Upload 4 files
Browse files- arcface_onnx.py +91 -0
- face_align.py +141 -0
- main.py +57 -0
- scrfd.py +329 -0
arcface_onnx.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Organization : insightface.ai
|
3 |
+
# @Author : Jia Guo
|
4 |
+
# @Time : 2021-05-04
|
5 |
+
# @Function :
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
import onnx
|
10 |
+
import onnxruntime
|
11 |
+
import face_align
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
'ArcFaceONNX',
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
class ArcFaceONNX:
|
19 |
+
def __init__(self, model_file=None, session=None):
|
20 |
+
assert model_file is not None
|
21 |
+
self.model_file = model_file
|
22 |
+
self.session = session
|
23 |
+
self.taskname = 'recognition'
|
24 |
+
find_sub = False
|
25 |
+
find_mul = False
|
26 |
+
model = onnx.load(self.model_file)
|
27 |
+
graph = model.graph
|
28 |
+
for nid, node in enumerate(graph.node[:8]):
|
29 |
+
#print(nid, node.name)
|
30 |
+
if node.name.startswith('Sub') or node.name.startswith('_minus'):
|
31 |
+
find_sub = True
|
32 |
+
if node.name.startswith('Mul') or node.name.startswith('_mul'):
|
33 |
+
find_mul = True
|
34 |
+
if find_sub and find_mul:
|
35 |
+
#mxnet arcface model
|
36 |
+
input_mean = 0.0
|
37 |
+
input_std = 1.0
|
38 |
+
else:
|
39 |
+
input_mean = 127.5
|
40 |
+
input_std = 127.5
|
41 |
+
self.input_mean = input_mean
|
42 |
+
self.input_std = input_std
|
43 |
+
#print('input mean and std:', self.input_mean, self.input_std)
|
44 |
+
if self.session is None:
|
45 |
+
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
|
46 |
+
input_cfg = self.session.get_inputs()[0]
|
47 |
+
input_shape = input_cfg.shape
|
48 |
+
input_name = input_cfg.name
|
49 |
+
self.input_size = tuple(input_shape[2:4][::-1])
|
50 |
+
self.input_shape = input_shape
|
51 |
+
outputs = self.session.get_outputs()
|
52 |
+
output_names = []
|
53 |
+
for out in outputs:
|
54 |
+
output_names.append(out.name)
|
55 |
+
self.input_name = input_name
|
56 |
+
self.output_names = output_names
|
57 |
+
assert len(self.output_names)==1
|
58 |
+
self.output_shape = outputs[0].shape
|
59 |
+
|
60 |
+
def prepare(self, ctx_id, **kwargs):
|
61 |
+
if ctx_id<0:
|
62 |
+
self.session.set_providers(['CPUExecutionProvider'])
|
63 |
+
|
64 |
+
def get(self, img, kps):
|
65 |
+
aimg = face_align.norm_crop(img, landmark=kps, image_size=self.input_size[0])
|
66 |
+
embedding = self.get_feat(aimg).flatten()
|
67 |
+
return embedding
|
68 |
+
|
69 |
+
def compute_sim(self, feat1, feat2):
|
70 |
+
from numpy.linalg import norm
|
71 |
+
feat1 = feat1.ravel()
|
72 |
+
feat2 = feat2.ravel()
|
73 |
+
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
|
74 |
+
return sim
|
75 |
+
|
76 |
+
def get_feat(self, imgs):
|
77 |
+
if not isinstance(imgs, list):
|
78 |
+
imgs = [imgs]
|
79 |
+
input_size = self.input_size
|
80 |
+
|
81 |
+
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
|
82 |
+
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
|
83 |
+
net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
|
84 |
+
return net_out
|
85 |
+
|
86 |
+
def forward(self, batch_data):
|
87 |
+
blob = (batch_data - self.input_mean) / self.input_std
|
88 |
+
net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
