|
import cv2 |
|
import numpy as np |
|
from skimage import transform as trans |
|
|
|
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007], |
|
[51.157, 89.050], [57.025, 89.702]], |
|
dtype=np.float32) |
|
|
|
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111], |
|
[45.177, 86.190], [64.246, 86.758]], |
|
dtype=np.float32) |
|
|
|
|
|
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493], |
|
[42.463, 87.010], [69.537, 87.010]], |
|
dtype=np.float32) |
|
|
|
|
|
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111], |
|
[48.167, 86.758], [67.236, 86.190]], |
|
dtype=np.float32) |
|
|
|
|
|
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007], |
|
[55.388, 89.702], [61.257, 89.050]], |
|
dtype=np.float32) |
|
|
|
src = np.array([src1, src2, src3, src4, src5]) |
|
src_map = {112: src, 224: src * 2} |
|
|
|
arcface_src = np.array( |
|
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], |
|
[41.5493, 92.3655], [70.7299, 92.2041]], |
|
dtype=np.float32) |
|
|
|
arcface_src = np.expand_dims(arcface_src, axis=0) |
|
|
|
|
|
|
|
|
|
|
|
def estimate_norm(lmk, image_size=112, mode='arcface'): |
|
assert lmk.shape == (5, 2) |
|
tform = trans.SimilarityTransform() |
|
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) |
|
min_M = [] |
|
min_index = [] |
|
min_error = float('inf') |
|
if mode == 'arcface': |
|
if image_size == 112: |
|
src = arcface_src |
|
else: |
|
src = float(image_size) / 112 * arcface_src |
|
else: |
|
src = src_map[image_size] |
|
for i in np.arange(src.shape[0]): |
|
tform.estimate(lmk, src[i]) |
|
M = tform.params[0:2, :] |
|
results = np.dot(M, lmk_tran.T) |
|
results = results.T |
|
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1))) |
|
|
|
if error < min_error: |
|
min_error = error |
|
min_M = M |
|
min_index = i |
|
return min_M, min_index |
|
|
|
|
|
def norm_crop(img, landmark, image_size=112, mode='arcface'): |
|
M, pose_index = estimate_norm(landmark, image_size, mode) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped |
|
|
|
def square_crop(im, S): |
|
if im.shape[0] > im.shape[1]: |
|
height = S |
|
width = int(float(im.shape[1]) / im.shape[0] * S) |
|
scale = float(S) / im.shape[0] |
|
else: |
|
width = S |
|
height = int(float(im.shape[0]) / im.shape[1] * S) |
|
scale = float(S) / im.shape[1] |
|
resized_im = cv2.resize(im, (width, height)) |
|
det_im = np.zeros((S, S, 3), dtype=np.uint8) |
|
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im |
|
return det_im, scale |
|
|
|
|
|
def transform(data, center, output_size, scale, rotation): |
|
scale_ratio = scale |
|
rot = float(rotation) * np.pi / 180.0 |
|
|
|
t1 = trans.SimilarityTransform(scale=scale_ratio) |
|
cx = center[0] * scale_ratio |
|
cy = center[1] * scale_ratio |
|
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) |
|
t3 = trans.SimilarityTransform(rotation=rot) |
|
t4 = trans.SimilarityTransform(translation=(output_size / 2, |
|
output_size / 2)) |
|
t = t1 + t2 + t3 + t4 |
|
M = t.params[0:2] |
|
cropped = cv2.warpAffine(data, |
|
M, (output_size, output_size), |
|
borderValue=0.0) |
|
return cropped, M |
|
|
|
|
|
def trans_points2d(pts, M): |
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i] = new_pt[0:2] |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points3d(pts, M): |
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) |
|
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i][0:2] = new_pt[0:2] |
|
new_pts[i][2] = pts[i][2] * scale |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points(pts, M): |
|
if pts.shape[1] == 2: |
|
return trans_points2d(pts, M) |
|
else: |
|
return trans_points3d(pts, M) |
|
|
|
|