File size: 8,047 Bytes
aefc9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import argparse
import json
from data_builder import load_data
from model import load_tokenizer, load_model
from metrics import get_roc_metrics, get_precision_recall_metrics

def get_samples(logits, labels):
    assert logits.shape[0] == 1
    assert labels.shape[0] == 1
    nsamples = 10000
    lprobs = torch.log_softmax(logits, dim=-1)
    distrib = torch.distributions.categorical.Categorical(logits=lprobs)
    samples = distrib.sample([nsamples]).permute([1, 2, 0])
    return samples

def get_likelihood(logits, labels):
    assert logits.shape[0] == 1
    assert labels.shape[0] == 1
    labels = labels.unsqueeze(-1) if labels.ndim == logits.ndim - 1 else labels
    lprobs = torch.log_softmax(logits, dim=-1)
    log_likelihood = lprobs.gather(dim=-1, index=labels)
    return log_likelihood.mean(dim=1)

def get_sampling_discrepancy(logits_ref, logits_score, labels):
    assert logits_ref.shape[0] == 1
    assert logits_score.shape[0] == 1
    assert labels.shape[0] == 1
    if logits_ref.size(-1) != logits_score.size(-1):
        # print(f"WARNING: vocabulary size mismatch {logits_ref.size(-1)} vs {logits_score.size(-1)}.")
        vocab_size = min(logits_ref.size(-1), logits_score.size(-1))
        logits_ref = logits_ref[:, :, :vocab_size]
        logits_score = logits_score[:, :, :vocab_size]

    samples = get_samples(logits_ref, labels)
    log_likelihood_x = get_likelihood(logits_score, labels)
    log_likelihood_x_tilde = get_likelihood(logits_score, samples)
    miu_tilde = log_likelihood_x_tilde.mean(dim=-1)
    sigma_tilde = log_likelihood_x_tilde.std(dim=-1)
    discrepancy = (log_likelihood_x.squeeze(-1) - miu_tilde) / sigma_tilde
    return discrepancy.item()

def get_sampling_discrepancy_analytic(logits_ref, logits_score, labels):
    assert logits_ref.shape[0] == 1
    assert logits_score.shape[0] == 1
    assert labels.shape[0] == 1
    if logits_ref.size(-1) != logits_score.size(-1):
        # print(f"WARNING: vocabulary size mismatch {logits_ref.size(-1)} vs {logits_score.size(-1)}.")
        vocab_size = min(logits_ref.size(-1), logits_score.size(-1))
        logits_ref = logits_ref[:, :, :vocab_size]
        logits_score = logits_score[:, :, :vocab_size]

    labels = labels.unsqueeze(-1) if labels.ndim == logits_score.ndim - 1 else labels
    lprobs_score = torch.log_softmax(logits_score, dim=-1)
    probs_ref = torch.softmax(logits_ref, dim=-1)
    log_likelihood = lprobs_score.gather(dim=-1, index=labels).squeeze(-1)
    mean_ref = (probs_ref * lprobs_score).sum(dim=-1)
    var_ref = (probs_ref * torch.square(lprobs_score)).sum(dim=-1) - torch.square(mean_ref)
    discrepancy = (log_likelihood.sum(dim=-1) - mean_ref.sum(dim=-1)) / var_ref.sum(dim=-1).sqrt()
    discrepancy = discrepancy.mean()
    return discrepancy.item()

def experiment(args):
    # load model
    scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir)
    scoring_model = load_model(args.scoring_model_name, args.device, args.cache_dir)
    scoring_model.eval()
    if args.reference_model_name != args.scoring_model_name:
        reference_tokenizer = load_tokenizer(args.reference_model_name, args.dataset, args.cache_dir)
        reference_model = load_model(args.reference_model_name, args.device, args.cache_dir)
        reference_model.eval()
    # load data
    data = load_data(args.dataset_file)
    n_samples = len(data["sampled"])
    # evaluate criterion
    if args.discrepancy_analytic:
        name = "sampling_discrepancy_analytic"
        criterion_fn = get_sampling_discrepancy_analytic
    else:
        name = "sampling_discrepancy"
        criterion_fn = get_sampling_discrepancy

    random.seed(args.seed)
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    results = []
    for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
        original_text = data["original"][idx]
        sampled_text = data["sampled"][idx]
        # original text
        tokenized = scoring_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
        labels = tokenized.input_ids[:, 1:]
        with torch.no_grad():
            logits_score = scoring_model(**tokenized).logits[:, :-1]
            if args.reference_model_name == args.scoring_model_name:
                logits_ref = logits_score
            else:
                tokenized = reference_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
                assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch."
                logits_ref = reference_model(**tokenized).logits[:, :-1]
            original_crit = criterion_fn(logits_ref, logits_score, labels)
        # sampled text
        tokenized = scoring_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
        labels = tokenized.input_ids[:, 1:]
        with torch.no_grad():
            logits_score = scoring_model(**tokenized).logits[:, :-1]
            if args.reference_model_name == args.scoring_model_name:
                logits_ref = logits_score
            else:
                tokenized = reference_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
                assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch."
                logits_ref = reference_model(**tokenized).logits[:, :-1]
            sampled_crit = criterion_fn(logits_ref, logits_score, labels)
        # result
        results.append({"original": original_text,
                        "original_crit": original_crit,
                        "sampled": sampled_text,
                        "sampled_crit": sampled_crit})

    # compute prediction scores for real/sampled passages
    predictions = {'real': [x["original_crit"] for x in results],
                   'samples': [x["sampled_crit"] for x in results]}
    print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}")
    fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
    p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
    print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
    # results
    results_file = f'{args.output_file}.{name}.json'
    results = { 'name': f'{name}_threshold',
                'info': {'n_samples': n_samples},
                'predictions': predictions,
                'raw_results': results,
                'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr},
                'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r},
                'loss': 1 - pr_auc}
    with open(results_file, 'w') as fout:
        json.dump(results, fout)
        print(f'Results written into {results_file}')

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2")
    parser.add_argument('--dataset', type=str, default="xsum")
    parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2")
    parser.add_argument('--reference_model_name', type=str, default="gpt2")
    parser.add_argument('--scoring_model_name', type=str, default="gpt2")
    parser.add_argument('--discrepancy_analytic', action='store_true')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--device', type=str, default="cuda")
    parser.add_argument('--cache_dir', type=str, default="../cache")
    args = parser.parse_args()

    experiment(args)