|
89 |
+
return net_out
|
90 |
+
|
91 |
+
|
face_align.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from skimage import transform as trans
|
4 |
+
|
5 |
+
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
|
6 |
+
[51.157, 89.050], [57.025, 89.702]],
|
7 |
+
dtype=np.float32)
|
8 |
+
#<--left
|
9 |
+
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
|
10 |
+
[45.177, 86.190], [64.246, 86.758]],
|
11 |
+
dtype=np.float32)
|
12 |
+
|
13 |
+
#---frontal
|
14 |
+
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
|
15 |
+
[42.463, 87.010], [69.537, 87.010]],
|
16 |
+
dtype=np.float32)
|
17 |
+
|
18 |
+
#-->right
|
19 |
+
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
|
20 |
+
[48.167, 86.758], [67.236, 86.190]],
|
21 |
+
dtype=np.float32)
|
22 |
+
|
23 |
+
#-->right profile
|
24 |
+
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
|
25 |
+
[55.388, 89.702], [61.257, 89.050]],
|
26 |
+
dtype=np.float32)
|
27 |
+
|
28 |
+
src = np.array([src1, src2, src3, src4, src5])
|
29 |
+
src_map = {112: src, 224: src * 2}
|
30 |
+
|
31 |
+
arcface_src = np.array(
|
32 |
+
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
33 |
+
[41.5493, 92.3655], [70.7299, 92.2041]],
|
34 |
+
dtype=np.float32)
|
35 |
+
|
36 |
+
arcface_src = np.expand_dims(arcface_src, axis=0)
|
37 |
+
|
38 |
+
# In[66]:
|
39 |
+
|
40 |
+
|
41 |
+
# lmk is prediction; src is template
|
42 |
+
def estimate_norm(lmk, image_size=112, mode='arcface'):
|
43 |
+
assert lmk.shape == (5, 2)
|
44 |
+
tform = trans.SimilarityTransform()
|
45 |
+
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
46 |
+
min_M = []
|
47 |
+
min_index = []
|
48 |
+
min_error = float('inf')
|
49 |
+
if mode == 'arcface':
|
50 |
+
if image_size == 112:
|
51 |
+
src = arcface_src
|
52 |
+
else:
|
53 |
+
src = float(image_size) / 112 * arcface_src
|
54 |
+
else:
|
55 |
+
src = src_map[image_size]
|
56 |
+
for i in np.arange(src.shape[0]):
|
57 |
+
tform.estimate(lmk, src[i])
|
58 |
+
M = tform.params[0:2, :]
|
59 |
+
results = np.dot(M, lmk_tran.T)
|
60 |
+
results = results.T
|
61 |
+
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
|
62 |
+
# print(error)
|
63 |
+
if error < min_error:
|
64 |
+
min_error = error
|
65 |
+
min_M = M
|
66 |
+
min_index = i
|
67 |
+
return min_M, min_index
|
68 |
+
|
69 |
+
|
70 |
+
def norm_crop(img, landmark, image_size=112, mode='arcface'):
|
71 |
+
M, pose_index = estimate_norm(landmark, image_size, mode)
|
72 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
73 |
+
return warped
|
74 |
+
|
75 |
+
def square_crop(im, S):
|
76 |
+
if im.shape[0] > im.shape[1]:
|
77 |
+
height = S
|
78 |
+
width = int(float(im.shape[1]) / im.shape[0] * S)
|
79 |
+
scale = float(S) / im.shape[0]
|
80 |
+
else:
|
81 |
+
width = S
|
82 |
+
height = int(float(im.shape[0]) / im.shape[1] * S)
|
83 |
+
scale = float(S) / im.shape[1]
|
84 |
+
resized_im = cv2.resize(im, (width, height))
|
85 |
+
det_im = np.zeros((S, S, 3), dtype=np.uint8)
|
86 |
+
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
|
87 |
+
return det_im, scale
|
88 |
+
|
89 |
+
|
90 |
+
def transform(data, center, output_size, scale, rotation):
|
91 |
+
scale_ratio = scale
|
92 |
+
rot = float(rotation) * np.pi / 180.0
|
93 |
+
