Spaces:
Sleeping
Sleeping
File size: 10,058 Bytes
4cd3714 925fada dc36253 4cd3714 dc36253 4cd3714 5a203eb 4cd3714 dc36253 4cd3714 925fada dc36253 925fada dc36253 4cd3714 dc36253 5a203eb 925fada dc36253 925fada dc36253 925fada dc36253 925fada dc36253 925fada dc36253 5a203eb dc36253 925fada dc36253 925fada 5a203eb 925fada dc36253 925fada dc36253 925fada dc36253 5a203eb dc36253 5a203eb dc36253 925fada dc36253 925fada dc36253 925fada 5a203eb dc36253 5a203eb dc36253 925fada 5a203eb 925fada dc36253 925fada dc36253 813521c e65f39b 813521c e65f39b dc36253 4cd3714 e65f39b 5a203eb e65f39b 5a203eb e65f39b 2c1e728 e65f39b 5a203eb e65f39b 813521c e65f39b 5a203eb e65f39b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import sqlite3
import base64
from io import BytesIO
import tempfile
import pandas as pd
# Load YOLOv8 model
model = YOLO("best.pt")
def predict_image(input_image, name, age, medical_record, sex):
if input_image is None:
return None, "Please Input The Image"
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = model(image_np)
# Draw bounding boxes on the image
image_with_boxes = image_np.copy()
raw_predictions = []
if results[0].boxes:
# Sort the results by confidence and take the highest confidence one
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
# Determine the label based on the class index
class_index = highest_confidence_result.cls.item()
if class_index == 0:
label = "Immature"
color = (0, 255, 255) # Yellow for Immature
elif class_index == 1:
label = "Mature"
color = (255, 0, 0) # Red for Mature
else:
label = "Normal"
color = (0, 255, 0) # Green for Normal
confidence = highest_confidence_result.conf.item()
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
# Draw the bounding box
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
# Enlarge font scale and thickness
font_scale = 1.0
thickness = 2
# Calculate label background size
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
# Put the label text with black background
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
raw_predictions_str = "\n".join(raw_predictions)
# Convert to PIL image for further processing
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Add text and watermark
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
return pil_image_with_boxes, raw_predictions_str
# Function to add watermark
def add_watermark(image):
try:
logo = Image.open('image-logo.png').convert("RGBA")
image = image.convert("RGBA")
# Resize logo
basewidth = 100
wpercent = (basewidth / float(logo.size[0]))
hsize = int((float(wpercent) * logo.size[1]))
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
# Position logo
position = (image.width - logo.width - 10, image.height - logo.height - 10)
# Composite image
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
transparent.paste(image, (0, 0))
transparent.paste(logo, position, mask=logo)
return transparent.convert("RGB")
except Exception as e:
print(f"Error adding watermark: {e}")
return image
# Function to add text and watermark
def add_text_and_watermark(image, name, age, medical_record, sex, label):
draw = ImageDraw.Draw(image)
# Load a larger font (adjust the size as needed)
font_size = 48 # Example font size
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
# Calculate text bounding box
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = 20
text_y = 40
padding = 10
# Draw a filled rectangle for the background
draw.rectangle(
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
fill="black"
)
# Draw text on top of the rectangle
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
# Add watermark to the image
image_with_watermark = add_watermark(image)
return image_with_watermark
# Function to initialize the database
def init_db():
conn = sqlite3.connect('results.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS results
(id INTEGER PRIMARY KEY, name TEXT, age INTEGER, medical_record INTEGER, sex TEXT, input_image BLOB, predicted_image BLOB, result TEXT)''')
conn.commit()
conn.close()
# Function to submit result to the database
def submit_result(name, age, medical_record, sex, input_image, predicted_image, result):
conn = sqlite3.connect('results.db')
c = conn.cursor()
input_image_np = np.array(input_image)
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
input_image_bytes = input_buffer.tobytes()
predicted_image_np = np.array(predicted_image)
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
predicted_image_bytes = predicted_buffer.tobytes()
c.execute("INSERT INTO results (name, age, medical_record, sex, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?, ?, ?)",
(name, age, medical_record, sex, input_image_bytes, predicted_image_bytes, result))
conn.commit()
conn.close()
return "Result submitted to database."
# Function to load and view database
def view_database():
conn = sqlite3.connect('results.db')
c = conn.cursor()
c.execute("SELECT name, age, medical_record, sex, input_image, predicted_image, result FROM results")
rows = c.fetchall()
conn.close()
# Convert to pandas DataFrame for better display in Gradio
df = pd.DataFrame(rows, columns=["Name", "Age", "Medical Record", "Sex", "Input Image", "Predicted Image", "Result"])
return df
# Function to download database or image
def download_file(choice):
if choice == "Database (.db)":
# Provide the path to the database file
return 'results.db'
else:
conn = sqlite3.connect('results.db')
c = conn.cursor()
c.execute("SELECT predicted_image FROM results ORDER BY id DESC LIMIT 1")
row = c.fetchone()
conn.close()
if row:
image_bytes = row[0]
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
temp_file.write(image_bytes)
temp_file.flush() # Ensure all data is written before closing
return temp_file.name
else:
raise FileNotFoundError("No images found in the database.")
# Initialize the database
init_db()
# Gradio Interface
def interface(name, age, medical_record, sex, input_image):
if input_image is None:
return "Please upload an image."
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
submit_status = submit_result(name, age, medical_record, sex, input_image, output_image, raw_result)
return output_image, raw_result, submit_status
# View Database Function
def view_db_interface():
df = view_database()
return df
# Download Function
def download_interface(choice):
try:
file_path = download_file(choice)
with open(file_path, "rb") as file:
return file.read(), file_path.split('/')[-1]
except FileNotFoundError as e:
return str(e), None
# Gradio Blocks
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Cataract Detection System")
gr.Markdown("Upload an image to detect cataract and add patient details.")
gr.Image("PR_curve.png", label="Model PR Curve")
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
with gr.Column():
name = gr.Textbox(label="Name")
age = gr.Number(label="Age")
medical_record = gr.Number(label="Medical Record")
sex = gr.Radio(["Male", "Female"], label="Sex")
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
with gr.Column():
submit_btn = gr.Button("Submit")
output_image = gr.Image(type="pil", label="Predicted Image")
with gr.Row():
raw_result = gr.Textbox(label="Raw Result", lines=5)
submit_status = gr.Textbox(label="Submission Status")
submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result, submit_status])
with gr.Column():
view_db_btn = gr.Button("View Database")
db_output = gr.Dataframe(label="Database Records")
view_db_btn.click(fn=view_db_interface, inputs=[], outputs=[db_output])
with gr.Column():
download_choice = gr.Radio(["Database (.db)", "Predicted Image (.png)"], label="Choose the file to download:")
download_btn = gr.Button("Download")
download_output = gr.File(label="Download File")
download_btn.click(fn=download_interface, inputs=[download_choice], outputs=[download_output])
# Launch the Gradio app
demo.launch() |