No1r97 commited on
Commit
11569de
·
1 Parent(s): de86e1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -2
app.py CHANGED
@@ -8,6 +8,7 @@ import torch
8
  import gradio as gr
9
  import pandas as pd
10
  import yfinance as yf
 
11
  from peft import PeftModel
12
  from collections import defaultdict
13
  from datetime import date, datetime, timedelta
@@ -31,8 +32,11 @@ model = PeftModel.from_pretrained(
31
  'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora',
32
  offload_folder="offload/"
33
  )
 
34
  model = model.eval()
35
 
 
 
36
  tokenizer = AutoTokenizer.from_pretrained(
37
  'meta-llama/Llama-2-7b-chat-hf',
38
  token=access_token
@@ -47,6 +51,13 @@ SYSTEM_PROMPT = "You are a seasoned stock market analyst. Your task is to list t
47
  "Your answer format should be as follows:\n\n[Positive Developments]:\n1. ...\n\n[Potential Concerns]:\n1. ...\n\n[Prediction & Analysis]\nPrediction: ...\nAnalysis: ..."
48
 
49
 
 
 
 
 
 
 
 
50
 
51
  def get_curday():
52
 
@@ -229,8 +240,8 @@ def construct_prompt(ticker, curday, n_weeks, use_basics):
229
 
230
  def predict(ticker, date, n_weeks, use_basics):
231
 
232
- torch.cuda.empty_cache()
233
-
234
  info, prompt = construct_prompt(ticker, date, n_weeks, use_basics)
235
 
236
  inputs = tokenizer(
 
8
  import gradio as gr
9
  import pandas as pd
10
  import yfinance as yf
11
+ from pynvml import *
12
  from peft import PeftModel
13
  from collections import defaultdict
14
  from datetime import date, datetime, timedelta
 
32
  'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora',
33
  offload_folder="offload/"
34
  )
35
+ model = model.half()
36
  model = model.eval()
37
 
38
+ print_gpu_utilization()
39
+
40
  tokenizer = AutoTokenizer.from_pretrained(
41
  'meta-llama/Llama-2-7b-chat-hf',
42
  token=access_token
 
51
  "Your answer format should be as follows:\n\n[Positive Developments]:\n1. ...\n\n[Potential Concerns]:\n1. ...\n\n[Prediction & Analysis]\nPrediction: ...\nAnalysis: ..."
52
 
53
 
54
+ def print_gpu_utilization():
55
+
56
+ nvmlInit()
57
+ handle = nvmlDeviceGetHandleByIndex(0)
58
+ info = nvmlDeviceGetMemoryInfo(handle)
59
+ print(f"GPU memory occupied: {info.used//1024**2} MB.")
60
+
61
 
62
  def get_curday():
63
 
 
240
 
241
  def predict(ticker, date, n_weeks, use_basics):
242
 
243
+ print_gpu_utilization()
244
+
245
  info, prompt = construct_prompt(ticker, date, n_weeks, use_basics)
246
 
247
  inputs = tokenizer(