Spaces:
Sleeping
Sleeping
SarowarSaurav
commited on
Commit
•
9e69fb2
1
Parent(s):
d28d64b
Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
|
7 |
-
# Load
|
8 |
-
|
9 |
-
model = YOLO('yolov8n.pt')
|
10 |
-
print("Model loaded successfully.")
|
11 |
-
except Exception as e:
|
12 |
-
print(f"Error loading model: {e}")
|
13 |
|
14 |
-
def
|
15 |
-
#
|
16 |
-
|
17 |
-
if image.mode != 'RGB':
|
18 |
-
image = image.convert('RGB')
|
19 |
-
print("Image converted to RGB successfully.")
|
20 |
-
except Exception as e:
|
21 |
-
print(f"Error converting image to RGB: {e}")
|
22 |
-
return image, [{"Disease": "Error", "Confidence": "N/A"}]
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
predictions = results[0]
|
28 |
-
print("Model inference completed successfully.")
|
29 |
-
except Exception as e:
|
30 |
-
print(f"Error during model inference: {e}")
|
31 |
-
return image, [{"Disease": "Error during inference", "Confidence": "N/A"}]
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
annotated_image = Image.fromarray(annotated_image)
|
40 |
-
return annotated_image, [{"Disease": "None", "Confidence": "N/A"}]
|
41 |
-
|
42 |
-
# Extract predictions and annotate image
|
43 |
-
try:
|
44 |
-
boxes = predictions.boxes
|
45 |
-
labels = boxes.cls.cpu().numpy() if boxes.cls is not None else []
|
46 |
-
scores = boxes.conf.cpu().numpy() if boxes.conf is not None else []
|
47 |
-
class_names = model.names
|
48 |
-
|
49 |
-
annotated_image = np.array(image)
|
50 |
-
for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
|
51 |
-
x1, y1, x2, y2 = map(int, box)
|
52 |
-
class_name = class_names[int(label)]
|
53 |
-
confidence = f"{score * 100:.2f}%"
|
54 |
-
annotated_image = cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
55 |
-
annotated_image = cv2.putText(annotated_image, f"{class_name} {confidence}", (x1, y1 - 10),
|
56 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
57 |
-
annotated_image = Image.fromarray(annotated_image)
|
58 |
-
print("Image annotation completed.")
|
59 |
-
|
60 |
-
# Prepare results list for output
|
61 |
-
results_list = [{"Disease": class_names[int(label)], "Confidence": f"{score * 100:.2f}%"} for label, score in zip(labels, scores)]
|
62 |
-
return annotated_image, results_list
|
63 |
-
|
64 |
-
except Exception as e:
|
65 |
-
print(f"Error during annotation: {e}")
|
66 |
-
return image, [{"Disease": "Error during annotation", "Confidence": "N/A"}]
|
67 |
|
68 |
-
#
|
69 |
interface = gr.Interface(
|
70 |
-
fn=
|
71 |
-
inputs=gr.Image(type="pil"),
|
72 |
outputs=[
|
73 |
-
gr.
|
74 |
-
gr.
|
|
|
75 |
],
|
76 |
-
title="
|
77 |
-
description="Upload an image of a leaf, and this
|
78 |
)
|
79 |
|
80 |
# Launch the app
|
81 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
+
# Load a pre-trained model for plant disease classification
|
6 |
+
model = pipeline("image-classification", model="microsoft/resnet-50") # Substitute with a specific plant disease model if available on Hugging Face
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def classify_disease(image):
|
9 |
+
# Run the model on the image
|
10 |
+
results = model(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Format the top result (assuming the top-1 result is most accurate)
|
13 |
+
disease_name = results[0]['label']
|
14 |
+
confidence_score = results[0]['score']
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Format the output
|
17 |
+
return {
|
18 |
+
"Disease Name": disease_name,
|
19 |
+
"Confidence Score": f"{confidence_score:.2f}",
|
20 |
+
"Uploaded Image": image
|
21 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Create Gradio Interface
|
24 |
interface = gr.Interface(
|
25 |
+
fn=classify_disease,
|
26 |
+
inputs=gr.inputs.Image(type="pil"),
|
27 |
outputs=[
|
28 |
+
gr.outputs.Textbox(label="Disease Name"),
|
29 |
+
gr.outputs.Textbox(label="Confidence Score"),
|
30 |
+
gr.outputs.Image(type="pil", label="Uploaded Image")
|
31 |
],
|
32 |
+
title="Tobacco Plant Disease Identification",
|
33 |
+
description="Upload an image of a tobacco plant leaf, and this model will identify the disease and show the confidence score."
|
34 |
)
|
35 |
|
36 |
# Launch the app
|
37 |
+
if __name__ == "__main__":
|
38 |
+
interface.launch()
|