File size: 4,586 Bytes
311789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import cv2
import numpy as np
from skimage import transform as trans

src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
                 [51.157, 89.050], [57.025, 89.702]],
                dtype=np.float32)
#<--left
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
                 [45.177, 86.190], [64.246, 86.758]],
                dtype=np.float32)

#---frontal
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
                 [42.463, 87.010], [69.537, 87.010]],
                dtype=np.float32)

#-->right
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
                 [48.167, 86.758], [67.236, 86.190]],
                dtype=np.float32)

#-->right profile
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
                 [55.388, 89.702], [61.257, 89.050]],
                dtype=np.float32)

src = np.array([src1, src2, src3, src4, src5])
src_map = {112: src, 224: src * 2}

arcface_src = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)

arcface_src = np.expand_dims(arcface_src, axis=0)

# In[66]:


# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode='arcface'):
    assert lmk.shape == (5, 2)
    tform = trans.SimilarityTransform()
    lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
    min_M = []
    min_index = []
    min_error = float('inf')
    if mode == 'arcface':
        if image_size == 112:
            src = arcface_src
        else:
            src = float(image_size) / 112 * arcface_src
    else:
        src = src_map[image_size]
    for i in np.arange(src.shape[0]):
        tform.estimate(lmk, src[i])
        M = tform.params[0:2, :]
        results = np.dot(M, lmk_tran.T)
        results = results.T
        error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
        #         print(error)
        if error < min_error:
            min_error = error
            min_M = M
            min_index = i
    return min_M, min_index


def norm_crop(img, landmark, image_size=112, mode='arcface'):
    M, pose_index = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
    return warped

def square_crop(im, S):
    if im.shape[0] > im.shape[1]:
        height = S
        width = int(float(im.shape[1]) / im.shape[0] * S)
        scale = float(S) / im.shape[0]
    else:
        width = S
        height = int(float(im.shape[0]) / im.shape[1] * S)
        scale = float(S) / im.shape[1]
    resized_im = cv2.resize(im, (width, height))
    det_im = np.zeros((S, S, 3), dtype=np.uint8)
    det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
    return det_im, scale


def transform(data, center, output_size, scale, rotation):
    scale_ratio = scale
    rot = float(rotation) * np.pi / 180.0
    #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
    t1 = trans.SimilarityTransform(scale=scale_ratio)
    cx = center[0] * scale_ratio
    cy = center[1] * scale_ratio
    t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
    t3 = trans.SimilarityTransform(rotation=rot)
    t4 = trans.SimilarityTransform(translation=(output_size / 2,
                                                output_size / 2))
    t = t1 + t2 + t3 + t4
    M = t.params[0:2]
    cropped = cv2.warpAffine(data,
                             M, (output_size, output_size),
                             borderValue=0.0)
    return cropped, M


def trans_points2d(pts, M):
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        #print('new_pt', new_pt.shape, new_pt)
        new_pts[i] = new_pt[0:2]

    return new_pts


def trans_points3d(pts, M):
    scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
    #print(scale)
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        #print('new_pt', new_pt.shape, new_pt)
        new_pts[i][0:2] = new_pt[0:2]
        new_pts[i][2] = pts[i][2] * scale

    return new_pts


def trans_points(pts, M):
    if pts.shape[1] == 2:
        return trans_points2d(pts, M)
    else:
        return trans_points3d(pts, M)