Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,12 @@ from transformers import ViTImageProcessor, AutoModelForImageClassification
|
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
from io import BytesIO
|
|
|
|
|
6 |
|
7 |
# Load the model and processor
|
8 |
-
|
9 |
-
|
10 |
-
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
11 |
-
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
12 |
-
return processor, model
|
13 |
-
|
14 |
-
processor, model = load_model()
|
15 |
|
16 |
# Define prediction function
|
17 |
def predict_image(image):
|
@@ -32,10 +29,13 @@ def predict_image(image):
|
|
32 |
# Streamlit app
|
33 |
st.title("NSFW Image Classifier")
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
|
|
38 |
|
|
|
|
|
39 |
if image_url:
|
40 |
try:
|
41 |
# Load image from URL
|
@@ -50,5 +50,28 @@ if image_url:
|
|
50 |
st.write(f"Predicted Class: {prediction}")
|
51 |
except Exception as e:
|
52 |
st.write(f"Error: {e}")
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
from io import BytesIO
|
6 |
+
import json
|
7 |
+
from flask import Flask, request, jsonify
|
8 |
|
9 |
# Load the model and processor
|
10 |
+
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
11 |
+
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Define prediction function
|
14 |
def predict_image(image):
|
|
|
29 |
# Streamlit app
|
30 |
st.title("NSFW Image Classifier")
|
31 |
|
32 |
+
# Display API usage instructions
|
33 |
+
st.write("You can use this app with the API endpoint below. Send a POST request with the image URL to get classification.")
|
34 |
+
st.write("Example URL to use with curl:")
|
35 |
+
st.code("curl -X POST https://huggingface.co/spaces/yeftakun/nsfw_api2/api/classify -H 'Content-Type: application/json' -d '{\"image_url\": \"https://example.jpg\"}'")
|
36 |
|
37 |
+
# URL input for UI
|
38 |
+
image_url = st.text_input("Enter Image URL", placeholder="Enter image URL here")
|
39 |
if image_url:
|
40 |
try:
|
41 |
# Load image from URL
|
|
|
50 |
st.write(f"Predicted Class: {prediction}")
|
51 |
except Exception as e:
|
52 |
st.write(f"Error: {e}")
|
53 |
+
|
54 |
+
# API Endpoint using Flask
|
55 |
+
app = Flask(__name__)
|
56 |
+
|
57 |
+
@app.route('/api/classify', methods=['POST'])
|
58 |
+
def classify():
|
59 |
+
data = request.json
|
60 |
+
image_url = data.get('image_url')
|
61 |
+
|
62 |
+
if not image_url:
|
63 |
+
return jsonify({"error": "Image URL is required"}), 400
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Load image from URL
|
67 |
+
response = requests.get(image_url)
|
68 |
+
image = Image.open(BytesIO(response.content))
|
69 |
+
|
70 |
+
# Predict image
|
71 |
+
prediction = predict_image(image)
|
72 |
+
return jsonify({"predicted_class": prediction})
|
73 |
+
except Exception as e:
|
74 |
+
return jsonify({"error": str(e)}), 500
|
75 |
+
|
76 |
+
if __name__ == '__main__':
|
77 |
+
app.run(port=5000)
|