Spaces:
Running
Running
File size: 5,858 Bytes
fdf85cd 3331cdd fdf85cd 3331cdd 68e342d 3331cdd 72a6c00 3331cdd 61804bb 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd bea07d1 fed5fe3 3331cdd bea07d1 3331cdd fdf85cd 3331cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
# Load embeddings and metadata
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
# Vector search function
def vector_search(query, model):
query_embedding = model.encode(query)
similarities = cosine_similarity([query_embedding], embeddings)[0]
top_n = 3
top_indices = similarities.argsort()[-top_n:][::-1]
results = metadata.iloc[top_indices]
# Format results for display
result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows())
return result_text
# Gradio Interface
import gradio as gr
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("thenlper/gte-large")
with gr.Blocks() as demo:
gr.Markdown("# Netflix Recommendation System")
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
query = gr.Textbox(label="Enter your query")
output = gr.Textbox(label="Recommendations")
submit_button = gr.Button("Submit")
submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)
demo.launch()
# import gradio as gr
# # def greet(name):
# # return "Hello " + name + "!!"
# from sentence_transformers import SentenceTransformer
# import numpy as np
# from sklearn.metrics.pairwise import cosine_similarity
# from datasets import load_dataset
# # Load pre-trained SentenceTransformer model
# embedding_model = SentenceTransformer("thenlper/gte-large")
# # # Example dataset with genres (replace with your actual data)
# # dataset = load_dataset("hugginglearners/netflix-shows")
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
# # data = dataset['train'] # Accessing the 'train' split of the dataset
# # # Convert the dataset to a list of dictionaries for easier indexing
# # data_list = list[data]
# # print(data_list)
# # # Combine description and genre for embedding
# # def combine_description_title_and_genre(description, listed_in, title):
# # return f"{description} Genre: {listed_in} Title: {title}"
# # # Generate embedding for the query
# # def get_embedding(text):
# # return embedding_model.encode(text)
# # # Vector search function
# # def vector_search(query):
# # query_embedding = get_embedding(query)
# # # Generate embeddings for the combined description and genre
# # embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
# # # Calculate cosine similarity between the query and all embeddings
# # similarities = cosine_similarity([query_embedding], embeddings)
# # Load dataset (using the correct dataset identifier for your case)
# dataset = load_dataset("hugginglearners/netflix-shows")
# # Combine description and genre for embedding
# def combine_description_title_and_genre(description, listed_in, title):
# return f"{description} Genre: {listed_in} Title: {title}"
# # Generate embedding for the query
# def get_embedding(text):
# return embedding_model.encode(text)
# # Vector search function
# def vector_search(query):
# query_embedding = get_embedding(query)
# # Function to generate embeddings for each item in the dataset
# def generate_embeddings(example):
# return {
# 'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
# }
# # Generate embeddings for the dataset using map
# embeddings_dataset = dataset["train"].map(generate_embeddings)
# # Extract embeddings
# embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
# # Calculate cosine similarity between the query and all embeddings
# similarities = cosine_similarity([query_embedding], embeddings)
# # # Adjust similarity scores based on ratings
# # ratings = np.array([item["rating"] for item in data_list])
# # adjusted_similarities = similarities * ratings.reshape(-1, 1)
# # Get top N most similar items (e.g., top 3)
# top_n = 3
# top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
# top_items = [dataset["train"][i] for i in top_indices]
# # Format the output for display
# search_result = ""
# for item in top_items:
# search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
# return search_result
# # Gradio Interface
# def movie_search(query):
# return vector_search(query)
# with gr.Blocks() as demo:
# gr.Markdown("# Netflix Recommendation System")
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
# query = gr.Textbox(label="Enter your query")
# output = gr.Textbox(label="Recommendations")
# submit_button = gr.Button("Submit")
# submit_button.click(fn=movie_search, inputs=query, outputs=output)
# demo.launch()
# # iface = gr.Interface(fn=movie_search,
# # inputs=gr.inputs.Textbox(label="Enter your query"),
# # outputs="text",
# # live=True,
# # title="Netflix Recommendation System",
# # description="Enter a query to get Netflix recommendations based on description and genre.")
# # iface.launch()
# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# # demo.launch()
|