.mean()
return discrepancy.item()
def experiment(args):
# load model
scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir)
scoring_model = load_model(args.scoring_model_name, args.device, args.cache_dir)
scoring_model.eval()
if args.reference_model_name != args.scoring_model_name:
reference_tokenizer = load_tokenizer(args.reference_model_name, args.dataset, args.cache_dir)
reference_model = load_model(args.reference_model_name, args.device, args.cache_dir)
reference_model.eval()
# load data
data = load_data(args.dataset_file)
n_samples = len(data["sampled"])
# evaluate criterion
if args.discrepancy_analytic:
name = "sampling_discrepancy_analytic"
criterion_fn = get_sampling_discrepancy_analytic
else:
name = "sampling_discrepancy"
criterion_fn = get_sampling_discrepancy
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
results = []
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
original_text = data["original"][idx]
sampled_text = data["sampled"][idx]
# original text
tokenized = scoring_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
labels = tokenized.input_ids[:, 1:]
with torch.no_grad():
logits_score = scoring_model(**tokenized).logits[:, :-1]
if args.reference_model_name == args.scoring_model_name:
logits_ref = logits_score
else:
tokenized = reference_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch."
logits_ref = reference_model(**tokenized).logits[:, :-1]
original_crit = criterion_fn(logits_ref, logits_score, labels)
# sampled text
tokenized = scoring_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
labels = tokenized.input_ids[:, 1:]
with torch.no_grad():
logits_score = scoring_model(**tokenized).logits[:, :-1]
if args.reference_model_name == args.scoring_model_name:
logits_ref = logits_score
else:
tokenized = reference_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch."
logits_ref = reference_model(**tokenized).logits[:, :-1]
sampled_crit = criterion_fn(logits_ref, logits_score, labels)
# result
results.append({"original": original_text,
"original_crit": original_crit,
"sampled": sampled_text,
"sampled_crit": sampled_crit})
# compute prediction scores for real/sampled passages
predictions = {'real': [x["original_crit"] for x in results],
'samples': [x["sampled_crit"] for x in results]}
print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}")
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
# results
results_file = f'{args.output_file}.{name}.json'
results = { 'name': f'{name}_threshold',
'info': {'n_samples': n_samples},
'predictions': predictions,
'raw_results': results,
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr},
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r},
'loss': 1 - pr_auc}
with open(results_file, 'w') as fout:
json.dump(results, fout)
print(f'Results written into {results_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2")
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2")
parser.add_argument('--reference_model_name', type=str, default="gpt2")
parser.add_argument('--scoring_model_name', type=str, default="gpt2")
parser.add_argument('--discrepancy_analytic', action='store_true')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--cache_dir', type=str, default="../cache")
args = parser.parse_args()
experiment(args)