No1r97 commited on
Commit
aebf357
·
1 Parent(s): 204c916

demo interface

Browse files
Files changed (1) hide show
  1. app.py +76 -26
app.py CHANGED
@@ -1,30 +1,80 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- # Assuming `my_gpt_model` is your custom model's function that takes a date range and a ticker and returns a string.
4
- def predict_with_gpt(start_date, end_date, ticker):
5
- # Your model would use the start_date, end_date, and ticker to generate a prediction.
6
- # For this example, we'll just return a dummy string.
7
- prediction = ", ".join([start_date, end_date, ticker])
8
- return prediction
9
-
10
- # Create the Gradio app
11
- def create_gradio_app():
12
- with gr.Blocks() as app:
13
- gr.Markdown("Enter a range of dates and a stock ticker to get predictions from the GPT model.")
14
- with gr.Row():
15
- start_date = gr.Date(label="Start Date")
16
- end_date = gr.Date(label="End Date")
17
- ticker = gr.Textbox(label="Ticker")
18
- output = gr.Textbox(label="GPT Model Output")
19
-
20
- # When the button is clicked, the `predict_with_gpt` function is called
21
- gr.Button("Predict").click(
22
- predict_with_gpt,
23
- inputs=[start_date, end_date, ticker],
24
- outputs=output
25
- )
26
 
27
- return app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- app = create_gradio_app()
30
- app.launch()
 
1
+ import re
2
  import gradio as gr
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ from peft import PeftModel
5
+ from datetime import date
6
+
7
+
8
+ base_model = AutoModelForCausalLM.from_pretrained(
9
+ 'meta-llama/Llama-2-7b-chat-hf',
10
+ trust_remote_code=True,
11
+ device_map="auto",
12
+ )
13
+ model = PeftModel.from_pretrained(
14
+ base_model,
15
+ 'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora'
16
+ )
17
+ model = model.eval()
18
+
19
+ tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')
20
+
21
+
22
+ def construct_prompt(ticker, date, n_weeks):
23
+
24
+ return ", ".join([ticker, date, str(n_weeks)])
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ def get_curday():
28
+
29
+ return date.today().strftime("%Y-%m-%d")
30
+
31
+
32
+ def predict(ticker, date, n_weeks):
33
+
34
+ prompt = construct_prompt(ticker, date, n_weeks)
35
+
36
+ # inputs = tokenizer(
37
+ # prompt, return_tensors='pt',
38
+ # padding=False, max_length=4096
39
+ # )
40
+ # inputs = {key: value.to(model.device) for key, value in inputs.items()}
41
+
42
+ # res = model.generate(
43
+ # **inputs, max_length=4096, do_sample=True,
44
+ # eos_token_id=tokenizer.eos_token_id,
45
+ # use_cache=True
46
+ # )
47
+ # output = tokenizer.decode(res[0], skip_special_tokens=True)
48
+ # answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)
49
+
50
+ answer = prompt
51
+
52
+ return answer
53
+
54
+
55
+ demo = gr.Interface(
56
+ predict,
57
+ inputs=[
58
+ gr.Textbox(
59
+ label="Ticker",
60
+ value="AAPL",
61
+ info="Companys from Dow-30 are recommended"
62
+ )
63
+ gr.Textbox(
64
+ label="Date",
65
+ value=get_curday,
66
+ info="Date from which the prediction is made, use format 'yyyy-mm-dd'"
67
+ ),
68
+ gr.Slider(
69
+ minimum=1,
70
+ maximum=4,
71
+ value=3,
72
+ step=1,
73
+ label="n_weeks",
74
+ info="Information of the past n weeks will be utilized, choose between 1 and 4"
75
+ ),
76
+ ],
77
+ outputs="Response"
78
+ )
79
 
80
+ demo.launch()