File size: 3,676 Bytes
c8f4a50 348dfbf faae8e8 0775e2f 348dfbf 0eb19c8 a9b4522 348dfbf 31a243b 348dfbf 875560e 6c59dc8 348dfbf c8f4a50 348dfbf c8f4a50 348dfbf c8f4a50 348dfbf b4d9dd6 348dfbf 2495ea7 348dfbf 2495ea7 348dfbf f0f53dd 348dfbf 97a1749 348dfbf f0f53dd 348dfbf 97a1749 2495ea7 b4d9dd6 348dfbf 6fb9fd9 e8f5b25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# Zero-Shot Text Classification with Multilingual T5 (mT5)
import streamlit as st
import plotly.graph_objects as go
from mT5Model import runModel
text_1 = """Bilim insanları Botsvana’da Covid-19’un şu ana kadar en çok mutasyona uğramış varyantını tespit etti. \
Resmi olarak B.1.1.529 koduyla bilinen bu varyantı ise “Nu varyantı” adı verildi. Uzmanlar bu varyant içerisinde \
tam 32 farklı mutasyon tespit edildiğini açıklarken, bu virüsün corona virüsü aşılarına karşı daha dirençli olabileceğini duyurdu."""
text_2 = """Argentina beat Australia 2-1 on Saturday and will take on the Netherlands in the World Cup quarterfinals. \
It was a historic night for Lionel Messi as the Argentine superstar took to the pitch for his 1,000th match for club and country. \
He also scored in the match. Messi scored the opening goal in the 35th minute as his low shot in the box beat Australian goalkeeper Mathew Ryan."""
@st.cache(allow_output_mutation=True)
def list2text(label_list):
labels = ""
for label in label_list:
labels = labels + label + ","
labels = labels[:-1]
return labels
label_list_1 = ["dünya", "ekonomi", "kültür", "sağlık", "siyaset", "spor", "teknoloji"]
label_list_2 = ["positive", "negative", "neutral"]
hypothesis_1 = "Bu yazı {} konusundadır"
hypothesis_2 = "This text is in {} subject"
st.title("Multilingual Zero-Shot Text Classification with mT5")
model_name = "alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli"
st.sidebar.write("For details of used model:")
st.sidebar.write("https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli")
st.sidebar.write("For Xtreme XNLI Dataset:")
st.sidebar.write("https://www.tensorflow.org/datasets/catalog/xtreme_xnli")
st.subheader("Select Text, Label List and Hyphothesis")
st.text_area("Text #1", text_1, height=128)
st.text_area("Text #2", text_2, height=128)
st.write(f"Label List #1: {list2text(label_list_1)}")
st.write(f"Label List #2: {list2text(label_list_2)}")
st.write(f"Hypothesis #1: {hypothesis_1}")
st.write(f"Hypothesis #2: {hypothesis_2}")
text = st.radio("Select Text", ("Text #1", "Text #2", "New Text"))
labels = st.radio("Select Label List", ("Label List #1", "Label List #2", "New Label List"))
hypothesis = st.radio("Select Hypothesis", ("Hypothesis #1", "Hypothesis #2", "New Hypothesis"))
if text == "Text #1": sequence_to_classify = text_1
elif text == "Text #2": sequence_to_classify = text_2
elif text == "New Text":
sequence_to_classify = st.text_area("New Text", value="", height=128)
if labels == "Label List #1": candidate_labels = label_list_1
elif labels == "Label List #2": candidate_labels = label_list_2
elif labels == "New Label List":
candidate_labels = st.text_area("New Label List (Pls Input as comma-separated)", value="", height=16).split(",")
if hypothesis == "Hypothesis #1": hypothesis_template = hypothesis_1
elif hypothesis == "Hypothesis #2": hypothesis_template = hypothesis_2
elif labels == "New Hypothesis":
hypothesis_template = st.text_area("Hypothesis Template for NLI (Pls use similar format of examples)", value="", height=16)
Run_Button = st.button("Run", key=None)
if Run_Button == True:
with st.spinner('Model is running...'):
output = runModel(model_name, sequence_to_classify, candidate_labels, hypothesis_template)
output_labels = list(output.keys())
output_scores = list(output.values())
st.header("Result")
fig = go.Figure([go.Bar(x=output_labels, y=output_scores)])
st.plotly_chart(fig, use_container_width=False, sharing="streamlit")
st.success('Done!')
|