Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
# Load the model and processor
|
8 |
+
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
9 |
+
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
10 |
+
|
11 |
+
# Define prediction function
|
12 |
+
def predict_image(image):
|
13 |
+
try:
|
14 |
+
# Process the image and make prediction
|
15 |
+
inputs = processor(images=image, return_tensors="pt")
|
16 |
+
outputs = model(**inputs)
|
17 |
+
logits = outputs.logits
|
18 |
+
|
19 |
+
# Get predicted class
|
20 |
+
predicted_class_idx = logits.argmax(-1).item()
|
21 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
22 |
+
|
23 |
+
return predicted_label
|
24 |
+
except Exception as e:
|
25 |
+
return str(e)
|
26 |
+
|
27 |
+
# Streamlit app
|
28 |
+
st.title("NSFW Image Classifier")
|
29 |
+
|
30 |
+
# Upload image file
|
31 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
32 |
+
if uploaded_file is not None:
|
33 |
+
image = Image.open(uploaded_file)
|
34 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
35 |
+
st.write("")
|
36 |
+
st.write("Classifying...")
|
37 |
+
|
38 |
+
# Predict and display result
|
39 |
+
prediction = predict_image(image)
|
40 |
+
st.write(f"Predicted Class: {prediction}")
|