Spaces:
Runtime error
Runtime error
File size: 12,434 Bytes
8d31bb0 aebf357 9251391 00031a8 204c916 9251391 11569de aebf357 00031a8 9251391 1f03788 aebf357 adde38c 9251391 aebf357 69f6ec4 aebf357 adde38c 02ac1ae aebf357 02ac1ae aebf357 e732bbf aebf357 1f03788 9251391 204c916 11569de 204c916 aebf357 9251391 aebf357 9251391 3f898f8 b067069 9251391 3f898f8 29fc2d7 9251391 3f898f8 29fc2d7 b067069 9251391 3f898f8 29fc2d7 b067069 9251391 aebf357 9251391 aebf357 9251391 aebf357 9251391 00031a8 9251391 b067069 9251391 c95ec09 9251391 c95ec09 9251391 82047ec 11569de 9251391 00031a8 9251391 82047ec 9251391 1f03788 9251391 00031a8 9251391 aebf357 812370d aebf357 927b6fc aebf357 9251391 a54d7cf c655df8 9251391 c655df8 927b6fc aebf357 835cde3 9251391 835cde3 1f5eaf9 fd5b78e b797438 fd5b78e a9aaf24 32bab82 fd5b78e aebf357 204c916 aebf357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import os
import re
import time
import json
import random
import finnhub
import torch
import gradio as gr
import pandas as pd
import yfinance as yf
from pynvml import *
from peft import PeftModel
from collections import defaultdict
from datetime import date, datetime, timedelta
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
access_token = os.environ["HF_TOKEN"]
finnhub_client = finnhub.Client(api_key=os.environ["FINNHUB_API_KEY"])
base_model = AutoModelForCausalLM.from_pretrained(
'meta-llama/Llama-2-7b-chat-hf',
token=access_token,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16,
offload_folder="offload/"
)
model = PeftModel.from_pretrained(
base_model,
'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora',
offload_folder="offload/"
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(
'meta-llama/Llama-2-7b-chat-hf',
token=access_token
)
streamer = TextStreamer(tokenizer)
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
SYSTEM_PROMPT = "You are a seasoned stock market analyst. Your task is to list the positive developments and potential concerns for companies based on relevant news and basic financials from the past weeks, then provide an analysis and prediction for the companies' stock price movement for the upcoming week. " \
"Your answer format should be as follows:\n\n[Positive Developments]:\n1. ...\n\n[Potential Concerns]:\n1. ...\n\n[Prediction & Analysis]\nPrediction: ...\nAnalysis: ..."
def print_gpu_utilization():
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
print(f"GPU memory occupied: {info.used//1024**2} MB.")
def get_curday():
return date.today().strftime("%Y-%m-%d")
def n_weeks_before(date_string, n):
date = datetime.strptime(date_string, "%Y-%m-%d") - timedelta(days=7*n)
return date.strftime("%Y-%m-%d")
def get_stock_data(stock_symbol, steps):
stock_data = yf.download(stock_symbol, steps[0], steps[-1])
if len(stock_data) == 0:
raise gr.Error(f"Failed to download stock price data for symbol {stock_symbol} from yfinance!")
# print(stock_data)
dates, prices = [], []
available_dates = stock_data.index.format()
for date in steps[:-1]:
for i in range(len(stock_data)):
if available_dates[i] >= date:
prices.append(stock_data['Close'][i])
dates.append(datetime.strptime(available_dates[i], "%Y-%m-%d"))
break
dates.append(datetime.strptime(available_dates[-1], "%Y-%m-%d"))
prices.append(stock_data['Close'][-1])
return pd.DataFrame({
"Start Date": dates[:-1], "End Date": dates[1:],
"Start Price": prices[:-1], "End Price": prices[1:]
})
def get_news(symbol, data):
news_list = []
for end_date, row in data.iterrows():
start_date = row['Start Date'].strftime('%Y-%m-%d')
end_date = row['End Date'].strftime('%Y-%m-%d')
# print(symbol, ': ', start_date, ' - ', end_date)
time.sleep(1) # control qpm
weekly_news = finnhub_client.company_news(symbol, _from=start_date, to=end_date)
if len(weekly_news) == 0:
raise gr.Error(f"No company news found for symbol {symbol} from finnhub!")
