# Copyright (c) Guangsheng Bao. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import numpy as np import torch import torch.nn.functional as F import tqdm import argparse import json from data_builder import load_data from model import load_tokenizer, load_model from metrics import get_roc_metrics, get_precision_recall_metrics def get_samples(logits, labels): assert logits.shape[0] == 1 assert labels.shape[0] == 1 nsamples = 10000 lprobs = torch.log_softmax(logits, dim=-1) distrib = torch.distributions.categorical.Categorical(logits=lprobs) samples = distrib.sample([nsamples]).permute([1, 2, 0]) return samples def get_likelihood(logits, labels): assert logits.shape[0] == 1 assert labels.shape[0] == 1 labels = labels.unsqueeze(-1) if labels.ndim == logits.ndim - 1 else labels lprobs = torch.log_softmax(logits, dim=-1) log_likelihood = lprobs.gather(dim=-1, index=labels) return log_likelihood.mean(dim=1) def get_sampling_discrepancy(logits_ref, logits_score, labels): assert logits_ref.shape[0] == 1 assert logits_score.shape[0] == 1 assert labels.shape[0] == 1 if logits_ref.size(-1) != logits_score.size(-1): # print(f"WARNING: vocabulary size mismatch {logits_ref.size(-1)} vs {logits_score.size(-1)}.") vocab_size = min(logits_ref.size(-1), logits_score.size(-1)) logits_ref = logits_ref[:, :, :vocab_size] logits_score = logits_score[:, :, :vocab_size] samples = get_samples(logits_ref, labels) log_likelihood_x = get_likelihood(logits_score, labels) log_likelihood_x_tilde = get_likelihood(logits_score, samples) miu_tilde = log_likelihood_x_tilde.mean(dim=-1) sigma_tilde = log_likelihood_x_tilde.std(dim=-1) discrepancy = (log_likelihood_x.squeeze(-1) - miu_tilde) / sigma_tilde return discrepancy.item() def get_sampling_discrepancy_analytic(logits_ref, logits_score, labels): assert logits_ref.shape[0] == 1 assert logits_score.shape[0] == 1 assert labels.shape[0] == 1 if logits_ref.size(-1) != logits_score.size(-1): # print(f"WARNING: vocabulary size mismatch {logits_ref.size(-1)} vs {logits_score.size(-1)}.") vocab_size = min(logits_ref.size(-1), logits_score.size(-1)) logits_ref = logits_ref[:, :, :vocab_size] logits_score = logits_score[:, :, :vocab_size] labels = labels.unsqueeze(-1) if labels.ndim == logits_score.ndim - 1 else labels lprobs_score = torch.log_softmax(logits_score, dim=-1) probs_ref = torch.softmax(logits_ref, dim=-1) log_likelihood = lprobs_score.gather(dim=-1, index=labels).squeeze(-1) mean_ref = (probs_ref * lprobs_score).sum(dim=-1) var_ref = (probs_ref * torch.square(lprobs_score)).sum(dim=-1) - torch.square(mean_ref) discrepancy = (log_likelihood.sum(dim=-1) - mean_ref.sum(dim=-1)) / var_ref.sum(dim=-1).sqrt() discrepancy = discrepancy.mean() return discrepancy.item() def experiment(args): # load model scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir) scoring_model = load_model(args.scoring_model_name, args.device, args.cache_dir) scoring_model.eval() if args.reference_model_name != args.scoring_model_name: reference_tokenizer = load_tokenizer(args.reference_model_name, args.dataset, args.cache_dir) reference_model = load_model(args.reference_model_name, args.device, args.cache_dir) reference_model.eval() # load data data = load_data(args.dataset_file) n_samples = len(data["sampled"]) # evaluate criterion if args.discrepancy_analytic: name = "sampling_discrepancy_analytic" criterion_fn = get_sampling_discrepancy_analytic else: name = "sampling_discrepancy" criterion_fn = get_sampling_discrepancy random.seed(args.seed) torch.manual_seed(args.seed) np.random.seed(args.seed) results = [] for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): original_text = data["original"][idx] sampled_text = data["sampled"][idx] # original text tokenized = scoring_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device) labels = tokenized.input_ids[:, 1:] with torch.no_grad(): logits_score = scoring_model(**tokenized).logits[:, :-1] if args.reference_model_name == args.scoring_model_name: logits_ref = logits_score else: tokenized = reference_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device) assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch." logits_ref = reference_model(**tokenized).logits[:, :-1] original_crit = criterion_fn(logits_ref, logits_score, labels) # sampled text tokenized = scoring_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device) labels = tokenized.input_ids[:, 1:] with torch.no_grad(): logits_score = scoring_model(**tokenized).logits[:, :-1] if args.reference_model_name == args.scoring_model_name: logits_ref = logits_score else: tokenized = reference_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device) assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch." logits_ref = reference_model(**tokenized).logits[:, :-1] sampled_crit = criterion_fn(logits_ref, logits_score, labels) # result results.append({"original": original_text, "original_crit": original_crit, "sampled": sampled_text, "sampled_crit": sampled_crit}) # compute prediction scores for real/sampled passages predictions = {'real': [x["original_crit"] for x in results], 'samples': [x["sampled_crit"] for x in results]} print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}") fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") # results results_file = f'{args.output_file}.{name}.json' results = { 'name': f'{name}_threshold', 'info': {'n_samples': n_samples}, 'predictions': predictions, 'raw_results': results, 'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr}, 'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r}, 'loss': 1 - pr_auc} with open(results_file, 'w') as fout: json.dump(results, fout) print(f'Results written into {results_file}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2") parser.add_argument('--dataset', type=str, default="xsum") parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2") parser.add_argument('--reference_model_name', type=str, default="gpt2") parser.add_argument('--scoring_model_name', type=str, default="gpt2") parser.add_argument('--discrepancy_analytic', action='store_true') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default="cuda") parser.add_argument('--cache_dir', type=str, default="../cache") args = parser.parse_args() experiment(args)