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
|
94 |
+
t1 = trans.SimilarityTransform(scale=scale_ratio)
|
95 |
+
cx = center[0] * scale_ratio
|
96 |
+
cy = center[1] * scale_ratio
|
97 |
+
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
|
98 |
+
t3 = trans.SimilarityTransform(rotation=rot)
|
99 |
+
t4 = trans.SimilarityTransform(translation=(output_size / 2,
|
100 |
+
output_size / 2))
|
101 |
+
t = t1 + t2 + t3 + t4
|
102 |
+
M = t.params[0:2]
|
103 |
+
cropped = cv2.warpAffine(data,
|
104 |
+
M, (output_size, output_size),
|
105 |
+
borderValue=0.0)
|
106 |
+
return cropped, M
|
107 |
+
|
108 |
+
|
109 |
+
def trans_points2d(pts, M):
|
110 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
111 |
+
for i in range(pts.shape[0]):
|
112 |
+
pt = pts[i]
|
113 |
+
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
114 |
+
new_pt = np.dot(M, new_pt)
|
115 |
+
#print('new_pt', new_pt.shape, new_pt)
|
116 |
+
new_pts[i] = new_pt[0:2]
|
117 |
+
|
118 |
+
return new_pts
|
119 |
+
|
120 |
+
|
121 |
+
def trans_points3d(pts, M):
|
122 |
+
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
|
123 |
+
#print(scale)
|
124 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
125 |
+
for i in range(pts.shape[0]):
|
126 |
+
pt = pts[i]
|
127 |
+
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
128 |
+
new_pt = np.dot(M, new_pt)
|
129 |
+
#print('new_pt', new_pt.shape, new_pt)
|
130 |
+
new_pts[i][0:2] = new_pt[0:2]
|
131 |
+
new_pts[i][2] = pts[i][2] * scale
|
132 |
+
|
133 |
+
return new_pts
|
134 |
+
|
135 |
+
|
136 |
+
def trans_points(pts, M):
|
137 |
+
if pts.shape[1] == 2:
|
138 |
+
return trans_points2d(pts, M)
|
139 |
+
else:
|
140 |
+
return trans_points3d(pts, M)
|
141 |
+
|
main.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import argparse
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import onnxruntime
|
9 |
+
from scrfd import SCRFD
|
10 |
+
from arcface_onnx import ArcFaceONNX
|
11 |
+
|
12 |
+
onnxruntime.set_default_logger_severity(5)
|
13 |
+
|
14 |
+
assets_dir = osp.expanduser('~/.insightface/models/buffalo_l')
|
15 |
+
|
16 |
+
detector = SCRFD(os.path.join(assets_dir, 'det_10g.onnx'))
|
17 |
+
detector.prepare(0)
|
18 |
+
model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
|
19 |
+
rec = ArcFaceONNX(model_path)
|
20 |
+
rec.prepare(0)
|
21 |
+
|
22 |
+
def parse_args() -> argparse.Namespace:
|
23 |
+
parser = argparse.ArgumentParser()
|
24 |
+
parser.add_argument('img1', type=str)
|
25 |
+
parser.add_argument('img2', type=str)
|
26 |
+
return parser.parse_args()
|
27 |
+
|
28 |
+
|
29 |
+
def func(args):
|
30 |
+
image1 = cv2.imread(args.img1)
|
31 |
+
image2 = cv2.imread(args.img2)
|
32 |
+
bboxes1, kpss1 = detector.autodetect(image1, max_num=1)
|
33 |
+
if bboxes1.shape[0]==0:
|
34 |
+
return -1.0, "Face not found in Image-1"
|
35 |
+
bboxes2, kpss2 = detector.autodetect(image2, max_num=1)
|
36 |
+
if bboxes2.shape[0]==0:
|
37 |
+
return -1.0, "Face not found in Image-2"
|
38 |
+
kps1 = kpss1[0]
|
39 |
+
kps2 = kpss2[0]
|
40 |
+
feat1 = rec.get(image1, kps1)
|
41 |
+
feat2 = rec.get(image2, kps2)
|
42 |
+
sim = rec.compute_sim(feat1, feat2)
|
43 |
+
if sim<0.2:
|
44 |
+
conclu = 'They are NOT the same person'
|
45 |
+
elif sim>=0.2 and sim<0.28:
|
46 |
+