weekly_news = [
{
"date": datetime.fromtimestamp(n['datetime']).strftime('%Y%m%d%H%M%S'),
"headline": n['headline'],
"summary": n['summary'],
} for n in weekly_news
]
weekly_news.sort(key=lambda x: x['date'])
news_list.append(json.dumps(weekly_news))
data['News'] = news_list
return data
def get_company_prompt(symbol):
profile = finnhub_client.company_profile2(symbol=symbol)
if not profile:
raise gr.Error(f"Failed to find company profile for symbol {symbol} from finnhub!")
company_template = "[Company Introduction]:\n\n{name} is a leading entity in the {finnhubIndustry} sector. Incorporated and publicly traded since {ipo}, the company has established its reputation as one of the key players in the market. As of today, {name} has a market capitalization of {marketCapitalization:.2f} in {currency}, with {shareOutstanding:.2f} shares outstanding." \
"\n\n{name} operates primarily in the {country}, trading under the ticker {ticker} on the {exchange}. As a dominant force in the {finnhubIndustry} space, the company continues to innovate and drive progress within the industry."
formatted_str = company_template.format(**profile)
return formatted_str
def get_prompt_by_row(symbol, row):
start_date = row['Start Date'] if isinstance(row['Start Date'], str) else row['Start Date'].strftime('%Y-%m-%d')
end_date = row['End Date'] if isinstance(row['End Date'], str) else row['End Date'].strftime('%Y-%m-%d')
term = 'increased' if row['End Price'] > row['Start Price'] else 'decreased'
head = "From {} to {}, {}'s stock price {} from {:.2f} to {:.2f}. Company news during this period are listed below:\n\n".format(
start_date, end_date, symbol, term, row['Start Price'], row['End Price'])
news = json.loads(row["News"])
news = ["[Headline]: {}\n[Summary]: {}\n".format(
n['headline'], n['summary']) for n in news if n['date'][:8] <= end_date.replace('-', '') and \
not n['summary'].startswith("Looking for stock market analysis and research with proves results?")]
basics = json.loads(row['Basics'])
if basics:
basics = "Some recent basic financials of {}, reported at {}, are presented below:\n\n[Basic Financials]:\n\n".format(
symbol, basics['period']) + "\n".join(f"{k}: {v}" for k, v in basics.items() if k != 'period')
else:
basics = "[Basic Financials]:\n\nNo basic financial reported."
return head, news, basics
def sample_news(news, k=5):
return [news[i] for i in sorted(random.sample(range(len(news)), k))]
def get_current_basics(symbol, curday):
basic_financials = finnhub_client.company_basic_financials(symbol, 'all')
if not basic_financials['series']:
raise gr.Error(f"Failed to find basic financials for symbol {symbol} from finnhub!")
final_basics, basic_list, basic_dict = [], [], defaultdict(dict)
for metric, value_list in basic_financials['series']['quarterly'].items():
for value in value_list:
basic_dict[value['period']].update({metric: value['v']})
for k, v in basic_dict.items():
v.update({'period': k})
basic_list.append(v)
basic_list.sort(key=lambda x: x['period'])
for basic in basic_list[::-1]:
if basic['period'] <= curday:
break
return basic
def get_all_prompts_online(symbol, data, curday, with_basics=True):
company_prompt = get_company_prompt(symbol)
prev_rows = []
for row_idx, row in data.iterrows():
head, news, _ = get_prompt_by_row(symbol, row)
prev_rows.append((head, news, None))
prompt = ""
for i in range(-len(prev_rows), 0):
prompt += "\n" + prev_rows[i][0]
sampled_news = sample_news(
prev_rows[i][1],
min(5, len(prev_rows[i][1]))
)
if sampled_news:
prompt += "\n".join(sampled_news)
else:
prompt += "No relative news reported."
