muzairkhattak
added sample images
ad2cd02
|
raw
history blame
19.8 kB

Preparing UniMed Dataset for training Medical VLMs training

This document provides detailed instructions on preparing UniMed dataset for pre-training contrastive medical VLMs. Note that, although UniMed is developed using fully open-source medical data sources, we are not able to release the processed data directly, as some data-sources are subject to strict distribution licenses. Therefore, we provide step-by-step instructions on assembling UniMed data and provide several parts of UniMed for which no licensing obligations are present.

About the UniMed Pretraining Dataset: UniMed is a large-scale medical image-text pretraining dataset that explicitly covers 6 diverse medical modalities including X-rays, CT, MRI, Ultrasound, HistoPathology and Retinal Fundus. UniMed is developed using completely open-sourced data-sources comprising over 5.3 million high-quality image-text pairs. Model trained using UniMed (e.g., our UniMed-CLIP) provides impressive zero-shot and downstream task performance compared to other generalist VLMs, that are often trained on proprietary/closed-source datasets.

Follow the instructions below to construct UniMed dataset. We download each part of UniMed independently and prepare its multi-modal versions (where applicable) using our processed textual-captions.

Downloading Individual Datasets and Converting them into Image-text format

As the first step, we download the individual Medical Datasets from their respective data providers. We suggest putting all datasets under the same folder (say $DATA) to ease management. The file structure looks like below.

$DATA/
|–– CheXpert-v1.0-small/
|–– mimic-cxr-jpg/
|–– openi/
|-- chest_xray8/
|-- radimagenet/
|-- Retina-Datasets/
|-- Quilt/
|–– pmc_oa/
|–– ROCOV2/
|–– llava_med/

Datasets list:

We use the scripts provided in data_prepration_scripts for preparing UniMed dataset. Follow the instructions illustrated below.

1. CheXpert

Downloading Dataset:

  • Step 1: Download the dataset from the following link on Kaggle.

Downloading Annotations:

  • Download the processed text annotations file chexpert_with_captions_only_frontal_view.csv from this link, and put it to the main folder.
  • The final directory structure should look like below.
CheXpert-v1.0-small/
|–– train/
|–– valid/
|–– train.csv
|–– valid.csv
|–– chexpert_with_captions_only_frontal_view.csv

Preparing image-text dataset and conversion in webdataset format:

  • Run the following command to create image-text dataset:
  • python data_prepration_scripts/CheXpert/webdataset_chexpert.py --csv_file chexpert_with_captions_only_frontal_view.csv --output_dir <path-to-save-all-image-text-datasets>/chexpert_webdataset --parent_dataset_path $DATA/CheXpert-v1.0-small
  • This will prepare chexpert image-text data in webdataset format, to be used directly for training.

2. MIMIC-CXR

Downloading Dataset:

  • Step 1: Follow the instructions in the following link to get access to the Mimic CXR jpg dataset (Note you have to complete a data-usage agreement form inorder to get access to the dataset).
  • Step 2: Then, download the 10 folders p10-p19 from link.

Downloading Annotations:

  • Download the processed text annotations folder mimic_cxr_with_captions_and_reports_only_frontal_view.csv from this link, and put it to the main folder.
  • The final directory structure should look like below.
mimic-cxr-jpg/2.0.0/files/
|-- mimic_cxr_with_captions_and_reports_only_frontal_view.csv
|–– p10/
|–– p11/
|–– p12/
...
...
|–– p19/

Preparing image-text datasets in webdataset format:

  • Run the following command to create image-text dataset:
  • python data_prepration_scripts/MIMIC-CXR/webdataset_mimic_cxr.py --csv_file mimic_cxr_with_captions_and_reports_only_frontal_view.csv --output_dir <path-to-save-all-image-text-datasets>/mimic_cxr_webdataset --parent_dataset_path $DATA/mimic-cxr-jpg
  • This will prepare mimic-cxr image-text data in webdataset format, to be used directly for training.

3. OpenI

Downloading Dataset:

  • Step 1 : Download the OpenI PNG dataset from the link.

Downloading Annotations:

  • Download the processed text annotations folder openai_refined_concepts.json, and filter_cap.json from this link, and put it to the main folder.
  • The final directory structure should look like below.
openI/
|-- openai_refined_concepts.json
|-- filter_cap.json
|–– image/
    |-- # image files ...

