File size: 2,547 Bytes
d9ce9e6
 
 
 
 
83c18ee
 
d9ce9e6
 
83c18ee
 
d9ce9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c18ee
 
 
 
3155a4d
83c18ee
 
697c4ae
 
 
 
 
 
 
 
d9ce9e6
697c4ae
 
 
 
 
83c18ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import streamlit as st
from transformers import ViTImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
from io import BytesIO
import json
from flask import Flask, request, jsonify

# Load the model and processor
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')

# Define prediction function
def predict_image(image):
    try:
        # Process the image and make prediction
        inputs = processor(images=image, return_tensors="pt")
        outputs = model(**inputs)
        logits = outputs.logits

        # Get predicted class
        predicted_class_idx = logits.argmax(-1).item()
        predicted_label = model.config.id2label[predicted_class_idx]

        return predicted_label
    except Exception as e:
        return str(e)

# Streamlit app
st.title("NSFW Image Classifier")

# Display API usage instructions
st.write("You can use this app with the API endpoint below. Send a POST request with the image URL to get classification.")
st.write("Example URL to use with curl:")
st.code("curl -X POST https://huggingface.co/spaces/yeftakun/nsfw_api2/api/classify -H 'Content-Type: application/json' -d '{\"image_url\": \"https://example.jpg\"}'")

# URL input for UI
image_url = st.text_input("Enter Image URL", placeholder="Enter image URL here")
if image_url:
    try:
        # Load image from URL
        response = requests.get(image_url)
        image = Image.open(BytesIO(response.content))
        st.image(image, caption='Image from URL', use_column_width=True)
        st.write("")
        st.write("Classifying...")

        # Predict and display result
        prediction = predict_image(image)
        st.write(f"Predicted Class: {prediction}")
    except Exception as e:
        st.write(f"Error: {e}")

# API Endpoint using Flask
app = Flask(__name__)

@app.route('/api/classify', methods=['POST'])
def classify():
    data = request.json
    image_url = data.get('image_url')
    
    if not image_url:
        return jsonify({"error": "Image URL is required"}), 400
    
    try:
        # Load image from URL
        response = requests.get(image_url)
        image = Image.open(BytesIO(response.content))
        
        # Predict image
        prediction = predict_image(image)
        return jsonify({"predicted_class": prediction})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

if __name__ == '__main__':
    app.run(port=5000)