period = "{} to {}".format(curday, n_weeks_before(curday, -1))
if with_basics:
basics = get_current_basics(symbol, curday)
basics = "Some recent basic financials of {}, reported at {}, are presented below:\n\n[Basic Financials]:\n\n".format(
symbol, basics['period']) + "\n".join(f"{k}: {v}" for k, v in basics.items() if k != 'period')
else:
basics = "[Basic Financials]:\n\nNo basic financial reported."
info = company_prompt + '\n' + prompt + '\n' + basics
prompt = info + f"\n\nBased on all the information before {curday}, let's first analyze the positive developments and potential concerns for {symbol}. Come up with 2-4 most important factors respectively and keep them concise. Most factors should be inferred from company related news. " \
f"Then make your prediction of the {symbol} stock price movement for next week ({period}). Provide a summary analysis to support your prediction."
return info, prompt
def construct_prompt(ticker, curday, n_weeks, use_basics):
try:
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
except Exception:
raise gr.Error(f"Invalid date {curday}!")
data = get_stock_data(ticker, steps)
data = get_news(ticker, data)
data['Basics'] = [json.dumps({})] * len(data)
# print(data)
info, prompt = get_all_prompts_online(ticker, data, curday, use_basics)
prompt = B_INST + B_SYS + SYSTEM_PROMPT + E_SYS + prompt + E_INST
# print(prompt)
return info, prompt
def predict(ticker, date, n_weeks, use_basics):
print_gpu_utilization()
info, prompt = construct_prompt(ticker, date, n_weeks, use_basics)
inputs = tokenizer(
prompt, return_tensors='pt', padding=False
)
inputs = {key: value.to(model.device) for key, value in inputs.items()}
print("Inputs loaded onto devices.")
res = model.generate(
**inputs, max_length=4096, do_sample=True,
eos_token_id=tokenizer.eos_token_id,
use_cache=True, streamer=streamer
)
output = tokenizer.decode(res[0], skip_special_tokens=True)
answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)
torch.cuda.empty_cache()
return info, answer
demo = gr.Interface(
predict,
inputs=[
gr.Textbox(
label="Ticker",
value="AAPL",
info="Companys from Dow-30 are recommended"
),
gr.Textbox(
label="Date",
value=get_curday,
info="Date from which the prediction is made, use format yyyy-mm-dd"
),
gr.Slider(
minimum=1,
maximum=4,
value=3,
step=1,
label="n_weeks",
info="Information of the past n weeks will be utilized, choose between 1 and 4"
),
gr.Checkbox(
label="Use Latest Basic Financials",
value=False,
info="If checked, the latest quarterly reported basic financials of the company is taken into account."
)
],
outputs=[
gr.Textbox(
label="Information"
),
gr.Textbox(
label="Response"
)
],
title="FinGPT-Forecaster",
description="""FinGPT-Forecaster takes random market news and optional basic financials related to the specified company from the past few weeks as input and responds with the company's **positive developments** and **potential concerns**. Then it gives out a **prediction** of stock price movement for the coming week and its **analysis** summary.
This model is finetuned on Llama2-7b-chat-hf with LoRA on the past year's DOW30 market data. Inference in this demo uses fp16 and **welcomes any ticker symbol**.
Company profile & Market news & Basic financials & Stock prices are retrieved using **yfinance & finnhub**.
For more detailed and customized implementation, refer to our FinGPT project: <https://github.com/AI4Finance-Foundation/FinGPT>
⚠️Warning: This is just a demo showing what this model is capable of. During each individual inference, company news is **randomly sampled** from all the news from designated weeks, which might result in **different predictions for the same time period**.
We suggest users deploy the [original model](https://huggingface.co/FinGPT/fingpt-forecaster_dow30_llama2-7b_lora) or clone this space and inference with more carefully selected news in their own favorable ways.
Setting do_sample=False or modifying the temperature during the generation process also helps stabilize the prediction result.
**Disclaimer: Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use common sense and always first consult a professional before trading or investing.**
"""
)
demo.launch()
|