Preparing image-text datasets in webdataset format:

  • Run the following command to create image-text dataset:
  • python data_prepration_scripts/Openi/openi_webdataset.py --original_json_file_summarizations_path filter_cap.json --gpt_text_descriptions_path openai_refined_concepts.json --output_dir <path-to-save-all-image-text-datasets>/openi_webdataset --parent_dataset_path $DATA/OpenI/image
  • This will prepare openi image-text data in webdataset format, to be used directly for training.

4. ChestX-ray8

Downloading Dataset:

  • Step 1: Download the images folder from the following link.

Downloading Annotations:

  • Download the processed text annotations folder Chest-Xray8_with_captions.csv from this link, and put it to the main folder.
  • The final directory structure should look like below.
chest_xray8/
|-- Chest-Xray8_with_captions.csv
|–– images/
    |-- # image files ...

Preparing image-text dataset and conversion in webdataset format:

  • Run the following command to create image-text dataset:
  • python data_prepration_scripts/ChestX-ray8/chest-xray_8_webdataset.py --csv_file Chest-Xray8_with_captions.csv --output_dir <path-to-save-all-image-text-datasets>/chest_xray8_webdataset --parent_dataset_path $DATA/chest_xray8/images
  • This will prepare chest-xray8 image-text data in webdataset format, to be used directly for training.

5. RadImageNet

Downloading Dataset:

  • Step 1 : Submit the request for dataset via the link and,
  • Step 2 : Download the official dataset splits csv from this link. [Note that the access to the dataset-split will be granted once the request for dataset usage (in step 1) is approved]

Downloading Annotations:

  • Download the processed text annotations folder radimagenet_with_captions_training_set.csv from this link, and put it to the main folder.

  • The final directory structure should look like below.

  • The directory structure should look like below.

radimagenet/
|–– radiology_ai/
    |-- radimagenet_with_captions_training_set.csv
    |-- CT
    |-- MR
    |-- US

Preparing image-text dataset and conversion in webdataset format:

  • Run the following command to create image-text dataset:
  • python data_prepration_scripts/RadImageNet/radimagenet_webdataset.py --csv_file radimagenet_with_captions_training_set.csv --output_dir <path-to-save-all-image-text-datasets>/radimagenet_webdataset --parent_dataset_path $DATA/radimagenet
  • This will prepare chest-xray8 image-text data in webdataset format, to be used directly for training.

6. Retinal-Datasets

For the retinal datasets, we select 35 Retinal datasets and convert the label only datasets into multi-modal versions using LLM-in-the-loop pipeline proposed in the paper.

Downloading Datasets:

  • Part 1: Download the MM-Retinal dataset available from the official google drive link.

  • Part 2: Download the datasets presented in the table below to prepare the FLAIR Dataset collection (table source: FLAIR).

  • Vision-Language Pre-training.

Downloading Annotations:

  • Download the processed text annotations folder Retina-Annotations from this link.
  • The directory structure should look like below.
Retina-Datasets/
|-- Retina-Annotations/
|-- 03_IDRiD/
|-- 11_STARE/
...

Preparing image-text dataset and conversion in webdataset format:

  • Run the following commands to create image-text datasets for Retinal datasets
   python data_prepration_scripts/Retinal-Datasets/retina_webdataset_part1.py --csv_files_directory <path-to-csv-files-directory> --output_dir <path-to-save-all-image-text-datasets>/retina_part1_webdataset/ --parent_dataset_path $DATA/Retina-Datasets
   python data_prepration_scripts/Retinal-Datasets/retina_webdataset_part2.py --csv_files_directory <path-to-csv-files-directory> --output_dir <path-to-save-all-image-text-datasets>/retina_part2_webdataset/ --parent_dataset_path $DATA/Retina-Datasets
   python data_prepration_scripts/Retinal-Datasets/retina_webdataset_part3.py --csv_files_directory <path-to-csv-files-directory> --output_dir <path-to-save-all-image-text-datasets>/retina_part3_webdataset/ --parent_dataset_path $DATA/Retina-Datasets 
  • This will prepare image-text data for retina-modality in webdataset format, to be used directly for training.

Quilt-1M

Note: Quilt-1M provides image-text pairs, and we directly utilize their image-text pairs in our pretraining.