conclu = 'They are LIKELY TO be the same person'
|
47 |
+
else:
|
48 |
+
conclu = 'They ARE the same person'
|
49 |
+
return sim, conclu
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == '__main__':
|
54 |
+
args = parse_args()
|
55 |
+
output = func(args)
|
56 |
+
print('sim: %.4f, message: %s'%(output[0], output[1]))
|
57 |
+
|
scrfd.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from __future__ import division
|
3 |
+
import datetime
|
4 |
+
import numpy as np
|
5 |
+
#import onnx
|
6 |
+
import onnxruntime
|
7 |
+
import os
|
8 |
+
import os.path as osp
|
9 |
+
import cv2
|
10 |
+
import sys
|
11 |
+
|
12 |
+
def softmax(z):
|
13 |
+
assert len(z.shape) == 2
|
14 |
+
s = np.max(z, axis=1)
|
15 |
+
s = s[:, np.newaxis] # necessary step to do broadcasting
|
16 |
+
e_x = np.exp(z - s)
|
17 |
+
div = np.sum(e_x, axis=1)
|
18 |
+
div = div[:, np.newaxis] # dito
|
19 |
+
return e_x / div
|
20 |
+
|
21 |
+
def distance2bbox(points, distance, max_shape=None):
|
22 |
+
"""Decode distance prediction to bounding box.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
points (Tensor): Shape (n, 2), [x, y].
|
26 |
+
distance (Tensor): Distance from the given point to 4
|
27 |
+
boundaries (left, top, right, bottom).
|
28 |
+
max_shape (tuple): Shape of the image.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
Tensor: Decoded bboxes.
|
32 |
+
"""
|
33 |
+
x1 = points[:, 0] - distance[:, 0]
|
34 |
+
y1 = points[:, 1] - distance[:, 1]
|
35 |
+
x2 = points[:, 0] + distance[:, 2]
|
36 |
+
y2 = points[:, 1] + distance[:, 3]
|
37 |
+
if max_shape is not None:
|
38 |
+
x1 = x1.clamp(min=0, max=max_shape[1])
|
39 |
+
y1 = y1.clamp(min=0, max=max_shape[0])
|
40 |
+
x2 = x2.clamp(min=0, max=max_shape[1])
|
41 |
+
y2 = y2.clamp(min=0, max=max_shape[0])
|
42 |
+
return np.stack([x1, y1, x2, y2], axis=-1)
|
43 |
+
|
44 |
+
def distance2kps(points, distance, max_shape=None):
|
45 |
+
"""Decode distance prediction to bounding box.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
points (Tensor): Shape (n, 2), [x, y].
|
49 |
+
distance (Tensor): Distance from the given point to 4
|
50 |
+
boundaries (left, top, right, bottom).
|
51 |
+
max_shape (tuple): Shape of the image.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Tensor: Decoded bboxes.
|
55 |
+
"""
|
56 |
+
preds = []
|
57 |
+
for i in range(0, distance.shape[1], 2):
|
58 |
+
px = points[:, i%2] + distance[:, i]
|
59 |
+
py = points[:, i%2+1] + distance[:, i+1]
|
60 |
+
if max_shape is not None:
|
61 |
+
px = px.clamp(min=0, max=max_shape[1])
|
62 |
+
py = py.clamp(min=0, max=max_shape[0])
|
63 |
+
preds.append(px)
|
64 |
+
preds.append(py)
|
65 |
+
return np.stack(preds, axis=-1)
|
66 |
+
|
67 |
+
class SCRFD:
|
68 |
+
def __init__(self, model_file=None, session=None):
|
69 |
+
import onnxruntime
|
70 |
+
self.model_file = model_file
|
71 |
+
self.session = session
|
72 |
+
self.taskname = 'detection'
|
73 |
+
self.batched = False
|
74 |
+
if self.session is None:
|
75 |
+
assert self.model_file is not None
|
76 |
+
assert osp.exists(self.model_file)
|
77 |
+
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CoreMLExecutionProvider','CUDAExecutionProvider'])
|
78 |
+
self.center_cache = {}
|
79 |
+
self.nms_thresh = 0.4
|
80 |
+
self.det_thresh = 0.5
