SarowarSaurav commited on
Commit
6f2a51c
1 Parent(s): 29b03e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -4,8 +4,8 @@ from PIL import Image
4
  import numpy as np
5
  import cv2
6
 
7
- # Load the YOLOv8 model (you can adjust the model path if needed)
8
- model = YOLO('yolov8n.pt') # Ensure this path points to the correct YOLO model file
9
 
10
  def identify_disease(image):
11
  # Convert the image to RGB if it's not
@@ -14,9 +14,18 @@ def identify_disease(image):
14
 
15
  # Perform inference
16
  results = model(image)
 
 
 
 
 
 
 
 
 
 
17
 
18
  # Extract predictions
19
- predictions = results[0]
20
  boxes = predictions.boxes
21
  labels = boxes.cls.cpu().numpy()
22
  scores = boxes.conf.cpu().numpy()
 
4
  import numpy as np
5
  import cv2
6
 
7
+ # Load the YOLOv8 model (ensure this path is correct)
8
+ model = YOLO('yolov8n.pt')
9
 
10
  def identify_disease(image):
11
  # Convert the image to RGB if it's not
 
14
 
15
  # Perform inference
16
  results = model(image)
17
+ predictions = results[0]
18
+
19
+ # Check if there are any detections
20
+ if len(predictions.boxes) == 0:
21
+ # No detections, return the image with a message
22
+ annotated_image = np.array(image)
23
+ cv2.putText(annotated_image, "No disease detected", (10, 30),
24
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
25
+ annotated_image = Image.fromarray(annotated_image)
26
+ return annotated_image, [{"Disease": "None", "Confidence": "N/A"}]
27
 
28
  # Extract predictions
 
29
  boxes = predictions.boxes
30
  labels = boxes.cls.cpu().numpy()
31
  scores = boxes.conf.cpu().numpy()