Downloading Dataset:

  • Step 1:Request access for Quilt-1M dataset via the link, and then download the respective dataset.
  • The directory structure should look like below.
Quilt/
|-- quilt_1M_lookup.csv
|-- # bunch of files
|–– quilt_1m/
    |-- #images

Preparing image-text datasets in webdataset format:

  • Run the following command:
  • python data_prepration_scripts/Quilt-1M/quilt_1m_webdataset.py --csv_file $DATA/Quilt/quilt_1M_lookup.csv --output_dir <path-to-save-all-image-text-datasets>/quilt_1m_webdataset --parent_dataset_path $DATA/Quilt/quilt_1m/
  • This will prepare Quilt-1M image-text data in webdataset format, to be used directly for training.

PMC-OA

Note: PMC-OA provides image-text pairs, and we directly utilize their image-text pairs in our UniMed pretraining dataset.

Downloading Dataset:

  • Step 1: Download the PMC-OA images from the following link.
  • Step 2: Download the json file (link).
  • The directory structure should look like below.
pmc_oa/
|–– pmc_oa.jsonl
|-- caption_T060_filtered_top4_sep_v0_subfigures
    |-- # iamges
|-- # bunch of files

Preparing image-text datasets in webdataset format:

  • Run the following command:
  • python data_prepration_scripts/PMC-OA/pmc_oa_webdataset.py --csv_file $DATA/pmc_oa/pmc_oa.jsonl --output_dir <path-to-save-all-image-text-datasets>/pmc_oa_webdataset/ --parent_dataset_path $DATA/pmc_oa/caption_T060_filtered_top4_sep_v0_subfigures/
  • This will prepare PMC-OA image-text data in webdataset format, to be used directly for training.

ROCO-V2

Note: ROCO-V2 provides image-text pairs, and we directly utilize their image-text pairs in our pretraining.

Downloading Dataset:

  • Step 1: Download the images and captions from the link.
  • The directory structure should look like below.
ROCOV2/
|–– train/
|-- test/
|-- train_captions.csv
|-- # bunch of files

Preparing image-text datasets in webdataset format:

  • Run the following command:
  • python data_prepration_scripts/ROCOV2/roco_webdataset.py --csv_file $DATA/ROCOV2/train_captions.csv --output_dir <path-to-save-all-image-text-datasets>/rocov2_webdataset/ --parent_dataset_path $DATA/ROCOV2/train/
  • This will prepare ROCOV2 image-text data in webdataset format, to be used directly for training.

LLaVA-Med

Note: LLaVA-Med provides image-text pairs, and we directly utilize their image-text pairs in our pretraining.

Downloading Dataset:

  • Download images by following instructions at LLaVA-Med official repository here.

Downloading Annotations:

  • Download the filtered caption files llava_med_instruct_fig_captions.json, and llava_med_alignment_500k_filtered.json from this link. The final directory should look like this:
llava_med/
|–– llava_med_alignment_500k_filtered.json
|-- llava_med_instruct_fig_captions.json
|-- images
    |-- # images

Preparing image-text datasets in webdataset format:

  • Run the following commands:
python data_prepration_scripts/LLaVA-Med/llava_med_alignment_webdataset.py --csv_file $DATA/llava_med/llava_med_alignment_500k_filtered.json --output_dir <path-to-save-all-image-text-datasets>/llava_med_alignment_webdataset/ --parent_dataset_path $DATA/llava_med/images/`
python data_prepration_scripts/LLaVA-Med/llava_med_instruct_webdataset.py --csv_file $DATA/llava_med/llava_med_instruct_fig_captions.json --output_dir <path-to-save-all-image-text-datasets>/llava_med_instruct_webdataset/ --parent_dataset_path $DATA/llava_med/images/`
  • This will prepare LLaVa-Med image-text data in webdataset format, to be used directly for training.

Final Dataset Directory Structure:

After following the above steps, UniMed dataset will be now completely prepared in the webdataset format. The final directory structure looks like below:

<path-to-save-all-image-text-datasets>/
|–– chexpert_webdataset/
|–– mimic_cxr_webdataset/
|–– openi_webdataset/
|-- chest_xray8_webdataset/
|-- radimagenet_webdataset/
|-- retina_part1_webdataset/
|-- retina_part2_webdataset/
|-- retina_part3_webdataset/
|-- quilt_1m_webdataset
|–– pmc_oa_webdataset/
|-- rocov2_webdataset/
|–– llava_med_alignment_webdataset/
|–– llava_med_instruct_webdataset/