|
81 |
+
self._init_vars()
|
82 |
+
|
83 |
+
def _init_vars(self):
|
84 |
+
input_cfg = self.session.get_inputs()[0]
|
85 |
+
input_shape = input_cfg.shape
|
86 |
+
#print(input_shape)
|
87 |
+
if isinstance(input_shape[2], str):
|
88 |
+
self.input_size = None
|
89 |
+
else:
|
90 |
+
self.input_size = tuple(input_shape[2:4][::-1])
|
91 |
+
#print('image_size:', self.image_size)
|
92 |
+
input_name = input_cfg.name
|
93 |
+
self.input_shape = input_shape
|
94 |
+
outputs = self.session.get_outputs()
|
95 |
+
if len(outputs[0].shape) == 3:
|
96 |
+
self.batched = True
|
97 |
+
output_names = []
|
98 |
+
for o in outputs:
|
99 |
+
output_names.append(o.name)
|
100 |
+
self.input_name = input_name
|
101 |
+
self.output_names = output_names
|
102 |
+
self.input_mean = 127.5
|
103 |
+
self.input_std = 128.0
|
104 |
+
#print(self.output_names)
|
105 |
+
#assert len(outputs)==10 or len(outputs)==15
|
106 |
+
self.use_kps = False
|
107 |
+
self._anchor_ratio = 1.0
|
108 |
+
self._num_anchors = 1
|
109 |
+
if len(outputs)==6:
|
110 |
+
self.fmc = 3
|
111 |
+
self._feat_stride_fpn = [8, 16, 32]
|
112 |
+
self._num_anchors = 2
|
113 |
+
elif len(outputs)==9:
|
114 |
+
self.fmc = 3
|
115 |
+
self._feat_stride_fpn = [8, 16, 32]
|
116 |
+
self._num_anchors = 2
|
117 |
+
self.use_kps = True
|
118 |
+
elif len(outputs)==10:
|
119 |
+
self.fmc = 5
|
120 |
+
self._feat_stride_fpn = [8, 16, 32, 64, 128]
|
121 |
+
self._num_anchors = 1
|
122 |
+
elif len(outputs)==15:
|
123 |
+
self.fmc = 5
|
124 |
+
self._feat_stride_fpn = [8, 16, 32, 64, 128]
|
125 |
+
self._num_anchors = 1
|
126 |
+
self.use_kps = True
|
127 |
+
|
128 |
+
def prepare(self, ctx_id, **kwargs):
|
129 |
+
if ctx_id<0:
|
130 |
+
self.session.set_providers(['CPUExecutionProvider'])
|
131 |
+
nms_thresh = kwargs.get('nms_thresh', None)
|
132 |
+
if nms_thresh is not None:
|
133 |
+
self.nms_thresh = nms_thresh
|
134 |
+
det_thresh = kwargs.get('det_thresh', None)
|
135 |
+
if det_thresh is not None:
|
136 |
+
self.det_thresh = det_thresh
|
137 |
+
input_size = kwargs.get('input_size', None)
|
138 |
+
if input_size is not None:
|
139 |
+
if self.input_size is not None:
|
140 |
+
print('warning: det_size is already set in scrfd model, ignore')
|
141 |
+
else:
|
142 |
+
self.input_size = input_size
|
143 |
+
|
144 |
+
def forward(self, img, threshold):
|
145 |
+
scores_list = []
|
146 |
+
bboxes_list = []
|
147 |
+
kpss_list = []
|
148 |
+
input_size = tuple(img.shape[0:2][::-1])
|
149 |
+
blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
|
150 |
+
net_outs = self.session.run(self.output_names, {self.input_name : blob})
|
151 |
+
|
152 |
+
input_height = blob.shape[2]
|
153 |
+
input_width = blob.shape[3]
|
154 |
+
fmc = self.fmc
|
155 |
+
for idx, stride in enumerate(self._feat_stride_fpn):
|
156 |
+
# If model support batch dim, take first output
|
157 |
+
if self.batched:
|
158 |
+
scores = net_outs[idx][0]
|
159 |
+
bbox_preds = net_outs[idx + fmc][0]
|
160 |
+
bbox_preds = bbox_preds * stride
|
161 |
+
if self.use_kps:
|
162 |
+
kps_preds = net_outs[idx + fmc * 2][0] * stride
|
163 |
+
# If model doesn't support batching take output as is
|
164 |
+
else:
|
165 |
+
scores = net_outs[idx]
|
166 |
+
bbox_preds = net_outs[idx + fmc]
|
167 |
+
