File size: 1,568 Bytes
6989a37
7b15e8e
 
30f242a
6989a37
7b15e8e
 
 
75e60e4
7b15e8e
40b061b
7b15e8e
 
 
9e69fb2
7b15e8e
 
6989a37
7b15e8e
 
 
 
 
6f2a51c
9e69fb2
7b15e8e
e3a012f
9e69fb2
90d35fd
40b061b
680be8b
90d35fd
680be8b
 
 
90d35fd
40b061b
 
30f242a
e3a012f
90d35fd
9e69fb2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification
import torch
from PIL import Image

# Load the image processor and model
processor = AutoImageProcessor.from_pretrained("ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease")
model = AutoModelForImageClassification.from_pretrained("ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease")

# Define the function to process the image and make predictions
def classify_leaf_disease(image):
    # Preprocess the image
    inputs = processor(images=image, return_tensors="pt")
    
    # Run the model on the image
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Get the predicted label and confidence score
    probs = torch.softmax(outputs.logits, dim=1)
    predicted_class_idx = probs.argmax(dim=1).item()
    predicted_label = model.config.id2label[predicted_class_idx]
    confidence_score = probs[0][predicted_class_idx].item()
    
    # Format the output
    return predicted_label, f"{confidence_score:.2f}", image

# Create Gradio Interface
interface = gr.Interface(
    fn=classify_leaf_disease,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Textbox(label="Disease Name"),
        gr.Textbox(label="Confidence Score"),
        gr.Image(type="pil", label="Uploaded Image")
    ],
    title="Leaf Disease Identification",
    description="Upload an image of any plant leaf, and this model will identify the disease and show the confidence score."
)

# Launch the app
if __name__ == "__main__":
    interface.launch()