Spaces:
Running
Running
import streamlit as st | |
from transformers import ViTImageProcessor, AutoModelForImageClassification | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
import json | |
from flask import Flask, request, jsonify | |
# Load the model and processor | |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
# Define prediction function | |
def predict_image(image): | |
try: | |
# Process the image and make prediction | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Get predicted class | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_label = model.config.id2label[predicted_class_idx] | |
return predicted_label | |
except Exception as e: | |
return str(e) | |
# Streamlit app | |
st.title("NSFW Image Classifier") | |
# Display API usage instructions | |
st.write("You can use this app with the API endpoint below. Send a POST request with the image URL to get classification.") | |
st.write("Example URL to use with curl:") | |
st.code("curl -X POST https://huggingface.co/spaces/yeftakun/nsfw_api2/api/classify -H 'Content-Type: application/json' -d '{\"image_url\": \"https://example.jpg\"}'") | |
# URL input for UI | |
image_url = st.text_input("Enter Image URL", placeholder="Enter image URL here") | |
if image_url: | |
try: | |
# Load image from URL | |
response = requests.get(image_url) | |
image = Image.open(BytesIO(response.content)) | |
st.image(image, caption='Image from URL', use_column_width=True) | |
st.write("") | |
st.write("Classifying...") | |
# Predict and display result | |
prediction = predict_image(image) | |
st.write(f"Predicted Class: {prediction}") | |
except Exception as e: | |
st.write(f"Error: {e}") | |
# API Endpoint using Flask | |
app = Flask(__name__) | |
def classify(): | |
data = request.json | |
image_url = data.get('image_url') | |
if not image_url: | |
return jsonify({"error": "Image URL is required"}), 400 | |
try: | |
# Load image from URL | |
response = requests.get(image_url) | |
image = Image.open(BytesIO(response.content)) | |
# Predict image | |
prediction = predict_image(image) | |
return jsonify({"predicted_class": prediction}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == '__main__': | |
app.run(port=5000) | |