bbox_preds = bbox_preds * stride
|
168 |
+
if self.use_kps:
|
169 |
+
kps_preds = net_outs[idx + fmc * 2] * stride
|
170 |
+
|
171 |
+
height = input_height // stride
|
172 |
+
width = input_width // stride
|
173 |
+
K = height * width
|
174 |
+
key = (height, width, stride)
|
175 |
+
if key in self.center_cache:
|
176 |
+
anchor_centers = self.center_cache[key]
|
177 |
+
else:
|
178 |
+
#solution-1, c style:
|
179 |
+
#anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
|
180 |
+
#for i in range(height):
|
181 |
+
# anchor_centers[i, :, 1] = i
|
182 |
+
#for i in range(width):
|
183 |
+
# anchor_centers[:, i, 0] = i
|
184 |
+
|
185 |
+
#solution-2:
|
186 |
+
#ax = np.arange(width, dtype=np.float32)
|
187 |
+
#ay = np.arange(height, dtype=np.float32)
|
188 |
+
#xv, yv = np.meshgrid(np.arange(width), np.arange(height))
|
189 |
+
#anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
|
190 |
+
|
191 |
+
#solution-3:
|
192 |
+
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
|
193 |
+
#print(anchor_centers.shape)
|
194 |
+
|
195 |
+
anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
|
196 |
+
if self._num_anchors>1:
|
197 |
+
anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
|
198 |
+
if len(self.center_cache)<100:
|
199 |
+
self.center_cache[key] = anchor_centers
|
200 |
+
|
201 |
+
pos_inds = np.where(scores>=threshold)[0]
|
202 |
+
bboxes = distance2bbox(anchor_centers, bbox_preds)
|
203 |
+
pos_scores = scores[pos_inds]
|
204 |
+
pos_bboxes = bboxes[pos_inds]
|
205 |
+
scores_list.append(pos_scores)
|
206 |
+
bboxes_list.append(pos_bboxes)
|
207 |
+
if self.use_kps:
|
208 |
+
kpss = distance2kps(anchor_centers, kps_preds)
|
209 |
+
#kpss = kps_preds
|
210 |
+
kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
|
211 |
+
pos_kpss = kpss[pos_inds]
|
212 |
+
kpss_list.append(pos_kpss)
|
213 |
+
return scores_list, bboxes_list, kpss_list
|
214 |
+
|
215 |
+
def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'):
|
216 |
+
assert input_size is not None or self.input_size is not None
|
217 |
+
input_size = self.input_size if input_size is None else input_size
|
218 |
+
|
219 |
+
im_ratio = float(img.shape[0]) / img.shape[1]
|
220 |
+
model_ratio = float(input_size[1]) / input_size[0]
|
221 |
+
if im_ratio>model_ratio:
|
222 |
+
new_height = input_size[1]
|
223 |
+
new_width = int(new_height / im_ratio)
|
224 |
+
else:
|
225 |
+
new_width = input_size[0]
|
226 |
+
new_height = int(new_width * im_ratio)
|
227 |
+
det_scale = float(new_height) / img.shape[0]
|
228 |
+
resized_img = cv2.resize(img, (new_width, new_height))
|
229 |
+
det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
|
230 |
+
det_img[:new_height, :new_width, :] = resized_img
|
231 |
+
det_thresh = thresh if thresh is not None else self.det_thresh
|
232 |
+
|
233 |
+
scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh)
|
234 |
+
|
235 |
+
scores = np.vstack(scores_list)
|
236 |
+
scores_ravel = scores.ravel()
|
237 |
+
order = scores_ravel.argsort()[::-1]
|
238 |
+
bboxes = np.vstack(bboxes_list) / det_scale
|
239 |
+
if self.use_kps:
|
240 |
+
kpss = np.vstack(kpss_list) / det_scale
|
241 |
+
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
|
242 |
+
pre_det = pre_det[order, :]
|
243 |
+
keep = self.nms(pre_det)
