Upload 2 files
Browse files- app.py +84 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Turkish Zero-Shot Text Classification with XLM-RoBERTa
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
+
import sentencepiece
|
5 |
+
import torch
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
text_1 = """Bilim insanları Botsvana’da Covid-19’un şu ana kadar en çok mutasyona uğramış varyantını tespit etti. \
|
10 |
+
Resmi olarak B.1.1.529 koduyla bilinen bu varyantı ise “Nu varyantı” adı verildi. Uzmanlar bu varyant içerisinde \
|
11 |
+
tam 32 farklı mutasyon tespit edildiğini açıklarken, bu virüsün corona virüsü aşılarına karşı daha dirençli olabileceğini duyurdu."""
|
12 |
+
|
13 |
+
text_2 = """Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, Inter ve Sporting \
|
14 |
+
oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. Gecenin dev mücadelesinde ise Manchester City, \
|
15 |
+
PSG’yi yenerek liderliği garantiledi."""
|
16 |
+
|
17 |
+
@st.cache(allow_output_mutation=True)
|
18 |
+
def list2text(label_list):
|
19 |
+
labels = ""
|
20 |
+
for label in label_list:
|
21 |
+
labels = labels + label + ","
|
22 |
+
labels = labels[:-1]
|
23 |
+
return labels
|
24 |
+
|
25 |
+
label_list_1 = ["dünya", "ekonomi", "kültür", "sağlık", "siyaset", "spor", "teknoloji"]
|
26 |
+
label_list_2 = ["positive", "negative", "neutral"]
|
27 |
+
|
28 |
+
st.title("Turkish Zero-Shot Text Classification \
|
29 |
+
with Multilingual XLM-RoBERTa and mDeBERTa Models")
|
30 |
+
|
31 |
+
model_list = ['vicgalle/xlm-roberta-large-xnli-anli',
|
32 |
+
'joeddav/xlm-roberta-large-xnli',
|
33 |
+
'MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7']
|
34 |
+
|
35 |
+
st.sidebar.header("Select Model")
|
36 |
+
model_checkpoint = st.sidebar.radio("", model_list)
|
37 |
+
|
38 |
+
st.sidebar.write("For details of models:")
|
39 |
+
st.sidebar.write("https://huggingface.co/vicgalle")
|
40 |
+
st.sidebar.write("https://huggingface.co/joeddav")
|
41 |
+
st.sidebar.write("https://huggingface.co/MoritzLaurer")
|
42 |
+
|
43 |
+
st.sidebar.write("For XNLI Dataset:")
|
44 |
+
st.sidebar.write("https://huggingface.co/datasets/xnli")
|
45 |
+
|
46 |
+
st.subheader("Select Text and Label List")
|
47 |
+
st.text_area("Text #1", text_1, height=128)
|
48 |
+
st.text_area("Text #2", text_2, height=128)
|
49 |
+
st.write(f"Label List #1: {list2text(label_list_1)}")
|
50 |
+
st.write(f"Label List #2: {list2text(label_list_2)}")
|
51 |
+
|
52 |
+
text = st.radio("Select Text", ("Text #1", "Text #2", "New Text"))
|
53 |
+
labels = st.radio("Select Label List", ("Label List #1", "Label List #2", "New Label List"))
|
54 |
+
|
55 |
+
if text == "Text #1": selected_text = text_1
|
56 |
+
elif text == "Text #2": selected_text = text_2
|
57 |
+
elif text == "New Text":
|
58 |
+
selected_text = st.text_area("New Text", value="", height=128)
|
59 |
+
|
60 |
+
if labels == "Label List #1": selected_labels = label_list_1
|
61 |
+
elif labels == "Label List #2": selected_labels = label_list_2
|
62 |
+
elif labels == "New Label List":
|
63 |
+
selected_labels = st.text_area("New Label List (Pls Input as comma-separated)", value="", height=16).split(",")
|
64 |
+
|
65 |
+
@st.cache(allow_output_mutation=True)
|
66 |
+
def setModel(model_checkpoint):
|
67 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
69 |
+
return pipeline("zero-shot-classification", model=model, tokenizer=tokenizer)
|
70 |
+
|
71 |
+
Run_Button = st.button("Run", key=None)
|
72 |
+
if Run_Button == True:
|
73 |
+
|
74 |
+
zstc_pipeline = setModel(model_checkpoint)
|
75 |
+
output = zstc_pipeline(sequences=selected_text, candidate_labels=selected_labels)
|
76 |
+
output_labels = output["labels"]
|
77 |
+
output_scores = output["scores"]
|
78 |
+
|
79 |
+
st.header("Result")
|
80 |
+
import plotly.graph_objects as go
|
81 |
+
fig = go.Figure([go.Bar(x=output_labels, y=output_scores)])
|
82 |
+
st.plotly_chart(fig, use_container_width=False, sharing="streamlit")
|
83 |
+
|
84 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
sentencepiece
|
5 |
+
plotly
|