|
244 |
+
det = pre_det[keep, :]
|
245 |
+
if self.use_kps:
|
246 |
+
kpss = kpss[order,:,:]
|
247 |
+
kpss = kpss[keep,:,:]
|
248 |
+
else:
|
249 |
+
kpss = None
|
250 |
+
if max_num > 0 and det.shape[0] > max_num:
|
251 |
+
area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
|
252 |
+
det[:, 1])
|
253 |
+
img_center = img.shape[0] // 2, img.shape[1] // 2
|
254 |
+
offsets = np.vstack([
|
255 |
+
(det[:, 0] + det[:, 2]) / 2 - img_center[1],
|
256 |
+
(det[:, 1] + det[:, 3]) / 2 - img_center[0]
|
257 |
+
])
|
258 |
+
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
259 |
+
if metric=='max':
|
260 |
+
values = area
|
261 |
+
else:
|
262 |
+
values = area - offset_dist_squared * 2.0 # some extra weight on the centering
|
263 |
+
bindex = np.argsort(
|
264 |
+
values)[::-1] # some extra weight on the centering
|
265 |
+
bindex = bindex[0:max_num]
|
266 |
+
det = det[bindex, :]
|
267 |
+
if kpss is not None:
|
268 |
+
kpss = kpss[bindex, :]
|
269 |
+
return det, kpss
|
270 |
+
|
271 |
+
def autodetect(self, img, max_num=0, metric='max'):
|
272 |
+
bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5)
|
273 |
+
bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5)
|
274 |
+
bboxes_all = np.concatenate([bboxes, bboxes2], axis=0)
|
275 |
+
kpss_all = np.concatenate([kpss, kpss2], axis=0)
|
276 |
+
keep = self.nms(bboxes_all)
|
277 |
+
det = bboxes_all[keep,:]
|
278 |
+
kpss = kpss_all[keep,:]
|
279 |
+
if max_num > 0 and det.shape[0] > max_num:
|
280 |
+
area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
|
281 |
+
det[:, 1])
|
282 |
+
img_center = img.shape[0] // 2, img.shape[1] // 2
|
283 |
+
offsets = np.vstack([
|
284 |
+
(det[:, 0] + det[:, 2]) / 2 - img_center[1],
|
285 |
+
(det[:, 1] + det[:, 3]) / 2 - img_center[0]
|
286 |
+
])
|
287 |
+
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
288 |
+
if metric=='max':
|
289 |
+
values = area
|
290 |
+
else:
|
291 |
+
values = area - offset_dist_squared * 2.0 # some extra weight on the centering
|
292 |
+
bindex = np.argsort(
|
293 |
+
values)[::-1] # some extra weight on the centering
|
294 |
+
bindex = bindex[0:max_num]
|
295 |
+
det = det[bindex, :]
|
296 |
+
if kpss is not None:
|
297 |
+
kpss = kpss[bindex, :]
|
298 |
+
return det, kpss
|
299 |
+
|
300 |
+
def nms(self, dets):
|
301 |
+
thresh = self.nms_thresh
|
302 |
+
x1 = dets[:, 0]
|
303 |
+
y1 = dets[:, 1]
|
304 |
+
x2 = dets[:, 2]
|
305 |
+
y2 = dets[:, 3]
|
306 |
+
scores = dets[:, 4]
|
307 |
+
|
308 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
309 |
+
order = scores.argsort()[::-1]
|
310 |
+
|
311 |
+
keep = []
|
312 |
+
while order.size > 0:
|
313 |
+
i = order[0]
|
314 |
+
keep.append(i)
|
315 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
316 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
317 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
318 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
319 |
+
|
320 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
321 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
322 |
+
inter = w * h
|
323 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
324 |
+
|
325 |
+
inds = np.where(ovr <= thresh)[0]
|
326 |
+
order = order[inds + 1]
|
327 |
+
|
328 |
+
return keep
|
329 |
+
|